De lineis spiralibus

Archimedes

Archimedes. Archimède, Volume 2. Mugler, Charles, editor. Paris: Les Belles Lettres, 1971.

Εἴ κα τᾶς ἕλικος τᾶς ἐν τᾷ πρώτᾳ περιφορᾷ γεγραμμένας εὐθεῖα γραμμὰ ἐπιψαύῃ μὴ κατὰ τὸ πέρας τᾶς ἕλικος, ἀπὸ δὲ τᾶς ἁφᾶς ἐπὶ τὰν ἀρχὰν τᾶς ἕλικος εὐθεῖα ἐπιζευχθῇ, καὶ κέντρῳ μὲν τᾷ ἀρχᾷ τᾶς ἕλικος, διαστήματι δὲ τᾷ ἐπιζευχθείσᾳ κύκλος γραφῇ, ἀπὸ δὲ τᾶς ἀρχᾶς τᾶς ἕλικος ἀχθῇ τις ποτʼ ὀρθὰς τᾷ ἀπὸ τᾶς ἁφᾶς ἐπὶ τὰν ἀρχὰν τᾶς ἕλικος ἐπιζευχθείσᾳ, συμπεσεῖται οὕτα ποτὶ τὰν ἐπιψαύουσαν, καὶ ἐσσεῖται ἁ μεταξὺ εὐθεῖα τᾶς τε συμπτώσιος καὶ τᾶς ἀρχᾶς τᾶς ἕλικος ἴσα τᾷ περιφερείᾳ τοῦ γραφέντος κύκλου τᾷ μεταξὺ τᾶς ἁφᾶς καὶ τᾶς τομᾶς, καθʼ ἃν τέμνει ὁ γραφεὶς κύκλος τὰν ἀρχὰν τᾶς περιφορᾶς, ἐπὶ τὰ προαγούμενα λαμβανομένας τᾶς περιφερείας ἀπὸ τοῦ σαμείου τοῦ ἐν τᾷ ἀρχᾷ τᾶς περιφορᾶς.

47

Ἔστω ἕλιξ, ἐφʼ ἇς ἁ ΑΒΓ△, ἐν τᾷ πρώτᾳ περιφορᾷ γεγραμμένα, καὶ ἐπιψαυέτω τις αὐτᾶς εὐθεῖα ἁ ΕΖ κατὰ τὸ △, ἀπὸ δὲ τοῦ △ ποτὶ τὰν ἀρχὰν τᾶς ἕλικος ἐπεζεύχθω ἁ Α△, καὶ κέντρῳ μὲν τῷ Α, διαστήματι δὲ τῷ Α△ κύκλος γεγράφθω ὁ △ΜΝ, τεμνέτω δʼ οὗτος τὰν ἀρχὰν τᾶς περιφορᾶς κατὰ τὸ Κ, ἄχθῶ δὲ ἁ ΖΑ ποτὶ τὰν Α△ ὀρθά.

Ὅτι μὲν οὖν οὕτα συμπίπτει δῆλον · ὅτι δὲ καὶ ἴσα ἐστὶν ἁ ΖΑ εὐθεῖα τᾷ ΚΜΝ△ περιφερείᾳ δεικτέον.

Εἰ γὰρ μή, ἤτοι μείζων ἐστὶν ἢ ἐλάσσων. Ἔστω, εἰ δυνατόν, πρότερον μείζων, λελάφθω δὲ τις ἁ ΛΑ τᾶς μὲν ΖΑ εὐθείας ἐλάσσων, τᾶς δὲ ΚΜΝ△ περιφερείας μείζων. Πάλιν δὴ κύκλος ἐστὶν ὁ ΚΜΝ καὶ ἐν τῷ κύκλῳ γραμμὰ ἐλάσσων τᾶς διαμέτρου ἁ △Ν καὶ λόγος, ὃν ἔχει ἁ △Α ποτὶ ΑΛ, μείζων τοῦ ὃν ἔχει ἁ ἡμίσεια τᾶς △Ν ποτὶ τὰν ἀπὸ τοῦ Α κάθετον ἐπʼ αὐτὰν ἀγμέναν δυνατὸν οὖν ἐστιν ἀπὸ τοῦ Α ποτιζαλεῖν τὰν ΑΕ ποτὶ τὰν Ν△ ἐκβεβλημέναν, ὥστε τὰν ΕΡ ποτὶ τὰν △Ρ τὸν αὐτὸν ἔχειν λόγον, ὃν ἁ △Α ποτὶ τὰν ΑΛ · δέδεικται γὰρ τοῦτο δυνατὸν ἐόν · ἕξει οὖν καὶ ἁ ΕΡ ποτὶ τὰν ΑΡ τὸν αὐτὸν λόγον, ὃν ἁ △Ρ ποτὶ τὰν ΑΛ. Ἁ δὲ △Ρ ποτὶ τὰν ΑΛ ἐλάσσονα λόγον ἔχει ἢ ἁ △Ρ περιφέρεια ποτὶ τὰν ΚΜ△ περιφέρειαν, ἐπεὶ ἁ μὲν △Ρ ἐλάσσων ἐστὶ τᾶς △Ρ

