De lineis spiralibus

Archimedes

Archimedes. Archimède, Volume 2. Mugler, Charles, editor. Paris: Les Belles Lettres, 1971.

Εἴ κα τᾶς ἕλικος τᾶς ἐν τᾷ πρώτᾳ περιφορᾷ γεγραμμένας εὐθεῖα γραμμὰ ἐπιψαύῃ κατὰ τὸ πέρας τᾶς ἕλικος, ἀπὸ δὲ τοῦ σαμείου, ὅ ἐστιν ἀρχὰ τᾶς ἕλικος, ποτʼ ὀρθὰς ἀχθῇ τις τᾷ ἀρχᾷ τᾶς περιφορᾶς, ἁ ἀχθεῖσα συμπεσεῖται τᾷ ἐπιψαυούσᾳ, καὶ ἁ μεταξὺ εὐθεῖα τᾶς ἐπιψαυούσας καὶ τᾶς ἀρχᾶς τᾶς ἕλικος ἴσα ἐσσεῖται τᾷ τοῦ πρώτου κύκλου περιφερείᾳ.

Ἔστω ἕλιξ ἁ ΑΒΓ△Θ, ἔστω δὲ τὸ Α σαμεῖον ἀρχὰ τᾶς ἕλικος, ἁ δὲ ΘΑ γραμμὰ ἀρχὰ τᾶς περιφορᾶς, ὁ δὲ ΘΗΚ κύκλος ὁ πρῶτος, ἐπιψαυέτω δέ τις τᾶς ἕλικος κατὰ τὸ Θ ἁ ΘΖ, καὶ ἀπὸ τοῦ Α ἀχθῶ ποτʼ ὀρθὰς τᾷ ΘΑ ἁ ΑΖ συμπεσεῖται δὴ οὕτα ποτὶ τὰν ΘΖ, ἐπεὶ αἱ ΖΘ, ΘΑ ὀξεῖαν

42
γωνίαν περιέχοντι. Συμπιπτέτω κατὰ τὸ Ζ, Δεικτέον ὅτι ἁ ΖΑ ἴσα ἐστὶ τᾷ τοῦ ΘΚΗ κύκλου περιφερείᾳ.

Εἰ γὰρ μή, ἤτοι μείζων ἐστὶν ἢ ἐλάσσων. Ἔστω πρότερον, εἰ δυνατόν, μείζων. Ἔλαβον δή τινα εὐθεῖαν τὰν ΛΑ τᾶς μὲν ΖΑ εὐθείας ἐλάσσονα, τᾶς δὲ τοῦ ΘΗΚ κύκλου περιφερείας μείζονα. Ἔστιν δὴ κύκλος τις ὁ ΘΗΚ καὶ ἐν τῷ κύκλῳ γραμμὰ ἐλάσσων τᾶς διαμέτρου ἁ ΘΗ καὶ λόγος, ὃν ἔχει ἁ ΘΑ ποτὶ ΑΛ, μείζων τοῦ ὃν ἔχει ἁ ἡμίσεια τᾶς ΗΘ ποτὶ τὰν ἀπὸ τοῦ Α κάθετον ἐπʼ αὐτὰν ἀγμέναν, διότι καὶ τοῦ ὃν ἔχει ἁ ΘΑ ποτὶ ΑΖ · δυνατὸν οὖν ἐστιν ἀπὸ τοῦ Α ποτιζαλεῖν ποτὶ τὰν ἐκβεβλημέναν τὰν ΑΝ, ὥστε τὰν μεταξὺ τᾶς περιφερείας καὶ τᾶς ἐκβεβλημένας τὰν ΝΡ ποτὶ ΘΡ τὸν αὐτὸν ἔχειν λόγον, ὃν ἁ ΘΑ ποτὶ τὰν ΑΛ· ἔξει οὖν ἁ ΝΡ ποτὶ τὰν ΡΑ λόγον, ὃν ἁ ΘΡ εὐθεῖα ποτὶ τὰν ΑΛ. Ἁ δὲ ΘΡ ποτὶ τὰν ΑΛ ἐλάσσονα λόγον ἔχει ἢ ἁ ΘΡ περιφέρεια ποτὶ τὰν τοῦ ΘΗΚ κύκλου περιφέρειαν ἁ μὲν γὰρ ΘΡ εὐθεῖα ἐλάσσων ἐστὶ τᾶς ΘΡ περιφερείας, ἁ δὲ ΑΛ εὐθεῖα τᾶς τοῦ ΘΗΚ κύκλου περιφερείας μείζων ἐλάσσονα οὖν λόγον ἕξει καὶ ἁ ΝΡ ποτὶ ΡΑ ἢ ἁ ΘΡ περιφέρεια ποτὶ τὰν τοῦ ΘΗΚ κύκλου περιφέρειαν · καὶ ὅλα οὖν ἁ ΝΑ ποτὶ τὰν ΑΡ ἐλάσσονα λόγον ἔχει ἤπερ ἁ ΘΡ περιφέρεια μεθʼ ὅλας τᾶς τοῦ κύκλου περιφερείας ποτὶ τὰν τοῦ ΘΗΚ κύκλου περιφέρειαν. Ὃν δὲ λόγον ἔχει ἁ ΘΡ περιφέρεια μεθʼ ὅλας τᾶς τοῦ ΘΗΚ κύκλου περιφερείας ποτὶ τὰν τοῦ ΘΗΚ κύκλου περιφέρειαν, τοῦτον ἔχει ἁ ΧΑ ποτὶ τὰν ΑΘ δέδεικται γὰρ τοῦτο ἐλάσσονα ἄρα λόγον ἔχει ἁ ΝΑ ποτὶ τὰν ΑΡ ἤπερ ἁ ΧΑ ποτὶ τὰν ΑΘ ὅπερ ἀδύνατον. ἁ μὲν γὰρ ΝΑ μείζων ἐστὶ τᾶς ΑΧ, ἁ δὲ ΑΡ ἴσα ἐστὶ τᾷ ΘΑ. Οὐκ ἄρα μείζων ἁ ΖΑ τᾶς τοῦ κύκλου περιφερείας τοῦ ΘΗΚ.

