Scholia in opticorum recensionem Theonis (scholia vetera)
Scholia in Euclidem
Scholia in Euclidem, Scholia in opticorum recensionem Theonis, Heiberg, Teubner, 1895
21. Τὸ αὐτὸ θεώρημα ἔν τισι τῶν ἀντιγράφων εὕρηται οὕτως· τὰ ἴσα μεγέθη ἐπὶ τῆς αὐτῆς εὐθείας ὄντα καὶ μὴ ἐφεξῆς ἀλλήλοις κείμενα ἄνισον διεστηκότα τοῦ ὄμματος ἄνισα φαίνεται.
ἔστωσαν δύο μεγέθη τὰ ΑΒ, Γ∠ ἐπὶ τῆς αὐτῆς εὐθείας τῆς Α∠ μὴ ἐφεξῆς ἀλλήλοις ὄντα καὶ ἄνισον διεστηκότα ἀπὸ τοῦ ὄμματος τοῦ Ε, καὶ προσπιπτέτωσαν ἀκτῖνες αἱ ΕΑ, Ε∠, καὶ ἔστω μείζων ἡ ΕΑ τῆς Ε∠, καὶ ὀρθὴ ἡ ὑπὸ ∠Α. λέγω, ὅτι ἡ ΓΔ τῆς ΑΒ μείζων φανήσεται. προσπιπτέτωσαν ἀκτῖνες αἱ ΕΒ, ΕΓ, καὶ περιγεγράφθω περὶ τὸ ΑΕ∠ κύκλος ὁ ΑΕ∠, καὶ προσεκβεβλήσθωσαν αἱ ΕΒ, ΕΓ εὐθεῖαι ἐπὶ τὰ Ζ, Η, καὶ ἀνεστάτωσαν ἀπὸ τῶν Β, Γ σημείων ταῖς ΑΒ, ΓΔ πρὸς ὀρθὰς γωνίας αἱ ΒΘ, ΓΚ. ἐπεὶ οὖν αἱ ΑΒ, Γ∠ ἴσαι εἰσίν, ἀλλὰ καὶ αἱ ΒΘ, ΓΚ, ὡς δείξομεν, καὶ γωνία ἡ ὑπὸ ΑΒΘ γωνίᾳ τῇ ὑπὸ ∠ΓΚ ἐστιν ἴση, [*](21. q, similiter M1RFu: (τὸ η΄ ἄλλως M 1); est opt. uet. prop. VII.) [*](4. λήματος V, corr. m. rec. Pro 8—11 M 1 Ru: ἔν τισι τῶν ἀντιγράφων (μετὰ τὴν πρότασιν add. Ru) ἔχει ἡ τοῦ θεω- ρήματος ἔκθεσις καὶ δεῖξις οὕτως (οὕτω Ru); iid. codd. ad πορρωτέρω . . . τεθέντα add. γρ. καὶ (om. Ru) μὴ ἐφεξῆς ἀλλή- λοις τεθέντα καὶ ἄνισον διεστηκότα τοῦ ὄμματος ἄνισα φαίνεται.) [*](12. ἔστω δύο ἴσα MRFu. 19. αἱ — Η] ταῖς ΕΒ, ΕΓ εὐθιίαις εὐθεῖαι αἱ ΒΖ, ΓΗ MRFu. 22. εἰσί q. 23. ἡ] τῇ MRFu. ∠ΓK] ΑΓΗ Fu. ἐστιν) om. MRFu.)
