In Nicomachi Arithmeticam Introductionem
Iamblichus
Iamblichus. In Nicomachi Arithmeticam Introductionem. Pistelli, Ermenegildo, editor. Leipzig: Teubner, 1894.
ὁμοίῳ καὶ δεύτερον ἀνόμοιον τρίτῳ ὁμοίῳ καὶ τρίτον τετάρτῳ καὶ τέταρτον πέμπτῳ καὶ ἀεὶ ἀκολούθως, πάντες ἑξῆς σὺν τοῖς προτέροις ἀπὸ τριάδος οἱ τρίγωνοι φύσονται οὗτοι γʹ ϛʹ ιʹ ιεʹ καʹ κηʹ λϛʹ μεʹ νεʹ ξϛʹ οηʹ ҁαʹ ρεʹ καὶ οἱ ἑξῆς ἐπ’ ἄπειρον. πάλιν δὲ καὶ αὐτῶν τῶν καθ’ αὑτοὺς τῶν ἀνομοίων τὰ ἡμίση τοὺς ἀπὸ μονάδος εὐτάκτους τριγώνους ποιήσει. ἑκάστη δὲ διαφορὰ ἀνομοίων καθ’ ἕκαστον πρὸς ὁμοίους λόγον ἕξει πρὸς οὓς ὧν ἐστι διαφορὰ οὐκ ἄτακτον· οὗ μὲν γὰρ ἡμίσεια ἔσται οὗ δὲ τρίτον, καὶ οὗ μὲν τρίτον οὗ δὲ τέταρτον, καὶ οὗ μὲν τέταρτον οὗ δὲ πέμπτον, καὶ ἀεὶ ἀκολούθως, ἀρχὴν δὲ παρέξει τῆς τοιαύτης εὐταξίας ἡ δευτέρα συζυγία τοῦ δʹ πρὸς ϛʹ· τῇ γὰρ πρώτῃ συζυγίᾳ τῇ αʹ πρὸς δύο οὐχ ὑπάρξει τὸ τοσοῦτον διὰ τὸ ἀμερὲς εἶναι τὸ ἓν καὶ τὴν μονάδα εἴδους καὶ ταυτότητος λόγον ἔχουσαν. πρώτη δὲ δυὰς ἐπιδεκτικὴ ἔσται μερισμοῦ καὶ διακρίσεως, τῆς θατέρου φύσεως οὖσα καὶ τὸν τῆς ὕλης λόγον ἀναδεδεγμένη, καὶ ἐπεὶ συζυγὴς οὖσα τῇ μονάδι δι’ ἐκείνην ἐκωλύθη τῆς εἰρημένης εὐταξίας τῶν μορίων ἄρξαι,
αὕτη διαφορὰ
οὖσα τῆς δευτέρας συζυγίας εὑρίσκεται, τοῦ μὲν τέσσαρα ἡμίσεια οὖσα, τοῦ δὲ ϛʹ, γον. ἀλλὰ καὶ πρὸς τὸν δʹ συγκρινομένη οὐδὲν ἧττον διαφορὰν πρὸς αὐτὸν φυλάττει. καὶ ἐπειδὴ τῇ κατὰ τὰς διαφορὰς ποσότητι ἀδιαφοροῦσιν οἱ τρεῖς ὅροι οἱ βʹ δʹ ϛʹ, καὶ ποιότητι τῇ κατὰ τοὺς λόγους διαφέρουσι· διπλάσιος μὲν γὰρ ὁ δʹ τοῦ βʹ, ἡμιόλιος δὲ ὁ ϛʹ τοῦ δʹ. ὁ δὲ αὐτὸς ϛʹ πρὸς τὸν ἑξῆς ὁμοίως συγκρινόμενος τὸν θʹ, ποιότητι μὲν οὐ διοίσει· τὸν γὰρ αὐτὸν ἡμιόλιον λόγον φυλάξει, ὑπόλογον ἑαυτὸν παρέχων, ὥσπερ καὶ πρὸς τὸν δʹ τοῦ αὐτοῦ λόγου πρόλογος ἦν· τῇ δὲ κατὰ τὴν διαφορὰν ποσότητι διοίσει, εἴ γε πρὸς μὲν τὸν δʹ δυάς ἐστιν ἡ διαφορά, πρὸς δὲ τὸν θʹ τριάς. πάλιν ὁ θʹ πρὸς τὸν ϛʹ ἀλλὰ καὶ πρὸς τὸν ιβʹ συγκρινόμενος ποιότητι μὲν τῶν λόγων διοίσει, εἴ γε τοῦ μὲν ἡμιόλιος τοῦ δὲ ὑπεπίτριτός ἐστι, ποσότητι δὲ τῇ κατὰ τὰς διαφορὰς οὐ διοίσει· τριὰς γὰρ αὐτῷ διαφορὰ πρὸς ἑκάτερον. καὶ καθόλου ἔνθα μὲν τῇ κατὰ τὰςδιαφορὰς ποσότητι διαφέρουσι τρεῖς ὅροι οὕτως λαμβανόμενοι ὡς εἴρηται, ποιότητι κατὰ τοὺς λόγους ἀδιάφοροι ἔσονται· εἰ δὲ διαφέροιεν ποιότητι, ποσότητι ἀδιαφορήσουσι. καὶ ἐξ ἀλλήλων δ’ ἂν γνωρισθείησαν ὅμοιοί τε καὶ ἀνόμοιοι· ὁ γὰρ πρῶτος ἀνόμοιος ἐκ δὶς πρώτου ἐστὶν ὁμοίου, καὶ ὁ δεύτερος ὅμοιος ἐκ δὶς πρώτου ἐστὶν ἀνομοίου, ὁ δὲ δεύτερος ἀνόμοιος ἐξ ἑνὸς 〈καὶ〉 ἡμίσους δευτέρου ὁμοίου. πάλιν ὁ τρίτος ἀνόμοιος ἐξ ἑνὸς καὶ τρίτου ἐστὶ τρίτου ὁμοίου, ὥσπερ καὶ τέταρτος ὅμοιος ἐξ ἑνὸς καὶ τρίτου
