Catoptrica (recensio Theonis?)

Euclid

Euclid. Euclidis Opera Omnia, Volume 7. Menge, Heinrich; Heiberg, J.L, editors. Leipzig: Teubner, 1895.

Όψιν εἶναι εὐθεῖαν, ἧς τὰ μέσα πάντα τοῖς ἄκροις ἐπιπροσθεῖ.

Τὰ ὁρώμενα ἅπαντα καθʼ εὐθείας ὁρᾶσθαι.

Ἐνόπτρου τεθέντος ἐν ἐπιπέδῳ καὶ θεωρουμένου τινὸς ὕψους, ὃ πρὸς ὀρθάς ἐστι τῷ ἐπιπέδῳ, γίγνονται ἀνάλογον, ὡς ἡ μεταξὺ τοῦ ἐνόπτρου καὶ τοῦ θεωροῦντος εὐθεῖα πρὸς τὴν μεταξὺ τοῦ ἐνόπτρου καὶ τοῦ πρὸς ὀρθὰς ὕψους, οὕτω τὸ τοῦ θεωροῦντος ὕψος πρὸς τὸ πρὸς ὀρθὰς τῷ ἐπιπέδῳ ὕψος.

Ἐν τοῖς ἐπιπέδοις ἐνόπτροις τοῦ τόπου καταληφθέντος, ἐφʼ ὃν ἡ κάθετος πίπτει ἀπὸ τοῦ ὁρωμένου, οὐκέτι ὁρᾶται τὸ ὁρώμενον.

Καὶ ἐν τοῖς κυρτοῖς ἐνόπτροις καταληφθέντος τοῦ τόπου, διʼ οὗ ἀπὸ τοῦ ὁρωμένου εἰς τὸ κέντρον ἄγεται τῆς σφαίρας, οὐκέτι ὁρᾶται τὸ ὁρώμενον. τὸ δʼ αὐτὸ καὶ ἐν τοῖς κοίλοις συμβαίνει.

Ἐὰν εἰς ἀγγεῖον ἐμβληθῇ τι καὶ λάβῃ ἀπόστημα ὡς μηκέτι ὁρᾶσθαι, τοῦ αὐτοῦ ἀποστήματος ὄντος ἐὰν ὕδωρ ἐγχυθῇ, ὀφθήσεται τὸ ἐμβληθέν.

Ἀπὸ τῶν ἐπιπέδων ἐνόπτρων καὶ κυρτῶν καὶ κοίλων αἱ ὄψεις ἐν ἴσαις γωνίαις ἀνακλῶνται.

[*](Ὅροι m, ὅροι κατοπτρικῶν m. rec. v. 1. Supra εὐθεῖαν ἧς scr. ὑποκείσθω m. 2 V, mg. m. 1; κατὰ κοινοῦ τὸ ὑπο- κείσθω ἧς] corr. ex εἶς v. 5. ἐστιν V v. γίνονται M.)
288

ἔστω ὄμμα τὸ Β, ἔνοπτρον ἐπίπεδον τὸ ΑΓ. ὄψις δʼ ἀπὸ τοῦ ὄμματος φερέσθω ἡ ΒΚ καὶ ἀνακεκλάσθω ἐπὶ τὸ ∠. φημὶ δὴ τὴν Ε γωνίαν ἴσην εἶναι τῇ Ζ. ἤχθωσαν κάθετοι ἐπὶ τὸ ἔνοπτρον αἱ ΒΓ, ∠Α. οὐκοῦν ἐστιν, ὡς ἡ ΒΓ πρὸς ΓΚ, ἡ ∠Α πρὸς ΑΚ· τοῦτο γὰρ ἐν τοῖς ὅροις ὑπέκειτο· ὅμοιον ἄρα τὸ ΒΓΚ τρί γωνον τῷ ∠ΑΚ τριγώνῳ. ἴση ἄρα ἡ Ε γωνία τῇ γωνίᾳ· τὰ γὰρ ὅμοια τρίγωνα ἰσογώνιά ἐστιν.