48
περιφερείας, ἁ δὲ ΑΛ μείζων τᾶς ΚΜ△ περιφερείας· ἐλάσσονα οὖν λόγον ἔχει ἁ ΕΡ εὐθεῖα ποτὶ ΡΑ ἢ ἁ △Ρ περιφέρεια ποτὶ τὰν ΚΜ△ περιφέρειαν · ὥστε καὶ ἁ ΑΕ ποτὶ ΑΡ ἐλάσσονα λόγον ἔχει ἢ ἁ ΚΜΡ περιφέρεια ποτὶ τὰν ΚΜ△ περιφέρειαν. Ὃν δὲ λόγον ἔχει ἁ ΚΜΡ ποτὶ τὰν ΚΜ△ περιφέρειαν, τοῦτον ἔχει ἁ ΧΑ ποτὶ Α△ · ἐλάσσονα ἄρα λόγον ἔχει ἁ ΕΑ ποτὶ ΑΡ ἢ ἁ ΑΧ ποτὶ △Α ὅπερ ἐστὶν ἀδύνατον. Οὐκ ἄρα μείζων ἁ ΖΑ τᾶς ΚΜ△ περιφερείας. Ὁμοίως δὲ τοῖς πρότερον δειχθήσεται ὅτι οὐδὲ ἐλάσσων ἐστίν ἴσα ἄρα.

Διὰ δὲ τοῦ αὐτοῦ τρόπου δειχθήσεται, καὶ εἴ κα τᾶς ἐν τᾷ δευτέρᾳ περιφορᾷ γεγραμμένας ἕλικος ἐπιψαύῃ εὐθεῖα μὴ κατὰ τὸ πέρας τᾶς ἕλικος, τὰ δὲ ἄλλα τὰ αὐτὰ κατασκευασθέωντι, ὅτι ἁ μεταξὺ εὐθεῖα τᾶς ποτὶ τὰν ἐπιψαύουσαν συμπτώσιος καὶ τᾶς ἀρχᾶς τᾶς ἕλικος ἴσα ἐστὶν ὅλᾳ τᾷ τοῦ γραφέντος κύκλου περιφερείᾳ καὶ ἔτι τᾷ μεταξὺ τῶν εἰρημένων σαμείων, ὡσαύτως τᾶς περιφερείας λαμζανομένας καὶ εἴ κα τᾶς ἐν ὁποιᾳοῦν γεγραμμένας περιφορᾷ ἕλικος ἐπιψαύῃ τις εὐθεῖα μὴ κατὰ τὸ πέρας τᾶς ἕλικος, τὰ δὲ ἄλλα τὰ αὐτὰ κατασκευασθέωντι, ὅτι ἁ μεταξὺ εὐθεῖα τῶν εἰρημένων σαμείων πολλαπλασία τίς ἐστι τᾶς τοῦ γραφέντος κύκλου περιφερείας κατὰ τὸν ἑνὶ ἐλάσσονα ἀριθμὸν τοῦ καθʼ ὃν αἱ περιφοραὶ λέγονται, καὶ ἔτι ἴσα τᾷ μεταξὺ τῶν εἰρημένων σαμείων ὁμοίως λαμβανομένᾳ.

49

Λαμβάνοντα τὸ χωρίον τὸ περιεχόμενον ὑπό τε τᾶς ἕλικος τᾶς ἐν τᾷ πρώτᾳ περιφορᾷ γεγραμμένας καὶ τᾶς εὐθείας τᾶς πρώτας ἐν τᾷ ἀρχᾷ τᾶς περιφορᾶς δυνατόν ἐστι περὶ αὐτὸ σχῆμα ἐπίπεδον περιγράψαι καὶ ἄλλο ἐγγράψαι ἐξ ὁμοίων τομέων συγκείμενον, ὥστε τὸ περιγεγραμμένον τοῦ ἐγγεγραμμένου μεῖζον εἶμεν ἐλάσσονι παντὸς τοῦ προτεθέντος χωρίου.

Ἔστω ἕλιξ, ἐφʼ ἇς ἁ ΑΒΓ△, ἐν τᾷ πρώτᾳ περιφορᾷ γεγραμμένα, ἔστω δὲ ἀρχὰ μὲν τᾶς ἕλικος τὸ Θ σαμεῖον, ἀρχὰ δὲ τᾶς περιφορᾶς ἁ ΘΑ, ὁ δὲ πρῶτος κύκλος ὁ ΖΗΙΑ, αἱ δὲ ΑΗ, ΖΙ διάμετροι αὐτοῦ ποτʼ ὀρθὰς ἀλλάλαις. Ἀεὶ δὴ τᾶς ὀρθᾶς γωνίας δίχα τεμνομένας καὶ τοῦ τομέως τοῦ τὰν ὀρθὰν γωνίαν περιέχοντος ἐσσεῖται τὸ καταλειπόμενον τοῦ τομέως ἔλασσον τοῦ προτεθέντος καὶ ἔστω γεγενημένος ὁ τομεὺς ὁ ΑΘΚ ἐλάσσων τοῦ προτεθέντος χωρίου. Διαιρήσθωσαν δὴ αἱ γωνίαι αἱ τέσσαρες ὀρθαὶ εἰς τὰς ἴσας γωνίας τᾷ περιεχομένᾳ ὑπὸ τᾶν ΑΘ,