ἐστὶ τρίτου ἀνομοίου. ὁ δὲ τέταρτος ἀνόμοιος ἐξ ἑνὸς καὶ τετάρτου ἐστὶ τετάρτου ὁμοίου, καθὰ καὶ ὁ πέμπτος ὅμοιος ἐξ ἑνὸς καὶ τετάρτου ἔσται τετάρτου ἀνομοίου, ὁ δὲ πέμπτος ἀνόμοιος ἐξ ἑνὸς καὶ πέμπτου ἔσται τοῦ συζύγου, καὶ ὁ ἕκτος ἐξ ἑνὸς καὶ ἕκτου, καὶ ἀεὶ ἀκολούθως τὸ αὐτὸ συμβήσεται, τοῦ μορίου ὀνομαζομένου κατὰ τὴν ποσότητα τῆς χώρας ἑκάστου τῶν ἀνομοίων πρὸς τὸν ὁμοιοταγῆ ὅμοιον συγκρινομένου, οὗ καὶ τὸ μόριον ἔσται πρώτως, δευτέρως δὲ καὶ τοῦ ἀνομοίου πρὸς τὸν ἑξῆς ὅμοιον συγκρινομένου. καὶ ἄλλα πολλὰ εὕροι τις ἂν γλαφυρὰ καθ’ ἑαυτὸν ἐνατενίζων τῷ διαγράμματι καὶ ἀεὶ διεξετάζων τὴν ἐναρμόνιονσχέσιν τῶν ἐναντίων τῶν δύο δυνάμεων ταυτότητος καὶ ἑτερότητος ἐμφαινομένων τῇ τῶν τετραγώνων καὶ ἑτερομηκῶν ἐκθέσει. ἱκανὸν δὲ ἐγκώμιον ἔσται τῆς δεκάδος ἡ κατὰ τὸν εἰρημένον δίαυλον τῶν τετραγώνων γένεσις, ὅταν ἐν μὲν τῷ πρώτῳ βαθμῷ τῶν ἀριθμῶν, ὧν ὁρίζει αὐτὴ ἡ δεκάς, ἀπὸ μονάδος ἡ πρόοδος μέχρις αὐτῆς γένηται καὶ πάλιν ἀπ’ αὐτῆς ὡς ἀπὸ ἀριθμοῦ τινος διορίζοντος μονάδας ἀπὸ δεκάδων ἡ ἐπάνοδος ὡς ἐπὶ μονάδα· ἔσται γὰρ ἐκ τῆς 〈δεκάδος〉 ὡς ἀπὸ συνθέσεως τετράγωνος ὁ ρʹ ἀριθμός, καὶ αὐτὸς ὢν ἄρθρον διοριστικὸν δεκάδων καὶ ἑκατοντάδων, καὶ μονὰς τριωδουμένη καλούμενος πρὸς τῶν Πυθαγορείων, ὥσπερ καὶ ἡ δεκὰς δευτερωδουμένη μονὰς καὶ χιλιὰς τετρωδουμένη μονάς. πλευρὰ δὲ
ἔσται τοῦ ρʹ τετραγώνου αὐτὴ ἡ δεκάς, καὶ δύναμις αὐτῆς τὸ συγκεφαλαίωμα τῆς ἐπὶ ταύτῃ ἐπισωρείας τῶν ἐντὸς αὐτῆς ἀριθμῶν δὶς λαμβανομένων· οὕτω γὰρ καὶ διαύλῳ ἀπεικάσθαι εἴρηται ὅ τε κατὰ πρόοδον ὡς ἀπὸ ὕσπληγος τῆς ἀρχῆς καὶ ὁ κατ’ ἐπάνοδον ὡς ἀπὸ καμπτῆρος τοῦ τέλους τρόποςτῆς ἐπισυνθέσεως τῶν ἀριθμῶν. εἰ δὲ τῇ δεκάδι μηκέτι μὲν καμπτῆρι, ὕσπληγι δὲ χρησαίμεθα καὶ ἀρχῇ τῆς προόδου μέχρις ἑκατοντάδος, ἀφ’ ἧς πάλιν ἡ ἐπάνοδος ἐπὶ τὴν δεκάδα ἔσται, ἐκ τῆς ἐπισυνθέσεως γενήσεται ὁ πρῶτος ἀριθμὸς ἡ τετρωδουμένη μονάς, ἄρθρον καὶ αὐτὸς ὢν διοριστικὸν ἑκατοντάδων τε καὶ μυρίαδων. οὐκέτι δὲ καὶ πλευρὰ ἔσται τετραγωνικὴ τοῦ χίλια ἀριθμοῦ ἡ ἑκατοντάς· οὐδὲ γὰρ τετράγωνός ἐστιν ὁ χίλια, ἀλλὰ κύβος, ἀπὸ πλευρᾶς δεκάδος. ἵνα δ’ ἐπιπεδωθῇ προμηκικῶς πλευρὰ αὐτοῦ, ἔσται ἡ ἑκατοντὰς σὺν τῇ καὶ δεκάδι, ὡς δῆλον εἶναι ὅτι δεήσεται ἡ ἑκατοντὰς τῆς δεκάδος εἰς τὸ πλευρικὴν γενέσθαι. πάλιν εἰ τῇ ἑκατοντάδι ἀρχῇ χρησαίμεθα καὶ ἀντὶ ὕσπληγος, προσέλθοιμεν δὲ ἐπισυντιθέντες τὰς μετ’ αὐτὴν ἑκατοντάδας μέχρι χιλιάδος, καὶ ἀπὸ ταύτης ὡς ἀπὸ