ἔστω δὴ κυρτὸν ἔνοπτρον τὸ ΑΚΓ, ὄψις δὲ ἡ ΒΚ ἀνακλωμένη ἐπὶ τὸ ∠. λέγω, ὅτι ἴδη ἐστὶν ἡ Ε, Θ γωνία τῇ Ζ, Λ. παρέθηκα ἐπίπεδον ἔνοπτρον τὸ ΝΜ· ἴση ἄρα ἐστὶν ἡ Ε γωνία τῇ Ζ. ἀλλὰ καὶ ἡ Θ τῇ Λ· ἐφάπτεται γὰρ ἡ ΜΝ. ὅλη ἄρα ἡ Ε, Θ ὅλῃ τῇ Λ, Ζ ἐστιν ἴση.

ἔστω δὴ πάλιν κοῖλον ἔνοπτρον τὸ ΑΚΓ, ὄψις δὲ ἡ ΒΚ ἀνακλωμένη ἐπὶ τὸ ∠. λέγω, ὅτι ἡ Ε γωνία ἴση ἐστὶ τῇ Ζ. παρατεθέντος γὰρ ἐπιπέδου ἐνόπτρου ἴση γίγνεται ἡ Θ, Ε γωνία τῇ Ζ, Λ· ἴση δὲ καὶ ἡ Θ τῇ Λ· λοιπὴ ἄρα ἡ Ε τῇ Ζ ἴση ἔσται.

[*](1. Post Β add. καί m. rec. V. 2. ΒΚ| ΒΕ M. 5. Ante ΓΚ add. τήν M, m. rec V. ΑΚ] τὴν ΑΚ, ΑΚ e corr., M; τήν add. m. rec. V. 6. ὑπέκειτο] mut. in ὑπόκειται m. rec. V.)[*](7. Post ἄρα add. ἐστίν m. rec V. 8. τρίγωνα] om. M. 9. β΄ V. 10. ΑΚΓ] corr. ex ΑΚ m. rec. V. 15. τὸ ΝΜ — 18. ἴση] eras. V, m. rec. : τὸ ΝΜ. καὶ ἐπεὶ ἴση ἐστὶν ἡ ὑπὸ ΜΚΒ γωνία τῇ ὑπὸ ΝΚ∠, ἀλλὰ καὶ ἡ ὑπὸ ΓΜΚ τῇ ὑπὸ ΑΚΝ· ἐφάπτεται γὰρ ἡ ΜΝ· ὅλη ἄρα ἡ ὑπὸ BΚΓ τῇ ὑπὸ ∠;ΚΑ ἴση)
290

Πρὸς ὁποῖον ἂν τῶν ἐνόπτρων προσπέσῃ ὄψις ἴσας ποιοῦσα γωνίας, αὐτὴ διʼ ἑαυτῆς ἀνακλασθήσεται.

ἔστω ἔνοπτρον ἐπίπεδον τὸ ΑΓ, ὄμμα δὲ τὸ Β, ὄψις δὲ ἡ ΒΚ προσπεπτωκέτω ἴσας ποιοῦσα γωνίας τὴν Ε, Ζ τῇ Θ. λέγω, ὅτι ἀνακλωμένη ἡ ΒΚ ἐφʼ ἑαυτῆς ἥξει, τουτέστιν ἐπὶ τὸ Β. μὴ γάρ, ἀλλʼ εἰ δυνατόν, ἡκέτω ἐπὶ τὸ ∠. καὶ ἐπειδὴ αἱ ὄψεις ἐν ἴσαις ἀνακλῶνται γωνίαις, ἴση ἐστὶν ἡ Ε γωνία τῇ Θ, ἐδείχθη δὲ καὶ ἡ Ε, Ζ γωνία τῇ Θ ἴση. καὶ ἡ Ε, Ζ ἄρα γωνία τῇ Ε γωνίᾳ ἔσται ἴση, ἡ μείζων τῇ ἐλάσσονι· ὅπερ ἐστὶν ἀδύνατον. ἡ ἄρα ΒΚ διʼ αὑτῆς ἀνακλασθήσεται. ἡ δʼ αὐτὴ ἀπόδειξις ἁρμόσειεν ἂν ἐπὶ τῶν κυρτῶν καὶ τῶν κοίλων ἐνόπτρων.

