Fragmentum [Sp.] (e cod. Paris. gr. 2448)
Diophantus Alexandrinus
Diophantus Alexandrinus, Fragmentum [Sp.] (e cod. Paris. gr. 2448), Diophanti Alexandrini opera omnia, vol. 2, Tannery, Teubner, 1895
Ἀπέδειξε καὶ ἐνταῦθα Ἀρχιμήδης ὅτι ὅνπερ ἔχει λόγον ὁ κύκλος πρὸς τὸ τετράγωνον τὸ περὶ αὐτὸν περιγραφόμενον, τὸν αὐτὸν λόγον ἔχει καὶ ὁ κύλινδρος πρὸς τὸν κύβον τὸν περιέχοντα αὐτὸν καὶ ἴσας πλευρὰς [*](37 Geep.160. — 38 ═ Geep. 161. — 39 ═ Geep.162. — 40 Geep 163. — 41. Cf Geep. 163.) [*](17 τρισκαιδεκάγωηνον, ποίει supplevi ex Geep. 17—18 τὴν πλευρὰν . . . ὧν γʹ om. Geep.)
Ἔστω κύλινδρος οὗ ἡ διάμετρος ζ καὶ τὸ ὕψος ζ· [*](b) εὑρεῖν αὐτοῦ τὸ στερεόν. τὰ ζ κύβισον, γίνονται τ γ ταῦτα πολυπλασίασον ἐπὶ τὰ ια, γίνονται γψογ· ταῦτα μέριζε παρὰ τὰ ιδ, γίνονται σξθ U+2220΄.
Τινὲς δὲ πρῶτον τὸ ἐμβαδὸν λαμβάνουσιν ὡς ἐπὶ [*](c) τοῦ κύκλου, καὶ τότε ποιοῦσιν ἐπὶ τὸ ὕψος.
Περὶ δὲ τῆς σφαίρας καὶ κυλίνδρου ὁ αὐτὸς Ἀρχιμήδης ἀπέδειξεν ὅτι ἡ σφαῖρα δίμοιρον μέρος ἐστὶ [*](a) τοῦ περιλαμβάνοντος αὐτὴν κυλίνδρου, καὶ πᾶς κῶνος τρίτον μέρος ἐστὶ κυλίνδρου τοῦ τὴν αὐτὴν βάσιν ἔχοντος αὐτῷ καὶ ὕψος ἴσον.