καμπτῆρος ὁμοίως ἐπὶ τὴν ἑκατοντάδα ἐπανέλθοιμεν ὡς ἐπὶ νύσσαν, ἔσται ἀριθμὸς ὁ τῶν μυρίων ἡ πεντωδουμένη μονάς, πλευρὰν ἔχων ὡς μὲν τετράγωνος τὴν ἑκατοντάδα ὡς δὲ προμήκης τὴν χιλιάδα μετὰ τῆς αὐτῆς δεκάδος. οὕτως ἡ δεκὰς εἰς μὲν τὸ αὐτὴ τὴν πλευρικὴν γενέσθαι κατὰ τὸν διαυλικὸν τρόπον οὐδενὸς τῶν ἄλλων γενέσεων ἄρθρων τοῦ ἀριθμοῦ δεήσεται, ἑκατοντάδος λέγω καὶ χιλιάδος· αὗται δὲ ἵνα αὐταῖς
τὸ τοιοῦτο συμβῇ πάντως δεήσονται τῆς δεκάδος, ὅθεν αὐτῇ ἐγκώμιον τοῦτο προσενείμαμεν. λοιπὸν δὲ εἰπεῖν καὶ ὅσα ἄλλα συμπτώματα δύναται ἐπινοεῖσθαι ὑπὸ τῶν κατὰ τὸ φιλοθέωρον συντεινόντων ἑαυτοὺς ἐπὶ τὴν ἀνεύρεσιν τῶν συμβεβηκότων τοῖς ἀριθμοῖς, οἷον ὅτι πᾶς τετράγωνος ἤτοι αὐτόθεν τρίτον ἔχει, ἢ εἰ μὴ ἔχει πάντως γε τέταρτον, ἢ εἰ μηδὲ τοῦτο μονάδος ἀφαιρεθείσης ἐκ μὲν τρίτον ἔχοντος τέταρτον ἔχοντα ἀποτελέσεις, ἐκ δὲ τέταρτον ἔχοντος τρίτον ἔχοντα, εἰ δὲ μηδ’ ἕτερον, ἀμφότερα· εἰ δὲ ἔχοι ἀμφότερα, ἔστιν ὅτε ἡ ἀφαίρεσις τῆς μονάδος ἀμφοτέρωνστερίσκει. καὶ ἅπας ἀριθμὸς τὸν δυάδι διαφέροντα ἐφ’ ἑκάτερα ὁποτερονοῦν ὁμογενῆ πολλαπλασιάσας καὶ προσλαβὼν μονάδα τετράγωνον ποιεῖ. περισσοὶ μὲν ἀρτίους ποιοῦσιν, ἄρτιοι δὲ περισσούς. καὶ ἅπας ἀριθμὸς τὸν ἑαυτοῦ πολλαπλάσιον μηκύνας τοσουτοπλάσιον τοῦ ἐξ αὐτοῦ τετραγώνου ποιήσει, κἂν ἐπιμόριον κἂν ἐπιμερῆ κἂν μικτὸν λαμβάνῃ. ὁμοίως καὶ πᾶς τρίγωνος ὀκτάκι γενόμενος καὶ προσλαβὼν μονάδα τετράγωνον ποιεῖ, καὶ ἐκ δύο τετραγώνων ἐπ’ ἀλλήλους γενομένων ὁ γενόμενος τετράγωνος, καὶ ἐκ τῶν ἀπὸ μονάδος ἀνάλογον ἐὰν ὁ τῇ μονάδι ἑξῆς τετράγωνος ᾖ καὶ οἱ λοιποὶ τετράγωνοι ἔσονται, καὶ τριῶν τινων ἀνάλογον ὄντων ἐὰν ὁ πρῶτος τετράγωνος ᾖ καὶ ὁ τρίτος ἔσται τετράγωνος, καὶ μετροῦντος τετράγωνον τετραγώνου καὶ πλευρὰ πλευρὰν μετρήσει, καὶ πᾶς ἐκ δύο πλευρῶν συνεχῶν τετραγώνων μηκυνθεὶς ἀνάλογον αὐτῶν μέσος
ἔσται, καὶ πολλὰ ἄλλα τοιαῦτα δι’ ἑαυτῶν τε προθυμηθέντες εὑρήσομεν καὶ ὑπ’ ἄλλων ἐκπεπονημένα ἱστορῆσαι δυνησόμεθα. τὰ νῦν δὲ μετιτέον ἐπὶ τὸν πλευρικόν τε καὶ διαμετρικὸν λόγον ἱκανωτάτηςἐξετάσεως ἐν γεωμετρίᾳ τετυχηκότα, διότι δοκεῖ κατ’ αὐτόν πως ῥυθμίζεσθαι καὶ εἰδοποιεῖσθαι τὰ σχήματα. ὡς οὖν καὶ ἐπ’ αὐτῶν τῶν σχημάτων ἐποιοῦμεν μετάγοντες αὐτῶν τοὺς λόγους καθ’ ὁμοιότητα καὶ ἐπὶ τοὺς ἀριθμούς· ῥητὰ γὰρ κἀκεῖνα γίνεται τοῖς ἀριθμοῖς· οὕτως χρὴ καὶ περὶ πλευρᾶς καὶ διαμέτρου