Πρὸς ὁποῖον ἂν τῶν ἐνόπτρων προσπίπτουσα ὄψις ἀνίσους ποιῇ γωνίας, οὔτε διʼ ἑαυτῆς ἀνακλασθήσεται οὔτε ἐπὶ τῆς ἐλάσσονος γωνίας.

ἔστω ἐπίπεδον ἔνοπτρον τὸ ΑΚΗΓ, ὄψις δὲ ἡ ΒΚ προσπιπτέτω μείζονα ποιοῦσα γωνίαν τὴν Ζ τῆς Θ, Λ. λέγω, ὅτι ἡ ΒΚ ἀνακλωμένη οὔτε αὐτὴ διʼ ἑαυτῆς ἀνακλασθήσεται οὔτε ἐπὶ τὴν Θ, Λ γωνίαν. εἰ μὲν [*](1. β΄] δ΄ Vv. 2 προσπέσοι M. Dein add. ἡ m, m. rec. V. 6. τήν — Θ] τὰς ὑπὸ ΑΚΒ, ΓΚΒ m, m. rec V.) [*](ΒΚ] ΒΕ M. 8. ἡκέτω] ἱκέτω M. ὄψις v, corr. m. 2.) [*](9. Ε] ὑπὸ ΑΚ∠ m, m. rec V. Θ] ὑπὸ ΓΚΒ m, m. rec. V.) [*](10. Ε, Ζ (pr.) — Θ] ὑπὸ ΑΚΒ τῇ ὑπὸ ΓΚΒ m, m. rec. V.) [*](Ε, Ζ (alt.)] ὑπὸ ΑΚΒ m, m. rec. V. 11. Ε] ὑπὸ ΑΚ∠ m, m. rec. V. γωνία ἔσται] ἐστιν m, m. rec. V. ἐλάττονι M.) [*](12. ἐστίν] om. M. ΒΚ] ΒΕ M. διʼ αὑτῆς] ὄψις ἐφʼ ἑαυτῆς m, m. rec. V αὑτῆς] mut. in ἑαυτῆς m. 2 v 13. ἁρμόσειεν] ἁρμόσειε καί m, m. rec. V. ἄν] M, om. Vmv.)

292
γὰρ ἥξει ἐπὶ τὸ Β, ἔσται ἡ Ζ γωνία τῇ Θ, Λ ἴση· ὅπερ ἄτοπον· ὑπόκειται γὰρ μείζων. εἰ δὲ διὰ τοῦ ∠, ἴση ἔσται ἡ Ζ γωνία τῇ Θ· ἔστι δὲ μείζων. ἡ ἄρα ΒΚ ἀνακλασθήσεται ἐπὶ τὴν μείζονα γωνίαν τὴν Ζ· δυνατὸν γὰρ ἀπὸ τῆς μείζονος τῇ ἐλάσσονι ἴσην ἀφαιρεθῆναι. ἔστι δὲ ἡ αὐτὴ ἀπόδειξις ἐπὶ τῶν κυρτῶν καὶ κοίλων.

Αἱ ὄψεις ἐπὶ τῶν ἐπιπέδων ἐνόπτρων καὶ κυρτῶν ἀνακλώμεναι οὔτε συμπεσοῦνται ἀλλήλαις οὔτε παράλληλοι ἔσονται.

