Fragmentum [Sp.] (e cod. Paris. gr. 2448)

Diophantus Alexandrinus

Diophantus Alexandrinus, Fragmentum [Sp.] (e cod. Paris. gr. 2448), Diophanti Alexandrini opera omnia, vol. 2, Tannery, Teubner, 1895

Ἀπέδειξε καὶ ἐνταῦθα Ἀρχιμήδης ὅτι ὅνπερ ἔχει λόγον ὁ κύκλος πρὸς τὸ τετράγωνον τὸ περὶ αὐτὸν περιγραφόμενον, τὸν αὐτὸν λόγον ἔχει καὶ ὁ κύλινδρος πρὸς τὸν κύβον τὸν περιέχοντα αὐτὸν καὶ ἴσας πλευρὰς [*](37 Geep.160. — 38 ═ Geep. 161. — 39 ═ Geep.162. — 40 Geep 163. — 41. Cf Geep. 163.) [*](17 τρισκαιδεκάγωηνον, ποίει supplevi ex Geep. 17—18 τὴν πλευρὰν . . . ὧν γʹ om. Geep.)

28
ἔχοντα τῇ διαμέτρῳ τοῦ κυλίνδρου καὶ τὸ ὕψος ἴσον, καὶ ὡς ἐπὶ τῶν κύκλων εἰπεῖν ὅτι τὰ ἕνδεκα τετράγωνα, τὰ ἐκτὸς περιγραφόμενα τοῦ κύκλου, ἴσα ἐστὶ δεκατέτρασι κύκλοις τοῖς τὴν αὐτὴν διάμετρον ἔχουσιν, οὕτως καὶ οἱ ἕνδεκα κύβοι ἴσοι εἰσὶ δεκατέτρασι κυλίνδροις, ὧν αἱ πλευραὶ ἴσαι εἰσὶ τῇ διαμέτρῳ καὶ τῷ ὕψει, καὶ ὥσπερ ἐπὶ τῶν κύκλων λαμβάνομεν τὸ ἐμβαδὸν τοῦ τετραγώνου καὶ ποιοῦμεν ἑνδεκάκις καὶ μερίζομεν παρὰ ιδ, καὶ ἔσται τὸ στερεὸν τοῦ κυλίνδρου.

Ἔστω κύλινδρος οὗ ἡ διάμετρος ζ καὶ τὸ ὕψος ζ· [*](b) εὑρεῖν αὐτοῦ τὸ στερεόν. τὰ ζ κύβισον, γίνονται τ γ ταῦτα πολυπλασίασον ἐπὶ τὰ ια, γίνονται γψογ· ταῦτα μέριζε παρὰ τὰ ιδ, γίνονται σξθ U+2220΄.

Τινὲς δὲ πρῶτον τὸ ἐμβαδὸν λαμβάνουσιν ὡς ἐπὶ [*](c) τοῦ κύκλου, καὶ τότε ποιοῦσιν ἐπὶ τὸ ὕψος.

Περὶ δὲ τῆς σφαίρας καὶ κυλίνδρου ὁ αὐτὸς Ἀρχιμήδης ἀπέδειξεν ὅτι ἡ σφαῖρα δίμοιρον μέρος ἐστὶ [*](a) τοῦ περιλαμβάνοντος αὐτὴν κυλίνδρου, καὶ πᾶς κῶνος τρίτον μέρος ἐστὶ κυλίνδρου τοῦ τὴν αὐτὴν βάσιν ἔχοντος αὐτῷ καὶ ὕψος ἴσον.