διαλεγομένους καὶ ἀκολουθοῦντας τῇ τοῦ ἀριθμοῦ φύσει ἀποσῴζειν ὡς ἐνδέχεται τὴν ὁμοιότητα. οὐ γὰρ ὥσπερ ἐν πηλίκοις πλευρᾶς λογωθείσης ἡ διάμετρος ἄλογος ἢ ἀνάπαλιν διαμέτρου λογωθείσης πλευρὰ ἄλογος, οὕτω καὶ ἐν ποσοῖς, ἀλλ’ ἔσται ῥητὴ πλευρὰ διαμέτρῳ, ἵνα πάντῃ ῥητὸς ᾖ ὁ ἀριθμὸς καὶ τοῦτ’ ἐξαίρετον ἔχῃ, ὡς ἂν ἀρχικώτατος ὢν καὶ τοῖς ἄλλοις ἅπασιν αἴτιος γενόμενος ῥητότητος. κοινὸν μὲν γὰρ ἀριθμοῖς καὶ μεγέθεσιν ὡς ἂν ἀσωμάτοις οὖσι τὸ ἀκίνητα εἶναι, ἴδιον δὲ ἀριθμοῦ τὸ μηδὲ ἀσυμμετρίαν ἔχειν, τῶν μεγεθῶν ἐχόντων. δεῖ δὴ πάλιν ἀπὸ μονάδος τὴν γένεσιν τοῦ πλευρικοῦ καὶ διαμετρικοῦ λόγου μεθοδεῦσαι, ἐπειδὴ πάντων τῶν ἐν ἀριθμοῖς λόγων ἔφαμεν αὐτὴν
ἀφηγεῖσθαι. ὀνομάσαι γὰρ δεῖ δύο μονάδας τὴν μὲν πλευρὰν τὴν δὲ διάμετρον, καὶ χρήσασθαι καθολικαῖς τισι προσθέσεσι καὶ ἀεὶ ταῖς αὐταῖς, τῇ μὲν
πλευρᾷ διάμετρον προστιθέντας τῇ δὲ διαμέτρῳ δύο πλευράς, ἐπειδὴ ὅσον ἡ πλευρὰ 〈δὶς〉 δύναται ἐν γραμμικοῖς, ἡ διάμετρος ἅπαξ. γίνεται οὖν ἡ διάμετρος μονάδι μείζων τῆς πλευρᾶς. ἡ δ’ ἐξ ἀρχῆς ἄνευ τῆς προσθήκης τὸ ἀπὸ τῆς μοναδικῆς διαμέτρου δυνάμει τετράγωνον μονάδι ἔλαττον ἢ διπλάσιον τοῦ ἀπὸ τῆς μοναδικῆς πλευρᾶς δυνάμει τετραγώνου· ἐν ἰσότητι γὰρ οὖσαι αἱ μονάδες τὴν ἑτέραν τῆς λοιπῆς μονάδι ἐλάττονα ποιοῦσιν ἢ διπλασίαν. τῆς δὲ προσθήκης γενομένης ὡς εἴρηται, ἔσται τὸ ἀπὸ τῆς διαμέτρου τετράγωνον τοῦ ἀπὸ τῆς πλευρᾶς μονάδι μεῖζον ἢ διπλάσιον· θʹ γὰρ καὶ δʹ. πάλιν ἐὰν προσθῶμεν τῇ μὲν πλευρᾷ διάμετρον τῇ δὲ διαμέτρῳ δύο πλευράς, ἔσται ζʹ καὶ εʹ, καὶ γίνεται τὸ ἀπὸ τῆς διαμέτρου μονάδι ἔλαττον ἢ διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς· ἔστι γὰρ μθʹ πρὸς κεʹ. πάλιν εἰ ἡ αὐτὴ προσθήκη γίγνοιτο, ἔσται τὸ ἀπὸ τῆς διαμέτρουμονάδι μεῖζον ἢ διπλάσιον τοῦ ἀπὸ τῆς πλευρᾶς· ἔστι γὰρ σπθʹ πρὸς ρμδʹ. καὶ δὴ ὁμοίως κατὰ τὸν αὐτὸν λόγον τῆς προσθήκης γιγνομένης ποτὲ μὲν μονάδι μεῖζον ἢ διπλάσιον ἔσται τὸ ἀπό τοῦ ἀπό, ποτὲ δὲ μονάδι ἔλαττον, καὶ οὕτως ῥηταὶ γίνονται πρὸς ἀλλήλας πλευραί τε καὶ διάμετροι. ἀλλ’ οὖν ἐπειδὴ ἐναλλὰξ ποτὲ μὲν δυνάμει μείζους εἰσὶν ἢ διάμετροι διπλάσιαι πλευρῶν, ποτὲ δὲ μονάδι ἐλάττους ἢ διπλάσιαι, ἔσονται κατ’ ἐπίνοιαν πᾶσαι ὁμοῦ αἱ διάμετροι πασῶν ὁμοῦ τῶν πλευρῶν δυνάμει διπλάσιαι· ἀπίσωσις γὰρ γίνεται τοῦ μείζονος τῷ ἐλάττονι ἀναμιγέντος, διότι