ἔστω ἐπίπεδον ἔνοπτρον τὸ ΑΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι αἱ ΒΓ∠, ΒΑΕ. λέγω, ὅτι αἱ Γ∠, ΑΕ οὔτε παράλληλοί εἰσιν οὔτε συμπεσοῦνται ἐπὶ τὰ ∠, Ε. ἐπεὶ γὰρ ἴση ἐστὶν ἡ γωνία τῇ Θ, ἡ δὲ Κ τῇ Μ, μείζων δὲ ἡ Ζ τῆς Κ διὸ τὸ ἐκτὸς εἶναι ἐν τῷ ΒΑΓ τριγώνῳ, μείζων ἂν εἴη καὶ ἡ Θ τῆς Μ. οὐκ ἄρα παράλληλος ἡ Γ∠ τῇ ΑΕ ἐστιν, οὐδὲ συμπίπτουσιν ἐπὶ τὰ Ε, ∠.

ἔστω πάλιν κυρτὸν ἔνοπτρον τὸ ΑΖΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖ∠, ΒΗΕ. λέγω, ὅτι αἱ Ζ∠, ΕΗ οὔτε παράλληλοί εἰσιν οὔτε συμ- [*](1. Β, ἔσται] Β α V m. 1, β ἔσται m, m. rec. V; ΒΕ e corr. M, ΒΚ v. Ζ] ὑπὸ ΑΚΒ m, m. rec. V. Θ, Λ] ὑπὸ ΓΚΒ m, m. rec. V. 2 εἰ δέ — 3. μείζων] om M. 3. ἔστι] ἔστιν Vv. 4. ΒΚ] ΒΕ M. τὴν μείζονα — Ζ] τῆς μείζονος γωνίας τῆς ὑπὸ ΑΚΒ m, m. rec. V. 5 ἴσην] ἴσον v, et V, corr. m. rec. 6 ἔστιν Vv. 8. δ΄] ϛ΄ v et in ras. V.) [*](15. Ζ] μὲν ὑπὸ ΒΓΖ m, m. rec. V. Θ] ὑπὸ ∠ΓΑ m, m. rec. V. Κ] ὑπὸ ΒΙΓ m, m. rec. V. 16 Μ] ὑπὸ ΕΑΗ m, m. rec. V. μείζων] e corr. v. Ζ] ὑπὸ ΒΓΖ m, m. rec. V. Κ] ὑπὸ ΒΑΓ m, m. rec. V. ἐν τῷ] τοῦ m,)

294
πεσοῦνται ἐπὶ τὰ Ε, ∠. ἐπεζεύχθω γὰρ ἡ ΗΖ εὐθεῖα καὶ ἐκβεβλήσθω ἐφʼ ἑκάτερα. ἐπεὶ ἴση ἐστὶν ἡ Κ, Θ τῇ Λ διὰ τὸ ἐν ἴσαις ἀνακλᾶσθαι γωνίαις, εἴη ἂν μείζων ἡ Λ, Μ τῆς Κ. ἡ δὲ Κ τῆς Ν, Ξ ἐστι μείζων, ἡ δὲ Ν, Ξ τῆς Ο, Π μείζων· αὐτὴ γὰρ ἡ Ξ ἴση ἐστὶ τῇ Ο, Π· μείζων ἄρα ἡ Λ, Μ τῆς Ο, Π. πολλῷ ἄρα ἡ Λ, Μ τῆς Ο μείζων ἐστίν. οὐκ ἄρα συμπεσοῦνται αἱ Ζ∠, ΗΕ εὐθεῖαι οὐδὲ παράλληλοί εἰσιν.

Ἐν τοῖς κοίλοις ἐνόπτροις ἐὰν ἢ ἐπὶ τὸ κέντρον ἢ ἐπὶ τῆς περιφερείας ἢ ἐκτὸς τῆς περιφερείας θῇς τὸ ὄμμα, τουτέστι μεταξὺ τοῦ κέντρου καὶ τῆς περιφερείας, αἱ ὄψεις ἀνακλώμεναι συμπεσοῦνται.

