Catoptrica (recensio Theonis?)

Euclid

Euclid. Euclidis Opera Omnia, Volume 7. Menge, Heinrich; Heiberg, J.L, editors. Leipzig: Teubner, 1895.

Τὰ πλάγια μήκη ἀπὸ τῶν ἐπιπέδων ἐνόπτρων, ὡς τῇ ἀληθείᾳ ἔχει, οὕτω καὶ φαίνεται.

[*](1. ιβ΄ Vv. ΕΑ] ΑΕ m. 2. δὲ τὸ ∠] om. m. 4. Ante ὁμοίως add. οὐκοῦν m. rec. V. ὁμοίως — 5. ἐκβληθεισῶν] οὐκοῦν ἐκβληθεισῶν ὁμοίως τῶν ὄψεων ἐπʼ εὐθείας m.)[*](5. Ante ἐπί add. ἐπʼ εὐθείας m. rec. V. 6. ὄν] corr. ex ὤν m. 2 v. 7. ἄνω] ἀνά? M. 8. ὄν] ὂν τοῦ Ε m, m. rec. V. Post ὄντος add. τοῦ Θ. τὰ ἄρα ὕψη καὶ τὰ βάθη ἀπὸ τῶν ἐπιπέδων ἐνόπτρων ἀνεστραμμένα φαίνεται m. 9. η΄] ιγ΄ Vv. 12. ΑΕ] ΑΘ Mm. 13. Β∠] in ras. V, ΒΓ m.)
302

ἔστω ὄμμα τὸ Β, μῆκος δὲ πλάγιον τὸ ∠Ε, ἔνοπτρον δὲ τὸ ΑΓ. οὐκοῦν ἀνακλασθεισῶν τῶν ὄψεων φαίνεται τὸ μὲν ∠ ἐπὶ τὸ Α, τὸ δὲ Ε ἐπὶ τὸ Γ, καί ἐστιν οὕτω τῇ φαντασίᾳ, καθάπερ καὶ τῇ ἀληθείᾳ ἔχει, τὸ ἔγγιον ἔγγιον, τὸ ἀπώτερον ἀπώτερον.

Τὰ πλάγια μήκη ἀπὸ τῶν κυρτῶν ἐνόπτρων, καθάπερ ἐστὶν ἀληθῶς, καὶ φαίνεται.

ἔστω μῆκος τὸ Ε∠, ὄμμα δὲ τὸ Β, ἔνοπτρον δὲ κυρτὸν τὸ ΑΓ, ὄψεις δὲ ἀνακλώμεναι ἐπὶ τὰ Ε, ∠. τὰ δὲ ἄλλα τὰ αὐτά.

Τὰ ὕψη καὶ τὰ βάθη ἀπὸ τῶν κοίλων ἐνόπτρων, ὅσα μέν ἐστιν ἐντὸς τῆς συμπτώσεως τῶν ὄψεων, ἀνεστραμμένα φαίνεται καθάπερ ἐν τοῖς ἐπιπέδοις καὶ κυρτοῖς ἐνόπτροις, ὅσα δέ ἐστιν ἐκτὸς τῆς συμπτώσεως, καθάπερ ἔστιν, καὶ φαίνεται.

ἔστω κοῖλον ἔνοπτρον τὸ ΑΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι αἱ ΒΑ, ΒΓ, σύμπτωσις δὲ αὐτῶν ἐπὶ τὸ Ζ, ὕψη δὲ τό τε ∠Ε καὶ τὸ ΚΝ, καὶ τὸ μὲν ΚΝ ἐντὸς τῆς τοῦ Ζ συμπτώσεως, τὸ δὲ ∠Ε ἐκτὸς τῆς συμπτώσεως. οὐκοῦν ἐκβληθεισῶν τῶν ὄψεων καθάπερ ἐν τοῖς ἐπιπέδοις καὶ κυρτοῖς ἐνόπτροις φαίνεται τὸ [*](2. δὲ τό] δὲ ἐπίπεδον τό m. ἀνακλασθησῶν v. 7. τό (alt.)] τὸ δέ m. 9. ι΄] ιϚ΄ Vv. 12. ἔστω] ἔστω πλάγιον m.)

304
μὲν Κ ἐπὶ τοῦ Μ, τὸ δὲ Ν ἐπὶ τοῦ Λ ὥστε ἀνεστραμμένα φαίνεται. πάλιν ἐπὶ τοῦ ἐκτὸς τῆς συμπτώσεως ὕψους φαίνεται τὸ μὲν ∠ ἐπὶ τοῦ Η, τὸ δὲ Ε ἐπὶ τοῦ Θ, ὡς ἔχει, οὕτως φαίνεται.