στάσις τοῦ ὑπερέχοντος πρὸς ὑπερεχόμενον ἡ ἰσότης ἐστί, διόπερ κἀνταῦθα τὸ μονάδι μεῖζον ἢ διπλάσιον προστεθὲν τῷ μονάδι ἐλάττονι ἢ διπλασίῳ ἀπισώσει τὸ πᾶν, ὥστε ἀεὶ τὴν διάμετρον δυνάμει διπλασίαν εἶναι τῆς πλευρᾶς, καθάπερ καὶ ἐπὶ τῶν γραμμικῶν δείκνυται. καὶ τοσαῦτα μὲν ἡμῖν περὶ τῶν τοῖς ἐπιπέδοις ἀριθμοῖς συμβεβηκότων εἰρήσθω.Στερεὸς δέ ἐστιν ἀριθμὸς ὁ τρίτον διάστημα παρὰ τὰ ἐν ἐπιπέδοις δύο προσειληφώς, δηλονότι τετάρτου ὅρου προσγενομένου· ἐν γὰρ τέσσαρσιν ὅροις τὸ τριχῇ διαστατόν, ἵνα καὶ λαβόντος καὶ ληφθέντος καὶ τρίτου καθ’ ὃν λαμβάνεται τέταρτος αὐτὸς ᾖ. τῶν δὴ στερεῶν ἀριθμῶν εἰσιν οἱ μὲν ἰσογώνιοί τε καὶ ἰσοεπίπεδοι καὶ ἰσοδιάστατοι, καθ’ ὁμοιότητα καὶ αὐτοὶ λαμβανόμενοι τῶν ἐν γραμμικοῖς· καλοῦνται δ’ οὗτοι κύβοι καὶ τετράεδροι πυραμίδες, ὧν πάντῃ μεταλαμβάνεται ἡ βάσις· οἱ δὲ παραλληλεπίπεδοι καὶ ἰσογώνιοι, ἀνισοδιάστατοι δέ, ὧν εἴδη πλινθίδες τε καὶ δοκίδες, οἱ δὲ ἀνισεπίπεδοι καὶ ἀνισογώνιοι καὶ ἀνισοδιάστατοι, καλούμενοι σφηκίσκοι ἢ ὥς τινες βωμίσκοι ἢ σφηνίσκοι, ἑκάστου ὀνόματος καθ’ ὁμοιότητα τεθέντος, οἱ δὲ μικτοὶ πάσας μὲν γωνίας παρὰ μίαν ἴσας ἔχοντες πάντα δὲ ἐπίπεδα
πάλιν παρ’ ἓν ἴσα πυραμίδες, αἱ ἀπὸ 〈τῆς〉 τετραγώνῳ βάσει χρωμένης ἀρχόμεναι μέχρις ἀπείρου, ὧν οὐκέτι μετάληψις ἔσται κατὰ τὴν βάσιν, ὡς ἐπὶ τῆς τριγώνῳ βάσει χρωμένης συνέβαινεν. ἀναλογεῖ δὲ ἐν ἐπιπέδοις τὸ μὲν ἐν τετραπλεύροις κυρίως
λεγόμενον τετράγωνον κύβῳ, τὸ δὲ παραλληλόγραμμον πλινθίδι ἢ δοκίδι, ἥν τινες στηλίδα καλοῦσι, τὸ δὲ τραπέζιον σφηνίσκῳ. δεῖγμα δὲ τοῦ μὲν πάντῃ ἰσάκις ἴσως διισταμένου κύβου ὅ τε ηʹ καὶ ὁ κζʹ καὶ ὁ ξδʹ καὶ ρκεʹ καὶ σιϛʹ, ἔκ τε τοῦ δὶς δύο δὶς καὶ ἐκ τοῦ τρὶς τρία τρὶς καὶ τετράκι τέσσαρα τετράκις καὶ πεντάκι πέντε πεντάκις καὶ ἑξάκις ἓξ ἑξάκις γινόμενοι. ὧν πάντων κύβων καλουμένων ὅσοι ἂν ἐπὶ τὸ αὐτὸ πάσῃ προβάσει καταλήγωσιν ἔτι μᾶλλον καὶ σφαιρικοὶ λεγέσθωσαν, ἑνὶ πλείονι διαστήματι αὐξηθέντες ἀπὸ κυκλικῶν καὶ αὐτῶν ὁμοκαταλήκτων ὄντων, ὡς ὁ ρκεʹ ἀπὸ πλευρᾶς πεντάδος ὢν καὶ ὁ σιϛʹ ἀπὸ πλευρᾶς ἑξάδος. κἂν ἐπὶ πλέον δὲ αὐξάνωνται οὗτοι, οὐδὲν ἧττον ἑκάτεροι ἐπὶ τὴν ἑαυτῶν πλευρὰν καταλήξουσιν.ἡ δὲ μονὰς ὥσπερ τὰ ἐν ἐπιπέδοις πάντα περιεῖχε χωρὶς τοῦ ἑτερομηκικοῦ λόγου, οὕτως καὶ τὰ ἐν στερεοῖς· πυραμιδική τε γὰρ ἔσται ἐπὶ κορυφῆς θεωρουμένη παντὸς εἴδους πυραμίδος, δυνάμει στερεοῦ σημείου λόγον ἔχουσα καθ’ ἕκαστον· παντὸς γὰρ στερεοῦ ἀριθμοῦ αἱ γωνίαι μονάδες σημειώδεις ἔσονται τῶν 〈ἐν〉 ἐπιπέδοις δυνάμει μείζονες, διότι στερεαί· ἁπλοῦν μὲν γὰρ τὸ σημεῖόν ἐστι πέρας ὂν τοῦ ἐφ’ ἓν διαστατοῦ μεγέθους, διπλοῦν δὲ δυνάμει ἐν ἐπιπέδοις διὰ τὴν σύννευσιν τῶν δύο γραμμῶν ἐφ’ ἓν σημεῖον, ἐν δὲ στερεοῖς δυνάμει ἀόριστον ἀρχόμενον ἀπὸ τριπλοῦ, διότι πρώτη σύννευσις τριῶν πλευρῶν στερεὰν γωνίαν τὴν πυραμιδικὴν ἀποτελεῖ. καὶ μὴν σφαιρικὴ ἔσται ἡ
