Commentarii in libros de sphaera et cylindro
Eutocius
Eutocius. ArchimeĢde, Volume 4. Mugler, Charles, editor. Paris: Les Belles Lettres, 1972.
Λόγος ἄρα δεδομένος συναμφοτέρου τῆς Ε△Ζ πρὸς △Ζ· ὥστε καὶ ἡ ΑΓ Ἐπεὶ γὰρ συναμφότερος ἡ Ε△, πρὸς ΔΖ λόγον ἔχει δεδομένον, ἐὰν δεδομένον μέγεθος πρός τι μόριον ἑαυτοῦ λόγον ἔχῃ δεδομένον, καὶ πρὸς
Καὶ ἄλλως δὲ λέγοις ἂν ὅτι ἡ ΑΓ δοθεῖσά ἐστιν. Ἐπεὶ γὰρ δέδοται ἡ διάμετρος ἡ △Β τῇ θέσει, δέδοται δὲ καὶ τὸ Ζ, ὡς ᾔτηται, καὶ ἀπὸ δεδομένου τοῦ Ζ πρὸς ὀρθὰς ἦκται ἡ ΑΓ, δέδοται ἡ ΑΓ θέσει. Ἀλλὰ καὶ ἡ τοῦ κύκλου περιφέρεια δοθέντα ἄρα τὰ A, Γ, καὶ αὐτὴ ἡ ΑΖΓ δοθεῖσά ἐστιν.
Καὶ ἐπεὶ συναμφότερος μὲν ἡ Ε△Ζ πρὸς △Ζ μείζονα λόγον ἔχει ἤπερ συναμφότερος ἡ Ε△Β πρὸς △Β | Ἐπεὶ γὰρ ἡ Ε△ μείζων ἢ ἡμίσειά ἐστι τῆς △Ζ, συναμφότερος ἄρα ἡ Ε△Ζ τῆς △Ζ μείζων ἐστὶν ἢ ἡμιολία. Συναμφότερος δὲ ἡ Ε△, △Β τῆς △Β ἡμιολία μείζονα ἄρα λόγον ἔχει ἡ Ε△Ζ πρὸς ΔΖ ἤπερ ἡ Ε△Β πρὸς △Β.
Ἢ καὶ ἄλλως. Ἐπεὶ μείζων ἐστὶν ἡ △Β τῆς △Ζ, ἄλλη δὲ τις ἡ Ε△, ἡ Ε△ ἄρα πρὸς △Ζ μείζονα λόγον ἔχει ἤπερ ἡ ΕΔ πρὸς △Β· συνθέντι συναμφότερος ἡ Ε△Ζ πρὸς △Ζ μείζονα λόγον ἔχει ἤπερ συναμφότερος ἡ Ε△Β πρὸς ΔΒ.
Ἡ σύνθεσις τοῦ θεωρήματος σαφὴς διὰ τῶν ἐνταῦθα εἰρημένων.