43

Ἔστω δὴ πάλιν, εἰ δυνατόν, ἐλάσσων ἁ ΖΑ τᾶς τοῦ ΘΗΚ κύκλου περιφερείας. Ἔλαβον δή τινα εὐθεῖαν πάλιν τὰν ΑΛ τᾶς μὲν ΑΖ μείζονα, τᾶς δὲ τοῦ ΘΗΚ κύκλου περιφερείας ἐλάσσονα, καὶ ἄγω ἀπὸ τοῦ Θ τὰν ΘΜ παράλληλον τᾷ ΑΖ. Πάλιν οὖν κύκλος ἐστὶν ὁ ΘΗΚ καὶ ἐν αὐτῷ ἐλάσσων γραμμὰ τᾶς διαμέτρου ἁ ΘΗ καὶ ἄλλα ἐπιψαύουσα τοῦ κύκλου κατὰ τὸ Θ καὶ λόγος, ὃν ἔχει ἁ ΑΘ ποτὶ τὰν ΑΛ, ἐλάσσων τοῦ ὃν ἔχει ἁ ἡμίσεια τᾶς ΗΘ ποτὶ τὰν ἀπὸ τοῦ Α κάθετον ἐπʼ αὐτὰν ἀγμέναν, ἐπειδὴ καὶ τοῦ ὃν ἔχει ἁ ΘΑ ποτὶ ΑΖ ἐλάσσων ἐστί δυνατὸν οὖν ἐστιν ἀπὸ τοῦ Α ἀγαγεῖν τὰν ΑΠ ποτὶ τὰν ἐπιψαύουσαν, ὥστε τὰν ΡΝ τὰν μεταξὺ τᾶς ἐν τῷ κύκλῳ εὐθείας καὶ τᾶς περιφερείας ποτὶ τὰν ΘΠ τὰν ἀπολαφθεῖσαν ἀπὸ τᾶς ἐπιψαυούσας τοῦτον ἔχειν τὸν λόγον, ὃν ἔχει ἁ ΘΑ ποτὶ τὰν ΑΛ · τεμεῖ δὴ ἁ ΑΠ τὸν μὲν κύκλον κατὰ τὸ Ρ, τὰν δὲ ἕλικα κατὰ τὸ Χ καὶ ἕξει καὶ ἐναλλαξ τὸν αὐτὸν λόγον ἁ ΝΡ ποτὶ ΡΑ, ὃν ἁ ΘΠ ποτὶ ΑΛ. Ἁ δὲ ΘΠ ποτὶ τὰν ΑΛ μείζονα λόγον ἔχει ἢ ἁ ΘΡ περιφέρεια ποτὶ τὰν τοῦ ΘΗΚ κύκλου περιφέρειαν ἁ μὲν γὰρ ΘΠ εὐθεῖα μείζων ἐστὶν τᾶς ΘΡ περιφερείας, ἁ δὲ ΑΛ ἐλάσσων τᾶς τοῦ ΘΗΚ κύκλου περιφερείας μείζονα ἄρα λόγον ἔχει ἁ ΠΡ ποτὶ τὰν ΑΡ ἢ ἁ ΘΡ περιφέρεια ποτὶ τὰν τοῦ ΘΗΚ