πάλιν βάθος μὲν τὸ ∠Ε καὶ ΚΘ, ἔνοπτρον δὲ κοῖλον τὸ ΑΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι καὶ συμπίπτουσαι κατὰ τὸ Ζ. οὐκοῦν ἐκβληθεισῶν τῶν ὄψεων ὁμοίως τὰ μὲν Κ, Θ φαίνεται ἀνεστραμμένα, τὸ μὲν Κ κατὰ τὸ Γ, τὸ δὲ Θ κατὰ τὸ Α, καθάπερ ἐν τοῖς ἐπιπέδοις καὶ κυρτοῖς ἐνόπτροις, τὰ δὲ ∠, Ε, καθάπερ καὶ ἔστιν, τὸ μὲν Ε κάτω κατὰ τὸ Α, τὸ δὲ ∠ ἄνω κατὰ τὸ Γ.

Τὰ πλάγια μήκη ἀπὸ τῶν κοίλων ἐνόπτρων, ὅσα μὲν ἐντὸς τῆς συμπτώσεως κεῖται τῶν ὄψεων, καθάπερ [*](1. τοῦ (utrumque)] τό M. ἀντεστραμμένα M. 3. τοῦ τό M. 4. τοῦ] τό M. ὡς] ὥστε ὡς m, ὡς οὖν M. οὕτως οὕτω m, οὕτω καί M. 5. ιη΄ Vv. πάλιν — 12. Γ] καὶ ἐπὶ τῶν βαθῶν ὁμοίως ἡ αὐτή ἐστιν ἀπόδειξις m. 6. ΑΓ] Α∠ M. 9. Γ] ∠ M. 11. ἔτι M. Α] Η M. 13. ιβ΄] ιθ΄ Vv. 15. κεῖται] θεωρεῖται M. τῶν ὄψεων κεῖται m.)

306
ἔστιν, οὕτω καὶ φαίνεται, ὅσα δʼ ἐκτός, ἀντεστραμμένα.

ἔστω γὰρ μήκη μὲν πλάγια τὰ Ε∠, ΘΚ, κοῖλον δὲ ἔνοπτρον τὸ ΑΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι καὶ συμπίπτουσαι κατὰ Η τὸ αἱ ΒΑ∠, ΒΓΕ, καὶ τὸ μὲν ΘΚ πλάγιον μῆκος ἔστω ἐντὸς τῆς συμπτώσεως τῆς Η, τὸ δὲ ∠Ε ἐκτός. οὐκοῦν τὰ μὲν Θ, Κ κατὰ φύσιν φαίνεται, καθάπερ ἐν τοῖς ἐπιπέδοις καὶ κυρτοῖς ἐνόπτροις, τὰ δὲ Ε, ∠ ἀντεστραμμένα· τὸ μὲν γὰρ ∠ ἐπὶ τοῦ Α φαίνεται, τὸ δὲ Ε ἐπὶ τοῦ Γ.

Δυνατόν ἐστι διὰ πλειόνων ἐνόπτρων ἐπιπέδων ἰδεῖν τὸ αὐτό.