ὅτι δὲ ἡ ΒΘ ἴση ἐστὶ τῇ ΓΚ, δείξομεν οὕτως· ἐπεὶ ἡ ΑΒ τῇ Γ∠ ἴση ἐστί, καὶ κάθετοι ἐπὶ τὴν Α∠ αἱ ΘΒ, ΓΚ, παράλληλοί εἰσιν αἱ ΒΘ, ΓΚ εὐθεῖαι· προσεκβληθεῖσαι παράλληλοι ἔσονται. προσεκβεβλήσθωσαν καὶ ἔστωσαν αἱ ΘΟ, ΚΠ, καὶ εἰλήφθω τὸ κέντρον τοῦ κύκλου καὶ ἔστω τὸ Ρ, καὶ ἀπὸ τοῦ Ρ ἐπὶ μὲν τὰς ΘΟ, ΚΠ κάθετοι ἤχθωσαν αἱ ΡΝ, ΡΞ, ἐπὶ δὲ τὴν Α∠ πρὸς ὀρθὰς ἡ ΡΣ ἡ ΡΣ ἄρα δίχα τὴν Α∠ κατὰ τὸ Σ τεμεῖ. ἀλλὰ καὶ ἡ ΑΒ τῇ Γ∠ ὑπόκειται ἴση· καὶ λοιπὴ ἄρα ἡ ΒΣ τῇ ΣΓ ἴση ἐστίν. ἀλλὰ καὶ ἡ ΒΣ τῇ ΝΡ ἴση ἐστίν, καὶ ἡ ΣΓ τῇ ΡΞ ἴση [*](1. ἀπό (pr.)] corr. ex ὑπὸ R. 3. ἴση ἐστίν MRFu. ἡ] τῇ Fu. 4. τῆς (pr.)] hinc fol. eodem uerso F, add τοῦ Θ. ἐστί Fu. 7. ΗΕ∠ (alt.)] ΗΒ∠ Fu. 8. ὑπό (alt.)] om. MFu. 9. ὑπό (pr.)] ἐπί Ru. ὑπό (alt.)] om. M. Γ∠ Γ∠ εὐθεῖα MRFu. 10. ὁρᾶται] om. MRFu. AΒ] AB ὁρᾶται MRFu. 11. ἐστί ] om. MRFu. 12. ἐστί ] om. MRFu.) [*](13. ΓΚ (pr.)] ΚΓΜ. corr. ex Γ∠ u. εἰσι q. ΓΚ (alt.) ΚΓ MRFu. 14. προσεκβληθεῖσαι — 18. δίχα] διήχθω πάλι διὰ τοῦ κέντρου τοῦ Ρ πρὸς ὀρθὰς τῇ Α∠ ἡ ΡΣ καὶ δίχα ἄρα MRFu. 19. ἀπόκειται u. 21. καί (pr.)] om. u. ἐστίν om. MRFu. ἴση ἐστίν (alt.)] παραλληλόγραμμα γὰρ τὰ ΒΡ, RG καὶ ἡ ΝR ἄρα τῇ ΝΞ ἴαη MRFu.)
Ad prop. VIII.
22. Ἐν τῷ ιαʹ θεωρήματι τοῦ γʹ βιβλίου τῶν Σφαιρικῶν εὑρήσεις ἔξωθεν σχόλιον, ὃ συμβαλεῖταί σοι εἰς τὴν παροῦσαν δεῖξιν.
23. Ἴαη δὲ ἡ ∠Ζ τῇ ΒΓ· ὡς ἄρα ἡ ΒΓ πρὸς ΘΖ, οὕτως ἡ ὑπὸ ∠ΚΖ γωνία πρὸς τὴν ὑπὸ ΒΚΓ γωνίαν. ὡς δὲ ἡ ΒΓ πρὸς τὴν ΘΖ, οὕτως ἡ ΚΓ πρὸς ΚΖ διὰ τὸ τριγώνου τοῦ ΚΒΓ παρὰ μίαν τῶν πλευρῶν ἦχθαι τὴν ΘΖ καὶ ἰσογώνια εἶναι τὰ τρίγωνα.
24. Ὑπερπεσεῖται τὴν ΚΖ p. 164, 12 ὡς ἀπὸ μείζονος διαστήματος γραφόμενος, ὅπερ ἐστὶν ἡ ΘΚ· μείζων γὰρ αὕτη τῆς ΚΖ· ὥστε ὑπερπεσεῖται τὴν ΚΖ ὡς ἐλάσσονα τῆς ΚΘ.
25. Οὕτως ἡ ΓΚ p. 164, 25] διὰ τὸ ἰσογώνιον εἶναι τὸ ΒΓΚ τῷ ΘΖΚ καὶ ἔχειν ἀνάλογον τὰς πλευράς, ὡς τὴν ΒΓ πρὸς τὴν ΓΚ, τὴν ΘΖ πρὸς τὴν ΖΚ. [*](22. V1q (ad Sphaericorum Theodosii III. 11 in iisdem codd. in mg. exteriore legitur lemma hoc: ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ, καὶ ἤχθω τις ἡ Α∠. δεῖξαι, ὅτι ἡ Β πρὸς τὴν Β∠ μείζονα λόγον ἔχει ἤπερ ἡ ὑπὸ Α ∠Β γωνία πρὸς τὴν ΑΓΒ).) [*](23. V Vat F (pqu R). 24. q. 25. v 1.) [*](1. αἱ — 2. ἴσον] ὡς δέδεικται· ἴσον ἄρα MRFu. 2. διά] περί MRFu. 3. ἴσαι εἰσίν MRFu. 4. ΒΝ] e corr. Ru.) [*](11. ΘΖ] τὴν ΘΖ] p. ∠ΚΖ] e corr. q, Κ∠Ζ V p; Κ∠, Ζ∠ R Fu eras. pr. ∠ Vat. 12. γωνίαν] om. p. 13. ΚΖ] τὴν ΚΖ p. 14. εἶναι] ἐστι p.)