44
κύκλου περιφέρειαν · ὥστε καὶ ἁ ΡΑ ποτὶ τὰν ΑΝ μείζονα λόγον ἔχει ἢ ἁ τοῦ ΘΗΚ κύκλου περιφέρεια ποτὶ τὰν ΘΚΡ περιφέρειαν. Ὃν δὲ λόγον ἔχει ἁ τοῦ ΘΗΚ κύκλου περιφέρεια ποτὶ τὰν ΘΚΡ περιφέρειαν, τοῦτον ἔχει ἁ ΘΑ εὐθεῖα ποτὶ τὰν ΑΧ δέδεικται γὰρ τοῦτο · μείζονα ἄρα λόγον ἔχει ἁ ΡΑ ποτὶ τὰν ΑΝ ἢ ἁ ΘΑ ποτὶ τὰν ΑΧ ὅπερ ἀδύνατον. Οὐκ ἄρα μείζων ἐστὶν οὐδὲ ἐλάσσων ἁ ΖΑ τᾶς τοῦ ΘΗΚ κύκλου περιφερείας · ἴσα ἄρα.

Εἰ δέ κα τᾶς ἐν τᾷ δευτέρᾳ περιφορᾷ γεγραμμένας ἕλικος κατὰ τὸ πέρας ἐπιψαύῃ εὐθεῖα, καὶ ἀπὸ τᾶς ἀρχᾶς τᾶς ἕλικος ἀχθῇ τις ποτʼ ὀρθὰς τᾷ ἀρχᾷ τᾶς περιφορᾶς, συμπεσεῖται οὕτα ποτὶ τὰν ἐπιψαύουσαν, καὶ ἐσσεῖται ἁ εὐθεῖα ἁ μεταξὺ τᾶς ἐπιψαυούσας καὶ τᾶς ἀρχᾶς τᾶς ἕλικος διπλασία τᾶς τοῦ δευτέρου κύκλου περιφερείας.

Ἔστω γὰρ ἁ μὲν ΑΒΓΘ ἕλιξ ἐν τᾷ πρώτᾳ περιφορᾷ γεγραμμένα, ἁ δὲ ΘΕΤ ἐν τᾷ δευτέρᾳ, καὶ ὁ μὲν ΘΚΗ κύκλος ὁ πρῶτος, ὁ δὲ ΤΜΝ ὁ δεύτερος, ἔστω δέ τις

45
γραμμὰ ἐπιψαύουσα τᾶς ἕλικος κατὰ τὸ Θ ἁ ΤΖ, ἁ δὲ ΖΑ ποτʼ ὀρθὰς ἄχθῳ τᾷ ΤΑ συμπεσεῖται δὲ οὕτα τᾷ ΤΖ διὰ τὸ δεδεῖχθαι τὰν γωνίαν ὀξεῖαν ἐοῦσαν τὰν ὑπὸ τᾶν ΑΤΖ. Δεικτέον ὅτι ἁ ΖΑ εὐθεῖα διπλασία ἐντὶ τᾶς τοῦ ΤΜΝ κύκλου περιφερείας.