ἔστω, ὃ δεῖ ὀφθῆναι, τὸ Α, ὄμμα δὲ τὸ Β, ἔνοπτρα δὲ τρία τὰ Γ∠, ∠Ε, ΕΖ. ἤχθω δὴ κάθετος ἀπὸ τοῦ Β ἐπὶ τὸ Γ∠ ἔνοπτρον ἡ ΒΓ, ἴση δὲ ἡ ΒΓ τῇ ΓΣ. καὶ πάλιν ἀπὸ τοῦ Α ἐπὶ τὸ ΕΖ κάθετος ἡ ΑΖ, καὶ τῇ ΑΖ ἴση ἡ ΖΘ, καὶ ἀπὸ τοῦ Θ ἐπὶ τὸ ∠Ε ἔνοπτρον κάθετος ἤχθω ἡ ΘΚ, καὶ ἔστω τῇ ΘΚ ἴση ἡ ΚΛ, καὶ ἀπὸ τοῦ Λ ἐπὶ τὸ Σ ἐπεζεύχθω ἡ ΛΜΞΣ, ἀπὸ δὲ τοῦ Μ ἐπὶ τὸ Θ ἡ ΜΡΘ, ἐπεζεύχθωσαν δὲ καὶ αἱ ΑΡ, ΒΞ. ἐπεὶ οὖν ἴση ἐστὶν ἡ ΒΓ τῇ ΓΣ, καὶ ὀρθαὶ αἱ πρὸς τῷ Γ γωνίαι, δύο δὴ αἰ ΒΓ, ΓΦ δυσὶ [*](5. Η] Ν v. ΒΑ∠] ΑΒ, Α∠ M. 7. τά] τό m. 9. τά] φαίνεται γὰρ τὸ μὲν Θ κατὰ τὸ Α, τὸ δὲ Κ κατὰ τὸ Γ, τό m.) [*](ἀντεστραμμένον m. 11. ιγʹ] κ΄ V v. 12. ἐστιν v. 16. ἴση — τῇ] καὶ τῇ ΒΓ ἴση ἔστω ἡ m. 17. ἀπό] ἐπί v. τοῦ] corr. ex τό v. Α] postea ins. m. τό] τήν M. ΕΖ] ΖΕ ἔνοπτρον m. κάθετος ἤχθω m. 18. ἴση ἔστω m. ∠Ε] in ras. m. 19. ἔστω] om. m. ἡ (alt.)| ἔστω ἡ m, τῇ v.) [*](20. ἐπιζεύχθω M. ΛΜΞΣ] ΛΜΣΞ M. 21. τό] τόν M v,)

308
ταῖς ΣΓ, ΓΦ ἴσαι εἰσὶν ἑκατέρα ἑκατέρᾳ, καὶ γωνία ἡ ὑπὸ ΒΓΦ ὀρθὴ οὖσα γωνίᾳ τῇ ὑπὸ Σῶ ὀρθῇ οὔσῃ ἴση ἐστίν, καὶ αἱ λοιπαὶ γωνίαι ταῖς λοιπαῖς γωνίαις ἴσαι ἔσονται, ὑφʼ ἃς αἱ ἴσαι πλευραὶ ὑποτείνουσιν, ἡ μὲν πρὸς τῷ Β γωνία τῇ πρὸς τῷ Σ, ἡ δὲ γωνία τῇ Τ. ἀλλʼ ἡ Τ τῇ Ν ἐστιν ἴση· κατὰ κορυφὴν γάρ· ὥστε ἴση ἐστὶ καὶ ἡ Ν γωνία τῇ Ξ. ἡ ἄρα ΒΞ ὄψις ἀνακλασθήσεται ἐπὶ τὸ Μ. πάλιν ἐπεὶ ἴση ἐστὶν ἡ ΘΚ τῇ Κ Λ, καὶ ὀρθαὶ δὲ αἱ πρὸς τῷ Κ, ἴση ἐστὶν ἡ Ο γωνία τῇ Π. ἀνακλᾶται ἄρα ἡ. αὐτὴ ὄψις ἡ ΒΞΜ ἐπὶ τὸ Ρ διὰ τὰ αὐτὰ δὴ καὶ ἐπὶ τὸ Α διὰ τὸ ἴσην εἶναι τὴν ὑπὸ ΖΡΑ γωνίαν τῇ ὑπὸ ΕΡΜ ὁμοίως ταῖς λοιπαῖς ἀποδείξεσιν. ὁρᾷ ἄρα ἡ ἀπὸ τοῦ Β ὄμματος ὄψις τὸ Α διὰ τῶν τριῶν ἐνόπτρων ὄντων ἐπιπέδων τῶν Γ∠, ∠Ε, ΕΖ.

Ἔστι δὲ καί, διʼ ὅσων ἄν τις ἐπιτάξῃ ἐνόπτρων ἐπιπέδων, ἰδεῖν τὸ αὐτό· δεῖ δὲ κατὰ τὸν ἀριθμὸν τῶν ἐνόπτρων πολύγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον συνίστασθαι δυσὶ πλείους ἔχον πλευρὰς τῶν ἐνόπτρων.

ἔστω γάρ, ὃ μὲν ὀφθῆναι δεῖ, τὸ Α, ὄμμα δὲ τὸ Β, καὶ ἐπεζεύχθω ἡ ΑΒ, καὶ ἀπὸ τῆς ΑΒ ἀναγεγράφθω πολύγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον δύο πλευρὰς, [*](1. ΣΓ, ΓΦ] ΓΣ, ΣΦ M. ΓΦ] ΓΞ m. 2. ΒΓΦ] ΒΓΞ m. ὀρθή ὀρθῇ] ante θ ras. 1 litt V. ΣΓΦ] ΣΓΞ m. 3. ἐστί M m γωνίαι] γωνίαις M 4. ὑποτίνουσιν V. 5. τῷ (pr.)] corr. ex τό m, τό v. τῷ (alt.)] τό v.) [*](6. Ξ] Φ m. Τ (alt.) — ἴση] Τ γωνία τῇ Ν ἴση ἐστί m.) [*](7. ἐστίν Vv. Ξ] Φ m. 9 δέ] om. m. 10. τῷ] τό v. Κ] Κ γωνίαι m. 11 ΒΞΜ] ΒΞ M. 14 Β] e corr m. τριῶν] M. 16. ιδʹ] κα΄ Vv. 17 ἔπτιν V. ἐπιτάξῃ)

310
πλείους ἔχον τῶν ἐνόπτρων καὶ ἔστω τὸ ΑΒ∠ πολυγώνιον, καὶ εἰλήφθω τὸ κέντρον τοῦ κύκλου τοῦ γραφομένου περὶ τὸ πολύγωνον τὸ Θ, καὶ ἀπʼ αὐτοῦ ἐπεζεύχθωσαν αἱ ΘΓ, ΘΕ, Θ∠, ΘΒ, ΘΑ ἐπὶ τὰς γωνίας, καὶ προσκείσθωσαν ἔνοπτρα ἐπίπεδα πρὸς ὀρθὰς ταῖς ἐπεζευγμέναις. ἐπεὶ οὖν ἴση ἐστὶν ἡ Ζ Λ γωνία τῇ ΝΚ ὀρθὴ γάρ ἐστιν ἑκατέρα· ὧν ἡ Ν τῇ Λ ἴση ἐστίν, λοιπὴ ἄρα ἡ Ζ τῇ Κ ἴση ἐστίν. ὥστε ἡ ἀνάκλασις τῆς ΒΓ ὄψεως ἐπὶ τὸ ∠ ἔσται· διὰ γὰρ ἴσων γωνιῶν αἱ ἀνακλάσεις γίνονται. ὁμοίως δὲ δειχθήσονται καὶ αἱ πρὸς τοῖς ∠, Ε σημείοις γωνίαι ἴσαι αἱ πρὸς τοῖς ἐνόπτροις. ἡ ἄρα ἀπὸ τοῦ Β ὄμματος ὄψις ἀνακλωμένη καὶ προσπεσοῦσα πρὸς πάντα τὰ ἔνοπτρα ἥξει ἐπὶ τὸ Α.

Ἔστι δὲ καὶ διὰ κυρτῶν ἐνόπτρων καὶ διὰ κοίλων ἰδεῖν τὸ αὐτό.

ἔστω γάρ, δεῖ ἰδεῖν, τὸ Α, ὄμμα δὲ τὸ Β, καὶ ὁμοίως ἀναγεγράφθω πολύγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον τὸ ΑΒΓ∠Ε καὶ πρὸς τοῖς Γ, ∠, Ε σημείοις ἔστω ἔνοπτρα ἐπίπεδα, ἀφʼ ὧν ὁρᾶται τὸ Α, καθάπερ δέδεικται, καὶ προσκείσθω τούτοις κοῖλα ἢ κυρτὰ ἒνοπτρα [*](1. ἔχων v, sed corr. τῶν] τῶν ἐπιταχθέντων m. καί — πολυγώνιον] τὸ ΑΒΓ∠Ε m. 2. γραφομένου] om. m. 3. περί] ἐπί M v. πολύγωνον — αὐτοῦ]  ΑBΓ∠Ε πολύγωνον περιγραφομένου καὶ ἔστω τὸ Θ καὶ ἀπὸ τοῦ Θ κέντρου πρὸς τὰς τοῦ AΒ Γ∠Ε πολυγώνου γωνίας m. πολύγωνον] πολυγώνιον M, V, sed corr. 4. αἱ] εὐθεῖαι αἱ M. Θ Α, Θ Β, ΘΓ, Θ ∠, Θ Ε m. ἐπὶ τὰς γωνίας] om. m. 6. ἐπιζευγμέναις V v; Θ Θ∠, ΘΕ m. 7. ΝΚ] Κ M. ΚΝ m. 9 ∠ ἔσται] δκ M. 12. ὄμματος] V, om. M m v. 13 προσπεσοῦσα] προσπίπτουσα m. 15. ιεʹ] κβ΄ V v, 16. ἐνόπτρων — κοίλων])