ἔστω κοῖλον ἔνοπτρον τὸ ΑΓ∠, κέντρον δὲ τῆς σφαίρας τὸ Β, καὶ κείσθω τὸ ὄμμα ἐπὶ τοῦ Β, καὶ προσπιπτέτωσαν ἀπὸ τοῦ Β ὄψεις πρὸς τὴν περιφέρειαν αἱ ΒΑ, ΒΓ, Β∠. ἴσαι ἄρα εἰσὶν αἱ πρὸς τοῖς σημείοις τοῖς Α, ∠, Γ γωνίαι· ἡμικυκλίου γάρ εἰσιν. αἱ ἄρα ὄψεις ἀνακλώμεναι διʼ ἑαυτῶν ἀνακλασθήσονται αἱ ΒΑ, ΒΓ, Β∠ τοῦτο γὰρ δέδεικται. ὥστε συμπεσοῦνται κατὰ τὸ Β.

ἔστω πάλιν κοῖλον ἔνοπτρον τὸ ΑΓΒ, ὄμμα δὲ τὸ Β, [*](1. ΗΖ] Ζ M. 2. Post ἑκάτερα add. κατὰ τὰ Θ, Κ σημεῖα καί m, m. rec V. Post ἴση ras. 1 litt. V. Κ — 3. Λ] μὲν ὑπὸ ΒΖΘ γωνία (om. V) τῇ ὑπὸ ∠ΖΚ, ἡ δὲ ὑπὸ ΒΗΘ τῇ ὑπὸ ΕΗΚ m, m. rec V. 3. εἴη — 7. ἐστίν] μείζων δὲ ἡ ὑπὸ ΒΖΘ γωνία τῆς ὑπὸ (ΒΖΘ — ὑπό postea add. m) ΒΗΘ, εἴη ἂν καὶ ἡ ὑπὸ ∠ΖΚ μείζων τῆς ὑπὸ ΕΗΚ m, m. rec V.) [*](4. ἐστιν v. 5. μεῖζον v, corr. m. 2. ἐστίν V v. 6 μείζονα v, corr. m. 2. 8. Ζ ∠] ∠Ζ m. 9 ε΄] η΄ Vv. 10. τὸ κέντρον] τοῦ κέντρου m, m. rec. V. 11 θῇς] θεῖς V,)

296
κείσθω δὲ ἐπὶ τῆς περιφερείας αὐτοῦ, καὶ ἀπὸ τοῦ Β προσπιπτέτωσαν ὄψεις αἱ ΒΓ, ΒΑ ἀνακλώμεναι ἐπὶ τὰ ∠, Ε σημεῖα. ἐπεὶ μεῖζον τὸ ΑΓΒ τμῆμα τοῦ ΒΓ τμήματος, μείζων ἡ Ζ γωνία τῆς γωνίας. καὶ ἡ ἄρα τῆς Κ μείζων. αἱ ἄρα Ζ, τῶν Θ, Κ μείζους εἰσίν. λοιπὴ ἄρα ἡ Λ τῆς Μ ἐλάσσων· πολλῷ μᾶλλον ἄρα τῆς Ν. συμπεσοῦνται ἄρα αἱ Γ∠, ΑΕ κατὰ τὸ Ξ ὁμοίως δειχθήσεται, κἂν ἐκτὸς τῆς περιφερείας πίπτῃ τὸ ὄμμα, ὡς ἐπὶ τοῦ ἑξῆς θεωρήματος.

Ἐν τοῖς κοίλοις ἐνόπτροις ἐὰν ἀνὰ μέσον τοῦ κέντρου καὶ τῆς περιφερείας θῇς τὸ ὄμμα, ὁτὲ μὲν συμπεσοῦνται αἱ ὄψεις ἀνακλώμεναι, ὁτὲ δὲ οὐ συμπεσοῦνται.