26. Ὡς γὰρ αἱ γωνίαι, διʼ ὧν ὁρῶνται τὰ ὁρώμενα, ἔχουσι πρὸς ἀλλήλας, οὕτως καὶ τὰ ὁρώμενα διὰ τῶν γωνιῶν πρὸς ἄλληλα ἔχειν φαίνονται. ὡς ἄρα λοιπὸν ἡ ΣΡ γωνία ἔχει πρὸς τὴν Ρ γωνίαν, οὕτως ἔχει φαίνεται καὶ τὸ ∠Ζ πρὸς τὸ ΒΓ. ἡ δὲ γωνία ἡ ΣΡ πρὸς τὴν Ρ γωνίαν ἐλάττονα λόγον ἔχει ἤπερ τὸ ἀπόστημα τὸ ΚΓ πρὸς τὸ ΚΖ. καὶ τὸ ∠Ζ ἄρα πρὸς τὸ ΒΓ μικρότερον φαίνεται παρὰ τὸ ΚΓ πρὸς τὸ ΚΖ.
Ad prop. Χ.
27. Ἤχθω γὰρ διὰ τοῦ Η σημείου τῇ ΒΚ παράλληλος ἡ ΗΕ. ἐπεὶ οὖν αἱ ὄψεις πρότερον πρὸς τὴν ΗΕ προσπίπτουσιν κατὰ τὰ Η, Λ, M σημεῖα ἤπερ πρὸς τὴν ΚΓ, καί ἐστι μετεωρότερον τὸ Η τοῦ Λ, τὸ δὲ Λ τοῦ Μ, καὶ διὰ μὲν τοῦ Η σημείου ἡ ΒΗΓ φέρεται ἀκτίς, διὰ δὲ τοῦ Λ ἡ ΒΛΖ, διὰ δὲ τοῦ Μ ἡ ΒΜ∠, μετεωροτέρα ἡ μὲν ΒΓ τῆς ΒΖ, ἡ δὲ ΒΖ τῆς Β∠.
28. Τὸ ι΄ ἐν ἄλλῳ οὕτως· ἔστω γὰρ ὄμμα τὸ Β ἄνω τοῦ ΓΚ ἐπιπέδου κείμενον, ἀφʼ οὗ ὄμματος προσ πιπτέτωσαν ἀκτῖνες αἱ ΒΓ, Β∠, ΒΖ, ΒΚ, ὧν ἡ ΒΚ κάθετος ἔστω ἐπὶ τὸ ὑποκείμενον ἐπίπεδον. λέγω, ὅτι τὸ Γ∠ τοῦ ∠Ζ μετεωρότερον φαίνεται, τὸ δὲ ∠Ζ [*](26. M Vat. 1 Ru(F). 27. V Vat. (q). 28. q.) [*](7. λοιπόν] λόγον Vat. 1. 9. ἡ (pr.)] εἰ Vat. 1. 10. Ρ] O u. ἤπερ) εἴπερ Vat. 1. 12. ΚΖ] ∠Ζ u. 15 τήν] ·/· V.)
Ad prop. XI.
29. Πάλιν ἐὰν ἀγάγῃς παράλληλον εὐθεῖαν διὰ τοῦ Γ, φανερὸν ἔσται ἀπὸ τῶν σημείων.
Ad prop. XII.
30. Τοῦτο ὡς ἀπὸ τοῦ Ϛʹ φανερώτερον γίνεται.
Ad prop. XIV.
31. Ἀντίστροφον· ἐκεῖ μὲν γὰρ ὑπὸ τοῦ ὄμματος ἐτέθη τὰ μεγέθη, νῦν δὲ ἄνω τοῦ ὄμματος.
Ad prop. XVI.
32. Ἀντίστροφον, ὡς εἰ νοηθείη τὸ σχῆμα μετατιθέμενον ἄνω κάτω.
[*](29. V Vat. q. 30. V Vat. q. 31. V1. 32. V1.)[*](4. ΒΓ] Β e corr. q. 21. ὑπό] ὑπότερον? V1.)Ad prop. XIX.