312
κατὰ τὰς ἁφὰς τῶν ὄψεων. οὐκοῦν ἴση ἐστὶν ἡ μὲν Ζ τῇ Θ, ἡ δὲ Κ τῇ Λ ὅλη ἄρα ἡ ΚΖ ἴση ἐστὶ τῇ ΘΛ. ἀνακλασθήσεται ἄρα ἡ ὄψις ἀπὸ τοῦ κυρτοῦ ἐνόπτρου τοῦ Γ ἐπὶ τὸ ∠ καὶ ἀπὸ τοῦ ∠ ἐπὶ τὸ Ε καὶ ἀπὸ τοῦ Ε ἐπὶ τὸ Α. φανερὸν οὖν, ὅτι καὶ κυρτῶν ἢ κοίλων ὄντων ἀπάντων καὶ ἀναμεμιγμένων ἔστιν ἰδεῖν τὸ αὐτό.

Ἐν τοῖς ἐπιπέδοις ἐνόπτροις ἕκαστον τῶν ὁρωμένων κατὰ τὴν ἀπὸ τοῦ ὁρωμένου κάθετον ὁρᾶται.

ἔστω ἔνοπτρον ἐπίπεδον τὸ Γ∠, ὄμμα δὲ τὸ Β, ὁρώμενον δὲ τὸ Α, καὶ ἔστω κάθετος ἡ ἀπὸ τοῦ ὁρωμένου ἐπὶ τὸ ἔνοπτρον ἡ ΑΓ. οὐκοῦν ἐπεὶ ὑπέκειτο ἐν τοῖς φαινομένοις, ὅτι καταληφθέντος τοῦ τόπου τοῦ Γ οὐχ ὁρᾶται τὸ Α, τὸ Α ἄρα ὀφθήσεται ἐπʼ εὐθείας τῇ ΑΓ. ἀλλὰ δὴ καὶ ἐπʼ εὐθείας τῇ Β∠ ὄψει· κατὰ τὸ Ε ἄρα· ὑπέκειτο γὰρ ἡμῖν τὸ εὐθύ, οὗ τὸ μέσον τοῖς ἄκροις ἐπιπροσθεῖ· ὥστε εὐθεῖα ἔσται ἡ ΑΕ καὶ ἡ ΒΕ.

Ἐν τοῖς κυρτοῖς ἐνόπτροις ἕκαστον τῶν ὁρωμένων κατὰ τὴν ἀπὸ τοῦ ὁρωμένου εἰς τὸ κέντρον τῆς σφαίρας ἀγομένην εὐθεῖαν ὁρᾶται.

ἔστω κυρτὸν ἔνοπτρον τὸ Γ∠, ὄμμα δὲ τὸ Β, ὄψις [*](2. ἡ (pr.)] eras. v. ἴση — 3. ΘΑ] ὅλῃ τῇ ΛΘ ἴση ἐστίν m.) [*](2. ἐστίν Vv. 5. καί ( alt.)] om M v m. 6. καί] ἤ m. ἀναμεμιγμένον m, sed corr.; ἀναμεμηγμένων v, sed corr. 8. ιϛ΄] κγ΄ V v. 10. τοῦ] τῶν M. 13. ὑπέκειτο] ὑπόκειται m. 14. φαινομένοις] ὅροις m. 16. ΑΓ ∠ M m. Β∠] Β Α M m. 17. κατά] μετά M. ἄρα] om. m. ὑπέκειτο] ὑπόκειται m.)

314
δὲ ἡ Β∠ ἀνακλωμένη ἐπὶ τὸ Α, καὶ ὁράσθω τὸ Α, κέντρον δὲ τῆς σφαίρας ἔστω τὸ Ζ, καὶ ἐπεζεύχθω ἡ ΑΖ, καὶ ἐκβεβλήσθω ἡ Β∠ ὄψις ἐπὶ τὸ Ε. οὐκοῦν ἐπεὶ ὑπέκειτο ἐν τοῖς φαινομένοις, ὅτι καταληφθέντος τοῦ Γ τὸ Α οὐχ ὁρᾶται, ὀφθήσεται ἄρα ἐπʼ εὐθείας τῇ ΑΓ κατὰ τὴν σύμβασιν τῆς Β∠ ὄψεως καὶ ἀπὸ τῆς ΑΓ ἐπὶ τοῦ Ε, καθάπερ ἐπὶ τοῖς ἐπιπέδοις.