μονάς, ὥσπερ ἦν καὶ κυκλική, τρὶς κατὰ τὸ ἑαυτῆς μέγεθος διαστᾶσα. τῶν δὲ πάντῃ ἀνισοδιαστάτων ἀριθμῶν ὑπόδειγμα κοινὸν ἔστω ὁ ξʹ· καὶ γὰρ ἐκ τοῦ τρὶς τέσσαρα πεντάκις ἐστὶ καὶ ἀνάπαλιν ἐκ τοῦ πεντάκι τέσσαρα τρὶς καὶ ἐκ τοῦ τετράκι πέντε τρὶς καὶ ἐκ τοῦ τετράκι τρία πεντάκις.παραλληλεπιπέδων δέ, πλινθίδων μὲν ἰσάκις ἴσων ἐλαττονάκις οὐσῶν ὁ ιηʹ ἐκ τοῦ τρὶς τρία δὶς ὢν καὶ ὁ μηʹ ἐκ τοῦ τετράκι τέσσαρες τρίς, δοκίδων δέ, ἅς τινες στηλίδας, ἰσάκις ἴσας μειζονάκις οὔσας ὁ λϛʹ ἐκ τοῦ τρὶς τρία τετράκις ὢν καὶ ὁ μεʹ ἐκ τοῦ τρὶς τρία πεντάκι· ἔνεστι γὰρ καὶ ἐπὶ τούτων καὶ ἐπὶ τῶν πλινθιδίων μὴ μόνον παρακειμένας, τουτέστι παρὰ μονάδας, μειώσεις τε καὶ αὐξήσεις ποιεῖσθαι, ἀλλὰ καὶ διεστώσας, ἵνα μᾶλλον ἡ ὁμοιότης σχηματίσεως ἐμφαίνωνται. πυραμίδων δὲ λόγος ῥᾴων γένοιτο καὶ εὐεφόδευτος εἰ τὴν τῶν πολυγώνων ἔκθεσιν ἀπὸ τριγώνων κατὰ παραλλήλους στίχους ὡς μικρῷ πρόσθεν διαγράψαιμεν, εἶτ’ ἐφαρμόζοιμεν σωρηδὸν τοὺς ὁμογενεῖς ἀλλήλοις εὐτάκτως μέχρις ὁποσουοῦν, ἵνα κορυφὴ μὲν πάντως μονὰς ᾖ καθ’ ἑκάστην ἐπισωρείαν, ὁμοιοσχήμων δὲ δυνάμει πάσῃ βάσις γίνηται. διὰ μὲν οὖν τῶν [τριῶν] γʹ ϛʹ ιʹ ιεʹ καʹ καὶ ἐφεξῆς τριγώνων ἔσονται πυραμίδες αἱ τρίγωνον βάσιν ἔχουσαι αὗται· δʹ ιʹ κʹ λεʹ νϛʹ, διὰ δὲ τῶν τετραγώνων τῶν δʹ θʹ ιςʹ κεʹ λϛʹ αἱ τετραγώνῳ
βάσει χρώμεναι εʹ ιδʹ λʹ νεʹ ҁαʹ, διὰ δὲ τῶν πενταγώνων τῶν εʹ ιβʹ κβʹ λεʹ ναʹ αἱ βάσει πενταγώνῳ χρώμεναι αἱ ϛʹ ιηʹ μʹ οεʹ ρκϛʹ. τὸ δ’ αὐτὸ καὶ
ἐπὶ τῶν ἑξῆς πολυγώνων ποιήσομεν· ὡς γὰρ γνώμονας εἴχομεν τῶν πολυγώνων τοὺς ἐφεξῆς ἀπὸ μονάδος ἀριθμούς, οὕτως καὶ πυραμίδων 〈τοὺς〉 ἑφεξῆς πολυγώνους καθ’ ἕκαστον. ἀνάλογος δ’ ἔσται καὶ ἡ ποσότης τῶν ἐπιπέδων πρὸς τὰς πλευρὰς τὰς τῶν γνωμόνων, καὶ ὡς ἐκείνων περισσοταγεῖς μὲν δύο παρὰ δύο ἦσαν ἄρτιοι καὶ περισσοί, ἀρτιοταγεῖς δὲ εἷς παρ’ ἕνα, οὕτως κἀπὶ τούτων περισσοταγεῖς μία παρὰ τρεῖς ἀρτίας περισσὴ καὶ εἰς πεντάδα γε λήγουσα πλὴν τῇ δυνάμει· καὶ γὰρ ἐν πέμπταις ἀπ’ ἀλλήλων εἰσὶ χώραις· ἀρτιοταγεῖς δὲ δύο παρὰ δύο, συμπιπτουσῶν ἀναγκαίως ταῖς ἐν περισσοταγέσι περισσαῖς τῶν καὶ ἐντεῦθεν ὁμοιοκαταλήκτων. σύστημα δέ ἐστιν ἑκάστη τῆς ὑπὲρ αὐτὴν ἑτεροειδοῦς καὶ τῆς τῶν εἰς ἐπίπεδον ἕνα βαθμὸν ὑποβεβηκυίας, ὡς καὶ ἐπὶ τῶν πολυγώνων συνέβαινεν· οἷον 〈ἡ〉 εʹ τῆς δʹ καὶ αʹ, ἡ ϛʹ τῆς εʹ καὶ αʹ, ἡ ζʹ τῆς ϛʹ καὶ αʹ, καὶπάλιν ἡ ιδʹ τῆς ιʹ καὶ δʹ, ἡ δὲ ιηʹ τῆς ιδʹ καὶ δʹ, ἡ δὲ κβʹ τῆς ιηʹ καὶ δʹ, καὶ ἐφεξῆς ἀκολούθως κατὰ τὸ βάθος καὶ τὸ πλάτος ἑκάστης τῶν πολυγώνων διαγραφῆς ἐφαρμόζοντες ἀνάλογα εὑρήσομεν, ὅτι ἑκάστη πυραμὶς σύστημά ἐστι τῆς ὑπὲρ αὐτὴν καὶ τῆς ὑπ’ ἐκείνην· πρῶτον γὰρ οὐδὲν εἶτα παράπαξ εἰς ἐπίπεδον εἶτα παρὰ δὶς εἶτα παρὰ τρὶς καὶ ἐφεξῆς. καὶ τὰ ἄλλα κατὰ ταὐτὰ ἀναλόγως συμπτώματα καὶ περὶ ταύτας εὑρήσομεν. καὶ ἐν μὲν πλάτει διοίσουσιν ἀλλήλων ἰδίαις βάσεσιν, ἐν δὲ βάθει μετὰ τὸν ἰσότητι στίχον εὐθυγραμμικῶς ἐκκείμενον τετρὰς ἔσται ἡ διαφορὰ στοιχεῖον οὖσα πυραμίδων ἐνεργείᾳ, εἶτα δεκὰς ἡ δευτέρα πυραμίς, εἶτα εἰκοσὰς
ἡ τρίτη πυραμὶς καὶ ἑξῆς ἀκολούθως. ἐὰν δέ τις πυραμὶς μὴ ἐπὶ μονάδα κορυφῶται, ἀλλ’ ἐπὶ τὸν παρ’ αὐτῇ γνώμονα, κόλουρος καλεῖται· ἐὰν δὲ μηδὲ ἐπ’ ἐκεῖνον, ἀλλ’ ἐπὶ τὸν ἑξῆς, δικόλουρος, καὶ ὁμοίως τρικόλουρος καὶ τετρακόλουρος καὶ ἀεὶ ἀκολούθως ὀνομασθήσεται κατὰ τὴν ποσότητα τῶν ἀφαιρουμένωνγνωμόνων. ἰδιώματα δὲ καὶ κύβων πολλὰ εὑρήσομεν ὥσπερ καὶ τῶν τετραγώνων· καὶ γὰρ ἑκάστου ἀριθμοῦ τῶν ἀπὸ μονάδος ἑαυτὸν πολλαπλασιάσαντος καὶ τὸν ἐξ αὐτοῦ γίνονται εὔτακτοι κύβοι. καὶ εἰ τάξει οἱ ἀπὸ τετράδος τετράγωνοι τάξει τοὺς ἀπὸ δυάδος ἐφεξῆς ἀριθμοὺς ἑκάστους ἕκαστον μηκύνῃ ἢ ὑπὸ ἑκάστου μηκύνοιτο, ὁμοίως γενήσονται εὔτακτοι κύβοι. ἔτι οἱ περισσοὶ ἐπειδὴ ἔτι ὁμοποιοί εἰσι καὶ τῆς αὐτοῦ φύσεως, ὡς ἐδείχθη, εἰ συντιθοῖντο κατ’ ἐκλογὰς ἀεὶ προσθέσει ἑνός, φύσονται κύβοι· οἷον αʹ πρῶτον ὁ δυνάμει κύβος ἀσύνθετος, εἶτα δύο περισσοὶ γʹ εʹ ὁ ηʹ κύβος δεύτερος, εἶτα τρεῖς περισσοὶ ζʹ θʹ ιαʹ 〈ὁ κζʹ〉 τρίτος κύβος, εἶτα τέσσαρες ιγʹ ιεʹ ιζʹ ιθʹ ὁ ξδʹ τέταρτος κύβος, καὶ ἐπὶ τῶν ἐφεξῆς ὁμοίως. πάλιν ἐν τῇ τῶν ἀναλόγων ἐκθέσει οἱ μὲν τρίτοι τετράγωνοί εἰσιν, οἱ δὲ τέταρτοι κύβοι, οἱ δὲ ζοι κύβοι ἅμα καὶ τετράγωνοι. πᾶς δὲ κύβος τῇ ἑαυτοῦ πλευρᾷ αὐξηθεὶς τετράγωνον ποιεῖ, ὃς ἔσται τοσουτοπλάσιος τοῦ κύβου ὁσαπλάσιος ἔσται καὶ ὁ ἀπὸ τῆς κυβικῆς πλευρᾶς τετράγωνος
αὐτῆς τῆς πλευρᾶς, ὁ δὲ τετράγωνος
πλευρὰ καὶ αὐτὸς ἔσται τετραγωνικὴ τοῦ γενομένου ἔκ τε τοῦ κύβου καὶ τῆς αὐτοῦ πλευρᾶς. πάλιν ὡς ἐκ δύο τετραγώνων μηκυνάντων ἀλλήλους τετράγωνος ἐγένετο, οὕτως ἐκ δύο κύβων κύβος, ἐκ δὲ κύβου ἑαυτὸν λαβόντος κύβος ἅμα καὶ τετράγωνος. καὶ ἐν τοῖς ἀνάλογον ἐὰν ὁ μὲν μετὰ μονάδα κύβος ᾖ, καὶ οἱ λοιποὶ κύβοι ἔσονται· καὶ τεσσάρων ἀνάλογον ὄντων, ἐὰν ὁ πρῶτος κύβος ᾖ, καὶ ὁ τέταρτος ἔσται κύβος, ἢ καὶ μετροῦντος κύβου κύβον, καὶ πλευρὰ πλευρὰν μετρήσει. καὶ σχεδὸν τὰ συμβεβηκότα πάντα τετραγώνοις ἀναλόγως ἐνοραθήσεται καὶ τοῖς κύβοις. ἐπιτρέψαντες οὖν τοῖς δι’ αὑτῶν φιλοκαλήσουσι τὴν τῶν τοιούτων συμπτωμάτων ἀνεύρεσιν, ἐπὶ τὸν περὶ ἀναλογιῶν μεταβησόμεθα τόπον.