33. Ἐπὶ τὸ Β πέρας p. 176, 16 μετακινουμένου δηλονότι ἢ τοῦ ἐνόπτρου ἢ τοῦ ὁρῶντος· οὐ γὰρ κατὰ πρώτην τυχὸν ἐπιβολὴν τῆς ὄψεως κατʼ ἔμφασιν ὁραθήσεται παρὰ τῆς ὄψεως ἐν τῷ κατόπτρῳ τὸ ἄκρον τοῦ ὕψους.
34.Οὕτως γὰρ ἐνορῶμεν τῷ ἐσόπτρῳ, ἕως οὗ τὸ ἄκρον ἐν αὐτῷ τοῦ δοθέντος μεγέθους ἴδωμεν.
35. Ἐν τοῖς Κατοπτρικοῖς p. 176, 18 φησὶ γὰρ ἐκεῖσε ὁ Εὐκλείδης οὕτως· ἀπὸ τῶν ἐπιπέδων ἐνόπτρων καὶ κυρτῶν καὶ κοίλων αἱ ὄψεις ἐν ἴσαις γωνίαις ἀνακλῶνται. ἁρμόζει δὲ αὐτῷ καὶ τὸ ἐν τοῖς ὅροις τῶν Κατοπτρικῶν εἰρημένον· ἐνόπτρου τεθέντος ἐν ἐπιπέδῳ καὶ τὰ ἑξῆς.
Ad prop. XXI.
36. Ἐναρμόζω γὰρ ἐν τῷ μέσῳ διαστήματι τῶν ἀκτίνων μέγεθος ἀεὶ ἐναρμόζων, ἕως οὗ διὰ τῶν ἄκρων αὐτοῦ ἴδω τὰ ἄκρα τοῦ δοθέντος μεγέθους.
Ad prop. XXII.
37. Οὐδὲ γὰρ ἅμα βλέπει ὅλον, ἵνα συναίσθηται ὡς περιφεροῦς τοῦ ὁρωμένου.
[*](33. Vat m. 2, rs. 34. V Vat. RFp (qrstu). 35. V2. 36. V Vat. pr(q). 37. RF, Vat. m. 2, u(t).)[*](5. παρά] περί r. τὸ ἄκρον] r, om. Vat. s. 6. ὕψους] ὄψεως r. 7. σχόλιον add. p. οὕτως] οὕτω ptR. ἐσόπτρῳ] κατόπτρῳ p. 8. ἐν] corr. ex ἐ m. 2 V. εἴδωμεν V. 18. ἀεί] om. Vat r. ἐναρμόζων] om. r, lac relicta 19. εἴδῶ V.)[*](21. ὅλον] ὡς F, om. Vat. 22. περιφεροῦς] περιφερείας Vat.)38. Ἐὰν ἐν τῷ αὐτῷ ἐπιπέδῳ, ἐν ᾧ καὶ τὸ ὄμμα, κύκλου περιφέρεια τεθῇ, ἡ τοῦ κύκλου περιφέρεια εὐθεῖα γραμμὴ φαίνεται.
ἔστω κύκλου περιφέρεια ἡ ΓΒ ἐν τῷ αὐτῷ ἐπιπέδῳ κειμένη, ἐν ᾧ καὶ τὸ ὄμμα τὸ Α, ἀφʼ οὐ ὄμματος προσπιπτέτωσαν ἀκτῖνες αἱ ΑΒ, Α∠, ΑΕ, ΑΖ, ΑΗ, ΑΘ, ΑΓ. λέγω, ὅτι ἡ ΒΓ κύκλου περιφέρεια εὐθεῖα φαίνεται. κείσθω τῆς περιφερείας τὸ κέντρον καὶ ἔστω τὸ Κ, καὶ ἐπεζεύχθωσαν εὐθεῖαι αἱ ΚΒ, Κ∠, ΚΕ, ΚΖ, ΚΗ, ΚΘ, ΚΓ. ἐπεὶ οὖν ἡ ΚΒ εὐθεῖα ὑπὸ τῆς ὑπὸ ΚΑΒ γωνίας ὁρᾶται, ἡ δὲ Κ∠ ὑπὸ τῆς ὑπὸ ΚΑ∠, ἡ δὲ ΚΕ ὑπὸ τῆς ὑπὸ ΚΑΕ, μείζων ἄρα φανήσεται ἡ μὲν ΚΒ τῆς Κνήσεται, ∠ἡ δὲ Κ∠ τῆς ΚΕ. ὁμοίως καὶ ἐκ τοῦ ἑτέρου μέρους ἡ μὲν ΚΓ μείζων φανήσεται τῆς ΚΘ, ἡ δὲ ΚΘ τῆς ΚΗ. ἐπεὶ οὖν τὸ αὐτὸ συμβαίνει, ὅπερ ἂν καί, εἰ εὐθεῖα ὑπέκειτο ἡ περιφέρεια ἡ ΒΓ, συνέβαινε, τὸ τὰς ἴσας δηλαδὴ ἀνίσους φαί [*](38. MR(F, Vat. m. 2, Aqu).) [*](1. ἄλλως τοῦ κγʹ ἡ δεῖξις M, ἄλλως τὸ κβʹ q. ἐάν] ἐὰν γάρ Vat. 1—3. om. Aq. 2. ἡ — 4. κύκλου] m. rec. Μ. 8. κείσθω] εἰλήφθω q. 16. εἰ] q, om. MR. ἡ ΒΓ περι- φέρεια q. περιφέρεια] γωνία MFR.)