Εἰ γὰρ μή ἐστιν διπλασία, ἤτοι μείζων ἐστὶν ἢ διπλασία ἢ ἐλάσσων ἐστὶν ἢ διπλασία. Ἔστω πρότερον, εἰ δυνατόν, μείζων ἢ διπλασία, καὶ λελάφθω τις εὐθεῖα ἁ ΛΑ τᾶς μὲν ΖΑ εὐθείας ἐλάσσων, τᾶς δὲ τοῦ ΤΜΝ κύκλου περιφερείας μείζων ἢ διπλασία. Ἔστιν δή τις κύκλος ὁ ΤΜΝ καὶ ἐν τῷ κύκλῳ γραμμὰ δεδομένα ἐλάσσων τᾶς διαμέτρου ἁ ΤΝ, καὶ ὃν ἔχει ἁ ΤΑ ποτὶ τὰν ΑΛ μείζων τοῦ ὃν ἔχει ἁ ἡμίσεια τᾶς ΤΝ ποτὶ τὰν ἀπὸ τοῦ Α κάθετον ἐπʼ αὐτὰν ἀγμέναν · δυνατὸν οὖν ἐστιν ἀπὸ τοῦ Α ποτιζαλεῖν τὰν ΑΣ ποτὶ τὰν ΤΝ ἐκβεβλημέναν, ὥστε τὰν μεταξὺ τᾶς περιφερείας καὶ τᾶς ἐκζεζλημένας τὰν ΡΣ ποτὶ τὰν ΤΡ τὸν αὐτὸν ἔχειν λόγον, ὃν ἁ ΤΑ ποτὶ τὰν ΑΛ · τεμεῖ δὴ ἁ ΑΣ τὸν μὲν κύκλον κατὰ τὸ Ρ, τὰν δὲ ἕλικα κατὰ τὸ Χ · καὶ ἐναλλὰξ τὸν αὐτὸν ἕξει λόγον ἁ ΡΣ ποτὶ τὰν ΤΑ, ὃν ἁ ΤΡ ποτὶ τὰν ΑΛ. Ἁ δὲ ΤΡ ποτὶ τὰν ΑΛ ἐλάσσονα λόγον ἔχει ἢ ἁ ΤΡ περιφέρεια ποτὶ τὰν διπλασίαν τοῦ ΤΜΝ κύκλου περιφέρειαν · ἔστιν γὰρ ἁ μὲν ΤΡ εὐθεῖα ἐλάσσων τᾶς ΤΡ περιφερείας, ἁ δὲ ΑΛ εὐθεῖα μείζων ἢ διπλασία τᾶς τοῦ ΤΜΝ κύκλου περιφερείας ἐλάσσονα ἄρα λόγον ἔχει ἁ ΡΣ ποτὶ τὰν ΑΡ ἢ ἁ ΤΡ περιφέρεια ποτὶ τὰν διπλασίαν τᾶς τοῦ ΤΜΝ κύκλου περιφερείας ὅλα οὖν ἁ ΣΑ ποτὶ τὰν ΑΡ ἐλάσσονα λόγον ἔχει ἢ ἁ ΤΡ περιφέρεια μετὰ τᾶς τοῦ ΤΜΝ κύκλου περιφερείας δὶς εἰρημένας ποτὶ τὰν τοῦ ΤΜΝ κύκλου περιφέρειαν

46
δὶς εἰρημέναν. Ὃν δὲ λόγον ἔχοντι αἱ εἰρημέναι περιφέρειαι, τοῦτον ἔχει τὸν λόγον ἁ ΧΑ ποτὶ τὰν ΑΤ δέδεικται γὰρ τοῦτο · ἐλάσσονα ἄρα λόγον ἔχει ἁ ΑΣ ποτὶ τὰν ΑΡ ἢ ἁ ΧΑ ποτὶ τὰν ΤΑ · ὅπερ ἀδύνατον. Οὐκ ἄρα μείζων ἐστὶν ἢ διπλασία ἁ ΖΑ εὐθεῖα τᾶς τοῦ ΤΜΝ κύκλου περιφερείας. Ὁμοίως δὲ δειχθήσεται ὅτι οὐδὲ ἐλάσσων ἢ διπλασία. Δῆλον οὖν ὅτι διπλασία ἐστίν.

Διὰ δὲ τοῦ αὐτοῦ τρόπου δεικτέον, καὶ εἴ κα τᾶς ἐν ὁποιᾳοῦν περιφορᾷ γεγραμμένας ἕλικος ἐπιψαύῃ τις εὐθεῖα κατὰ τὸ πέρας τᾶς ἕλικος, καὶ ἀπὸ τᾶς ἀρχᾶς τᾶς ἕλικος ποτʼ ὀρθὰς ἀχθεῖσα τᾷ ἀρχᾷ τᾶς περιφορᾶς συμπίπτῃ ποτὶ τὰν ἐπιψαύουσαν, ὅτι πολλαπλασία ἐστὶν τᾶς τοῦ κύκλου περιφερείας τοῦ κατὰ τὸν ἀριθμὸν τᾶς περιφορᾶς λεγομένου τῷ αὐτῷ ἀριθμῷ.