ἔστω ἔνοπτρον κοῖλον τὸ ΑΓ, κέντρον δὲ αὐτοῦ τὸ ∠, ὄμμα δὲ κείσθω τὸ Β μεταξὺ τοῦ κέντρου καὶ τῆς περιφερείας, ὄψεις δὲ αἱ ΒΑ, ΒΓ ἀνακλώμεναι ἐπὶ τὰ Η, Ζ, καὶ ἐκβεβλήσθωσαν αἱ ὄψεις ἕως τοῦ ἐνόπτρου αἱ ΑΘ, ΓΚ. ἡ ΑΘ δὴ τῆς ΓΚΘ ἢ μείζων ἐστὶν ἢ ἴση ἢ ἐλάσσων. εἰ μὲν οὖν ἴση ἐστὶν ἡ ΑΘ ὄψις τῇ ΓΚ ὄψει, ἴση ἐστὶ καὶ ἡ ΑΓΘ περιφέρεια τῇ ΓΘΚ περιφερείᾳ. ὥστε καὶ ἡ Μ γωνία τῇ Ξ· αἱ γὰρ τῶν ἴσων περιφερειῶν γωνίαι ἴσαι εἰσὶν ἀλλήλαις. καὶ αἱ Μ, Λ γωνίαι ἄρα ταῖς Ν, Ξ εἰσιν ἴσαι διὰ τὴν ἀνάκλασιν. [*](1. δέ] om. M 3. Post ἐπεί add. οὖν m, m. rec. V. μείζων v Deinde add. ἐστιν m, m rec. V. ΒΓ τμήματος] κύκλουματος M. 4. Post μείζων add. ἐστίν m. 2 m. καί — 5. μείζων] διὰ τὰ αὐτὰ δὴ καὶ ἡ ΚΗ (corr. in Κ τῆς Η) μείζων ἐστίν m. 4. Η] mut. in Κ m. rec. supra scr. διὰ τὸ πρῶτον V; Η διὰ τῆς α΄ Mv. 5. ἄρα (pr.)] del. m. rec V.) [*](Κ (pr.)] mut. in m. rec. V. Post μείζων add. ἐστί m. rec. V. Ζ, Η] ΖΕ M, et V, corr m. 1; ΖΚ m, m. rec. V. τῶν] τῆς M. Θ, Κ] mut. in Θ, m. rec. V. 6 εἰσί M.)

298
καὶ λοιπὴ ἄρα ἡ Ο τῇ Π ἴση ἐστίν. μείζων ἄρα ἡ Ρ τῆς Ο. ἐπεὶ γὰρ ἡ Ρ γωνία τῆς Π μείζων ἐστὶ διὰ τὸ ἐκτὸς εἶναι, ἡ δὲ Π τῇ Ο ἴση, καὶ ἡ Ρ ἄρα τῆς Ο μείζων ἐστίν. κοινὴ προσκείσθω ἡ ὑπὸ ΟΡΖ. συμπεσοῦνται ἄρα αἱ ΓΖ, ΑΗ ὡς ἐπὶ τὰ Η, Ζ. τὸ δʼ αὐτὸ ἔσται, κἂν μείζων ἡ ΑΘ ὄψις τῆς ΓΚ· μείζονες γὰρ ἔσονται αἱ Λ, Μ γωνίαι τῶν Ν, Ξ, ἡ δὲ Π τῆς Ο μείζων ἔσται καὶ ἡ Ρ τῆς Ο. ἐὰν δὲ ἡ ΑΘ εὐθεῖα ἐλάσσων τῆς ΓΚ, διὰ τὰ αὐτὰ μείζων ἔσται ἡ Ο γωνία τῆς Π. ἔστι δὲ καὶ ἡ τῆς Π μείζων. οὐδὲν ἄρα κωλύει ἴσην εἶναι τὴν Ρ τῇ Ο ἢ ἐλάσσονα τῆς Ο, καὶ μὴ συμπίπτειν τὴν ΑΗ τῇ ΓΖ. φανερὸν δέ, ὅτι, κἄν τε μείζων ᾖ ἡ ΑΘ περιφέρεια τῆς ΓΚ, ἐάν τε ἴση, ἡ σύμπτωσις τῶν ἀνακλάσεων οὔτε ἐπὶ τῆς περιφερείας τοῦ κύκλου οὔτε ἐκτὸς οὐ μὴ γίνηται, ἀλλʼ ἐντὸς μόνον.