δυνατὸν δὲ τοῦτο δείκνυσθαι καὶ ἐπὶ τῆς κοίλης περιφερείας. εἰ γὰρ τὸ Κ ὑποτεθείη τὸ ὄμμα καὶ σημεῖον τυχὸν τὸ Α ἐκτὸς τῆς τοῦ κύκλου περιφερείας, εἶτα ἀπὸ τοῦ Α πρὸς τὴν κυρτὴν περιφέρειαν τοῦ κύκλου εὐθεῖαι αἱ ΑΒ, Α∠, ΑΕ, ΑΖ, ΑΗ, ΑΘ, ΑΓ καὶ ἀκτῖνες ἀπὸ τοῦ Κ ὄμματος ἐπὶ τὰ Β, ∠, Ε, Ζ, Η, Θ, Γ σημεῖα, τῶν πρὸς τὴν κυρτὴν οὖν περιφέρειαν προσπιπτουσῶν εὐθειῶν ἐλαχίστη καὶ κατὴ φαντασίαν ὡς καὶ κατὰ ἀλήθειαν ἡ μεταξὺ τοῦ τε σημείου καὶ τῆς διαμέτρου ὁραθήσεται, τῶν δὲ ἄλλων ἀεὶ ἡ ἔγγιον τῆς ἐλαχίστης τῆς ἀπώτερον ἐλάττων ὁρᾶται, ὃ δὴ συμβαῖνον ὁρᾶται, καὶ εἴπερ ἡ ΒΖΓ περιφέρεια εὐθεῖα ὑποτεθείη καὶ κάθετος ἐπʼ αὐτὴν ἡ ΑΖ· ὅθεν διὰ τοῦτο καὶ φαντασίαν εὐθείας ἀποστελεῖ ἡ περιφέρεια, καὶ μάλιστα εἰ ἀπὸ πλείονος φαίνοιτο διαστήματος, ὥστε μὴ συναισθάνεσθαι ἡμᾶς τῆς κυρτότητος.
διὰ τοῦτο καὶ οἱ μὴ πάντως ἀποτεταμένοι κάλοι ἐκ πλαγίου μὲν ὁρώμενοι ἀσχάλασμα ἔχειν δοκοῦσιν, ὑποκάτωθεν δὲ εὐθεῖς εἶναι, καὶ αἱ σκιαὶ δὲ τῶν κρίκων ἐν τῷ αὐτῷ ἐπιπέδῳ κειμένων, ἐν ᾧ καὶ τὸ ὄμμα, εὐθεῖαι φαίνονται.
[*](1. καί — πορρωτέρω] om. lac. rel. Vat. τήν (alt.) — 2. διά] q, τῆς ἐφʼ ἧς τὸ (dein. ras. M, spat. 2 litt. R) ἐστι MFRu.)[*](6. τῆς περιφερείας τοῦ κύκλου MR. 9. τά] supra scr R.)[*](Β] corr. ex K R. 10. τῶν] hinc etiam r. οὖν] q, om. MR. 11 καί ] om. r. 15. ὅ — ὁρᾶται] postea ins. q. 16. περιφέρεια ] γωνία R, om. M, γωνία τοῦ κύκλου r. 2125. om. A. 22. Scr. ἐγχάλασμα.)Ad prop. XXIII.
39. Ποιήσει δή p. 180, 22 διὰ τὸ πρῶτον τῶν Σφαιρικῶν.
40. Ἐφάψονται αἱ ΒΛ, ΒΖ p. 182, 2 ἔσχαται οὖσαι αἱ ἀκτῖνες τῶν ὁρώντων τὴν σφαῖραν.