50
ΘΚ, καὶ αἱ ποιοῦσαι τὰς γωνίας εὐθεῖαι ἔστε ποτὶ τὰν ἕλικα ἄχθωσαν. Καθʼ ὃ δὴ τέμνει σαμεῖον ἁ ΘΚ τὰν ἕλικα, ἔστω τὸ Λ, καὶ κέντρῳ τῷ Θ, διαστήματι δὲ τῷ ΘΛ κύκλος γεγράφθω · πεσεῖται δὲ αὐτοῦ ἁ μὲν εἰς τὰ προαγούμενα περιφέρεια ἐντὸς τᾶς ἕλικος, ἁ δὲ εἰς τὰ ἑπόμενα ἐκτός. Γεγράφθω δὴ ἁ περιφέρεια, ἔστε κα συμπέσῃ τᾷ ΘΑ κατὰ τὸ Ο ἁ ΟΜ καὶ τᾷ μετὰ τὰν ΘΚ εὐθεῖαν ποτὶ τὰν ἕλικα ποτιπιπτούσᾳ. Πάλιν δὴ καὶ καθʼ ὃ τέμνει τὰν ἕλικα σαμεῖον ἁ ΘΜ, ἔστω τὸ Ν, καὶ κέντρῳ τῷ Θ, διαστήματι δὲ τῷ ΘΝ κύκλος γεγράφθω, ἔστε κα συμπέσῃ ἁ περιφέρεια τοῦ κύκλου τᾷ ΘΚ καὶ τᾷ μετὰ τὰν ΘΜ ποτιπιπτούσᾳ ποτὶ τὰν ἕλικα, ὁμοίως δὲ καὶ διὰ τῶν ἄλλων πάντων, καθʼ ἃ τέμνοντι τὰν ἕλικα αἱ τὰς ἴσας γωνίας ποιοῦσαι, κύκλοι γεγράφθωσαν κέντρῳ τῷ Θ, ἔστʼ ἂν συμπέσῃ ἑκάστα ἁ περιφέρεια τᾷ τε προαγουμένᾳ εὐθείᾳ καὶ τᾷ ἑπομένᾳ · ἐσσεῖται δή τι περὶ τὸ λαφθὲν χωρίον περιγεγραμμένον ἐξ ὁμοίων τομέων συγκείμενον καὶ ἄλλο ἐγγεραμμένον. Ὅτι δὲ τὸ περιγεγραμμένον σχῆμα τοῦ ἐγγεγραμμένου μεῖζόν ἐστιν ἐλάσσονι τοῦ προτεθέντος χωρίου δειχθήσεται. Ἔστιν γὰρ ὁ μὲν ΘΛΟ τομεὺς ἴσος τῷ ΘΜΛ, ὁ δὲ ΘΝΠ τῷ ΘΝΡ, ὁ δὲ ΘΧΣ τῷ ΘΧΤ, ἔστιν δὲ καὶ τῶν ἄλλων τομέων ἕκαστος τῶν ἐν τῷ ἐγγεγραμμένῳ σχήματι ἴσος τῷ κοινὰν ἔχοντι πλευρὰν τομεῖ τῶν ἐν τῷ περιγεγραμμένῳ σχήματι τομέων. Δῆλον οὖν ὅτι καὶ πάντες οἱ τομέες πάντεσσιν ἴσοι ἐσσοῦνται
51
ἴσον ἄρα ἐστὶν τὸ ἐγγεγραμμένον σχῆμα ἐν τῷ χωρίῳ τῷ περιγεγραμμένῳ περὶ τὸ χωρίον σχήματι χωρὶς τοῦ ΘΑΚ τομέως μόνος γὰρ οὗτος οὐ λέλαπται τῶν ἐν τῷ περιγεγραμμένῳ σχήματι. Δῆλον οὖν ὅτι τὸ περιγεγραμμένον σχῆμα τοῦ ἐγγεγραμμένου μεῖζόν ἐστι τῷ ΑΚΘ τομεῖ, ὃς ἐλάσσων ἐστὶν τοῦ προτεθέντος.

ΠΟΡΙΣΜΑ

Ἐκ τούτου δὲ φανερὸν ὅτι δυνατόν ἐστι περὶ τὸ εἰρημένον χωρίον σχῆμα, οἷον εἴρηται, γράφειν, ὥστε τὸ περιγεγραμμένον σχῆμα μεῖζον εἶμεν τοῦ χωρίου ἐλάσσονι παντὸς τοῦ προτεθέντος χωρίου, καὶ πάλιν ἐγγράφειν, ὥστε τὸ χωρίον ὁμοίως μεῖζον εἶμεν τοῦ ἐγγραφέντος σχήματος ἐλάσσονι παντὸς τοῦ προτεθέντος χωρίου.