Τὰ ὕψη καὶ τὰ βάθη ἀπὸ τῶν ἐπιπέδων ἐνόπτρων ἀνεστραμμένα φαίνεται.

ἔστω ὕψος μὲν τὸ ΑΕ, ἔνοπτρον δὲ ἐπίπεδον τὸ ΑΛ, ὄμμα δὲ τὸ Β, ὄψεις δὲ αἱ ΒΓ, Β∠ ἀνακλώμεναι ἐπὶ τὰ Ε, Κ. οὐκοῦν φαίνεται ἐκβληθεισῶν τῶν ὄψεων ἐπʼ εὐθείας τὸ μὲν Ε τὸ ἄνω ἐπὶ τοῦ Θ κάτω ὄντος, τὸ δὲ Κ κάτω ὄν ἐπὶ τοῦ Ζ τοῦ ἄνω ὄντος. ὥστε ἀνεστραμμένα ἐστὶ τῇ φαντασίᾳ.

[*](1. ἐστί Mm. 3. ἐστίν Vv. 4. ἐστί Mm, comp. v. 5. ΟΡΖ] ΡΟΖ M. Deinde add. ὁμοίως τῷ πρὸ τούτου θεωρήματι ἀποδείκνυται Vm. αἱ] αἱ ἄρα M. 6. ἔσται] ἐστι M. 8. ἔσται] ἐστί M. 9 ΓΚ] Γ∠ M. 10. ἔσται] ἐστίν M. ἔστι] ἔστιν Vv. 12. ἐλάττονα M. ΑΗ] ΑΚ M. 17. ζ΄] ια΄ Vv.)[*](22. φαίνεται] om. m. 23 τό (pr.)] φαίνεται τό m. 24. ὄν] ὄν τοῦ Ο m, m. rec. V. τοῦ (alt.)] del. m. rec. V, om. m. ὄντος] ὄντος τοῦ Θ m, m. rec. V. 25. ἐστίν Vv, εἰσί m.)
300

ἔστω πάλιν βάθος μὲν τὸ ΕΑ, ἔνοπτρον δὲ ἐπίπεδον τὸ ΑΓ, ὄμμα δὲ τὸ ∠, ὄψεις δὲ αἱ ∠Γ, ∠Β ἀνακλώμεναι ἐπὶ τὰ Ε, Ζ. ὁμοίως τῶν ὄψεων ἐκβληθεισῶν ἐπὶ τὰ Θ, Κ φανεῖται τὸ μὲν Ε κάτω ὄν ἐπὶ τοῦ Θ ἄνω ὄντος, τὸ δὲ Ζ ἄνω ὄν ἐπὶ τοῦ Κ κάτω ὄντος.

Τὰ ὕψη καὶ τὰ βάθη ἀπὸ τῶν κυρτῶν ἐνόπτρων ἀνεστραμμένα φαίνεται.

ἔστω ὕψος τὸ ΑΕ, ἔνοπτρον δὲ κυρτὸν τὸ Α∠Γ, ὄψεις δὲ αἱ Β∠, Β ἀνακλώμεναι ἐπὶ τὰ Ε, Θ. δέδεικται, ὅτι οὐ συμπεσοῦνται. τὰ δὲ λοιπὰ ὁμοίως τοῖς ἐν τοῖς ἐπιπέδοις.

ἔστω πάλιν βάθος τὸ ΑΕ, ἔνοπτρον δὲ κυρτὸν τὸ ΑΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι ἐπὶ τὰ Ε, Θ αἱ ΒΓΕ, Β∠Θ. τὰ δὲ λοιπὰ καθάπερ ἐν τοῖς ἐπιπέδοις.