De lineis spiralibus

Archimedes

Archimedes. Archimède, Volume 2. Mugler, Charles, editor. Paris: Les Belles Lettres, 1971.

Λαβόντα τὸ χωρίον τὸ περιεχόμενον ὑπὸ τᾶς ἕλικος τᾶς ἐν τᾷ δευτέρᾳ περιφορᾷ γεγραμμένας καὶ τᾶς εὐθείας, ἅ ἐστι δευτέρα τᾶν ἐν τᾷ ἀρχᾷ τᾶς περιφορᾶς, δυνατόν ἐστι περὶ αὐτὸ σχῆμα ἐπίπεδον περιγράψαι ἐξ ὁμοίων τομέων συγκείμενον καὶ ἄλλο ἐγγράψαι, ὥστε τὸ περιγραφὲν τοῦ ἐγγραφέντος μεῖζον εἶμεν ἐλάσσονι παντὸς τοῦ προτεθέντος χωρίου.

Ἔστω ἕλιξ, ἐφʼ ᾇ ἁ ΑΒΓ△Ε, ἐν τᾷ δευτέρᾳ περιφορᾷ γεγραμμένα, καὶ ἔστω τὸ μὲν Θ σαμεῖον ἀρχὰ τᾶς ἕλικος, ἁ δὲ ΑΘ ἀρχὰ τᾶς περιφορᾶς, ἁ δὲ ΕΑ ἁ δευτέρα εὐθεῖα τᾶν ἐν τᾷ ἀρχᾷ τᾶς περιφορᾶς, ὁ δὲ ΑΖΗ κύκλος ἔστω δεύτερος καὶ αἱ ΑΓΗ. ΖΙ διάμετροι αὐτοῦ ποτʼ ὀρθὰς

52
ἀλλάλαις. Πάλιν οὖν δίχα τεμνομένας τᾶς ὀρθᾶς γωνίας καὶ τοῦ τομέως τοῦ τὰν ὀρθὰν γωνίαν περιέχοντος ἐσσεῖται τὸ καταλειπόμενον ἔλασσον τοῦ προτεθέντος καὶ ἔστω γεγενημένος ὁ ΘΚΑ τομεὺς ἐλάσσων τοῦ προτεθέντος χωρίου. Διαιρεθεισᾶν δὴ τᾶν ὀρθᾶν γωνιᾶν εἰς τὰς ἴσας γωνίας τᾷ ὑπὸ τᾶν ΚΘΑ καὶ τῶν ἄλλων κατεσκευασθέντων κατὰ τὰ αὐτὰ τοῖς πρότερον ἐσσεῖται τὸ περιγεγραμμένον σχῆμα τοῦ ἐγγεγραμμένου σχήματος μεῖζον ἐλάσσονι ἢ ὁ τομεὺς ὁ ΘΚΑ · μεῖζον γὰρ ἐσσεῖται τᾷ ὑπεροχᾶ, ᾇ ὑπερέχει ὁ ΘΚΑ τομεὺς τοῦ ΘΕΡ.

ΠΟΡΙΣΜΑ

Δῆλον οὖν ὅτι δυνατόν ἐστιν καὶ τὸ περιγραφὲν σχῆμα τοῦ λαφθέντος χωρίου μεῖζον εἶμεν ἐλάσσονι παντὸς τοῦ προτεθέντος χωρίου, καὶ πάλιν τὸ λαφθὲν χωρίον μεῖζον εἶμεν τοῦ ἐγγραφέντος σχήματος ἐλάσσονι παντὸς τοῦ προτεθέντος χωρίου.

Διὰ δὲ τοῦ αὐτοῦ τρόπου φανερὸν διότι δυνατὸν λαβόντα τὸ χωρίον τὸ περιεχόμενον ὑπό τε τᾶς ἕλικος

53
τᾶς ἐν ὁποιᾳοῦν περιφορᾷ γεγραμμένας καὶ τᾶς εὐθείας τᾶς ἐν τᾷ ἀρχᾷ τᾶς περιφορᾶς κατὰ τὸν αὐτὸν ἀριθμὸν λεγομένας περιγράψαι σχῆμα, οἷον εἴρηται, ἐπίπεδον, ὥστε τὸ περιγραφὲν σχῆμα μεῖζον εἶμεν τοῦ λαφθέντος χωρίου ἐλάσσονι παντὸς τοῦ προτεθέντος χωρίου, καὶ πάλιν ἐγγράψαι, ὥστε τὸ λαφθὲν χωρίον μεῖζον εἶμεν τοῦ ἐγγραφέντος σχήματος ἐλάσσονι παντὸς τοῦ προτεθέντος χωρίου.