Ἡ τοίνυν ἀναλογία λόγων ἐστὶ πλειόνων ὁμοιότης καὶ ταυτότης. τί δέ ποτ’ ἐστὶ λόγος ὁ κατ’ ἀναλογίαν, ἐπεὶ πολλαχῶς ὁ λόγος, ἐν τοῖς πρόσθεν διεσαφήσαμεν ὅτι δυεῖν ὅρων ὁμογενῶν ἡ πρὸς ἀλλήλους ἐστὶ σχέσις. ὁμογενῶν δὲ πρόσκειται, διότι τὰ ὑπὸ ταὐτὸ γένος συγκρίνειν προσῆκεν, οἷον μνᾶν πρὸς τάλαντον, ὧν
κοινὸν γένος τὸ βάρος, καὶ γραμμὴν πρὸς ἐπιφάνειαν ἢ στερεόν· κοινὸν γὰρ αὐτῶν τὸ μέγεθος. ἔστι δέ τινα καὶ κατὰ δύναμιν καὶ κατὰ ὄγκον καὶ ἄλλα τινὰ γένη συγκρινόμενα. τὰ δὲ ἀνομογενῆ πῶς ἔχει πρὸς ἄλληλα οὐ δυνατὸν εἰδέναι, οἷον πῆχυς πρὸς κοτύλην, πρὸς χοίνικα τὸ λευκόν. ἓν δὲ γένος ἐστὶ καὶ τὸ ποσὸν καὶ ποσοῦ ὁ ἀριθμός, ὥστε γενήσεται καὶ τῶν ἐν ἀριθμῷ λόγων ἡ σύγκρισις, ἔσται αὐτῶν λόγος τις
καὶ σχέσις ποιά. κἂν μὲν ἐν ἰσότητι ὧσιν οἱ ὅροι, ἴσου πρὸς ἴσον ἐστὶ λόγος· ἀδιάφορος γὰρ ἡ ἰσότης· ἐν δὲ ἀνισότητι κατὰ διαφοράν. καὶ διάστημα μὲν οὐ ταὐτὸ ἔσται καὶ ὁ λόγος διττὸς καὶ ὅτι καὶ τὸ ἄνισον δύο καὶ οὐχ ἓν καὶ διάστημα μὲν ταὐτὸν ἔσται, λόγος δὲ ἕτερος· τοῦ γὰρ δύο πρὸς ἓν καὶ τοῦ ἑνὸς πρὸς δύο διάστημα μὲν ταὐτόν, λόγος δὲ διπλάσιός τε καὶ ἥμισυς, ὥστε ἕτερον λόγον εἶναι διαστήματος· καὶ γὰρ ἐπὶ πλείοσιν ὅροις, λόγου πολλάκις τοῦ αὐτοῦ ὄντος, διάστημα ἕτερόν ἐστιν, ὡς ἐπὶ τῶν δʹ ϛʹ θʹ. ὅτιδὲ ὁ τῆς ἀνισότητος λόγος ἐν δέκα γένεσίν ἐστι, καὶ πέντε μὲν προλόγοις κατὰ τὸ μεῖζον, ὑπολόγοις δὲ τοῖς ἴσοις κατὰ τὸ ἔλαττον, καὶ ὅτι ἀπὸ ἰσότητος πάντες τὴν γένεσιν ἔχουσιν, ἐμάθομεν ἔμπροσθεν ἐν τῷ περὶ τῶν σχέσεων τόπῳ. ἔστι δέ τις καὶ ἀριθμοῦ πρὸς ἀριθμὸν λόγος αὐτῷ λεγόμενος, διὰ τὸ μηδενὶ ὑποπίπτειν τῶν δέκα γενῶν, ὡς ἐπιδειχθήσεται ἐν τοῖς ἁρμονικοῖς, ὁ τοῦ λείμματος λόγος ἐν ὅροις ἐν τοῖς σνϛʹ πρὸς σμγʹ. τῶν οὖν ἐν ἀριθμοῖς λόγων τοιούτων τινῶν ὄντων ἡ ἀναλογία σύλληψις ἔσται πλειόνων ἐν ὁμοιότητι λόγων ἐν ἐλαχίστοις τρισὶν ὅροις· λέγεται γὰρ λόγος συνῆφθαι, ὅταν κοινὸς ὅρος ᾖ μέσος πρὸς ἑκάτερον τῶν ἄκρων λόγον ἔχων· ὁ γὰρ κοινὸς ὅρος τοῦ λόγου συνάπτει. διεζεῦχθαι δὲ λέγεται λόγος λόγου, ὅταν μὴ ἔχωσι κοινὸν ὅρον. τοῦτο δὲ ἐν τέτταρσιν ὅροις γίνεται, διὸ καὶ δοκεῖ τὸ ἀνάλογον τῆς ἀναλογίας
διαφέρειν· τὸ μὲν γὰρ ἀνάλογον καὶ ἐν διεζευγμένοις ὅροις γίνεται, ἡ δὲ ἀναλογία κυρίως ἐπὶ τῶν κοινὸν ἐχόντων ὅρον τάττεται.