Λαβόντα τὸ χωρίον τὸ περιεχόμενον ὑπό τε τᾶς ἕλικος, ἅ ἐστιν ἐλάσσων τᾶς ἐν μιᾷ περιφορᾷ γεγραμμένας, οὐκ ἐχούσας πέρας τὰν ἀρχὰν τᾶς ἕλικος, καὶ τᾶν εὐθειᾶν τᾶν ἀπὸ τῶν περάτων τᾶς ἕλικος ἀγομενᾶν δυνατόν ἐστι περὶ τὸ χωρίον σχῆμα ἐπίπεδον περιγράψαι ἐξ ὁμοίων τομέων συγκείμενον καὶ ἄλλο ἐγγράψαι, ὥστε τὸ περιγραφὲν σχῆμα τοῦ ἐγγραφέντος μεῖζον εἶμεν ἐλάσσονι παντὸς τοῦ προτεθέντος χωρίου.

Ἔστω ἕλιξ, ἐφʼ ἇς ἁ ΑΒΓ△Ε, πέρατα δὲ αὐτᾶς τὰ Α, Ε, ἔστω δὲ ἀρχὰ τᾶς ἕλικος τὸ Θ, καὶ ἐπεζεύχθωσαν αἱ ΑΘ,

54
ΘΕ. Γεγράφθω δὴ κύκλος κέντρῳ μὲν τῷ Θ, διαστήματι δὲ τῷ ΘΑ, καὶ συμπιπτέτω τᾷ ΘΕ κατὰ τὸ Ζ. Ἀεὶ δὲ τᾶς γωνίας τᾶς ποτὶ τῷ Θ καὶ τοῦ τομέως τοῦ ΘΑΖ δίχα τεμνομένων ἐσσεῖται τὸ καταλειπόμενον τοῦ προτεθέντος ἔλασσον. Ἔστω ἐλάσσων ὁ τομεὺς ὁ ΘΑΚ τοῦ προτεθέντος. Ὁμοίως δὴ τοῖς πρότερον γεγράφθωσαν κύκλοι διὰ τῶν σαμείων, καθʼ ἃ τέμνοντι τὰν ἕλικα αἱ τὰς ἴσας γωνίας ποιοῦσαι ποτὶ τῷ Θ, ὥστε τᾶν περιφερειᾶν ἑκάσταν συμπίπτειν τᾷ τε προαγουμένᾳ καὶ τᾷ ἑπομένᾳ ἐσσεῖται δή τι περὶ τὸ περιεχόμενον χωρίον ὑπό τε τᾶς ΑΒΓ△Ε ἕλικος καὶ τᾶν ΑΘ, ΘΕ εὐθειᾶν περιγεγραμμένον σχῆμα ἐπίπεδον ἐξ ὁμοίων τομέων συγκείμενον καὶ ἄλλο ἐγγεγραμμένον, καὶ τὸ περιγεγραμμένον τοῦ ἐγγεγραμμένου ἐλάσσονι ὑπερέχει τοῦ προτεθέντος χωρίου ἐλάσσων γάρ ἐστιν ὁ ΘΑΚ τομεύς.

ΠΟΡΙΣΜΑ

Ἐκ τούτου φανερόν ἐστιν ὅτι δυνατόν ἐστιν περὶ τὸ εἰρημένον χωρίον σχῆμα ἐπίπεδον, οἷον εἴρηται, περιγράψαι, ὥστε τὸ περιγραφὲν σχῆμα μεῖζον εἶμεν τοῦ χωρίου ἐλάσσονι παντὸς τοῦ προτεθέντος χωρίου, καὶ πάλιν ἐγγράψαι, ὥστε τὸ εἰρημένον χωρίον μεῖζον εἶμεν τοῦ ἐγγραφέντος σχήματος ἐλάσσονι παντὸς τοῦ προτεθέντος χωρίου.