Opticorum recensio Theonis

Euclid

Euclid. Euclidis Opera Omnia, Volume 7. Menge, Heinrich; Heiberg, J.L, editors. Leipzig: Teubner, 1895.

Τὰ ἴσα μεγέθη ἄνισον διεστηκότα ἄνισα φαίνεται, καὶ μεῖζον αἰεὶ τὸ ἔγγιον τοῦ ὄμματος κείμενον.

[*](1. Γ∠ — 2. τό] add. m. 2 v. 2. φημὶ δή] λέγω v. 7. πρός — 8. ὁρᾶται] om. p. 8. ἐκείνω v, sed corr 10. γενομένου v, V, sed corr. m. rec. 13 διαστημάτων] μεγεθῶν m. rec. V. 16. Post ἴσα add μεγέθη m. rec. V. 22. Post)
160

ἔστω γὰρ ἴσον τὸ Γ∠ τῷ ΚΛ, ὄμμα δὲ ἔστω τὸ Β, ἀφʼ οὗ προσπιπτέτωσαν ὄψεις αἱ Β∠, ΒΛ, ΒΚ, ΒΓ. οὐκοῦν τὸ Γ∠ ὑπὸ μείζονος γωνίας ὁρᾶται ἤπερ τὸ ΚΛ· μεῖζον ἄρα φαίνεται τὸ Γ∠ τοῦ ΚΛ.

Τὰ παράλληλα τῶν διαστημάτων ἐξ ἀποστήματος ὁρώμενα ἀνισοπλατῆ φαίνεται.

ἔστω γὰρ τὸ ΒΓ τῷ ∠ Ζ παράλληλον διάστημα, ὄμμα δὲ ἔστω τὸ Κ. λέγω, ὅτι τὰ ΒΓ, ∠Ζ ἀνισοπλατῆ φαίνεται, καὶ μεῖζον ἀεὶ τὸ ἔγγιον διάστημα τοῦ πορρώτερον.

προσπιπτέτωσαν ἀκτῖνες αἱ ΚΞ, ΚΛ, ΚΠ, ΚΝ, ΚΒ, Κ∠, καὶ ἐπεζεύχθωσαν εὐθεῖαι αἱ ΞΛ, ΠΝ, Β∠. ἐπεὶ οὖν μείζων ἐστὶν ἡ ὑπὸ ΞΚΛ γωνία τῆς ὑπὸ ΠΚΝ γωνίας, μείζων ἄρα φαίνεται καὶ ἡ ΞΛ εὐθεῖα τῆς ΠΝ. διὰ τὰ αὐτὰ δὴ καὶ ἡ ΠΝ εὐθεῖα μείζων φαίνεται τῆς Β∠ εὐθείας. οὐκέτι οὖν ὀφθήσεται παράλληλα τὰ διαστήματα, ἀλλʼ εἰς ἔλαττον καὶ ἀνισοπλατῆ. τὰ ἄρα παράλληλα τῶν διαστημάτων ἐξ ἀποστήματος ὁρώμενα ἀνισοπλατῆ φαίνεται.

οὕτω μέν, εἰ ἐν τῷ αὐτῷ ἐπιπέδῳ τὸ ὄμμα τῷ ὁρωμένῳ κέοιτο, εἰ δὲ μετεωρότερον εἴη τὸ ὄμμα, οὕτως.

ἔστω γὰρ τὸ Κ, καὶ ἤχθω ἀπὸ τοῦ Κ ἐπὶ τὸ ὑποκείμενον ἐπίπεδον κάθετος ἡ ΚΑ, ἀπὸ δὲ τοῦ Α ἐπὶ τὴν Ζ Λ ἡ ΑΜ καὶ ἐκβεβλήσθω ἐπὶ τὸ Ο, καὶ προσπιπτέτωσαν [*](10. ∠Ζ] Ζ corr. in E m. rec. V. 11. Ante ὄμμα add. τὰ δὲ παράλληλα τὰ ΞΛ, ΠΝ, Β∠ V. 12. ἔγγειον V. 14. ΚΞ] Ξ corr. in Ζ m. rec. V; item lin. 15, 16, 17. 16. μεῖζον v. ΞΚΛ] ΞΛ v. γωνία] in ras. v. ὑπό (alt.)])

162
ἀκτῖνες αἱ ΚΒ, ΚΗ, ΚΖ, Κ∠, ΚΝ, ΚΛ, καὶ ἐπεζεύχθωσαν αἱ ΚΜ, ΚΞ, ΚΟ. ἐπεὶ οὖν ἀπὸ μετεωροτέρου τοῦ Κ ἐπὶ τὸ Μ ἐπέζευκται ἡ ΚΜ, κάθετος ἄρα ἐστὶν ἐπὶ τὴν ΜΛ. ὁμοίως δὴ καὶ ἡ Κ Ξ ἐπὶ τὴν ΗΝ, ἡ δὲ ΚΟ ἐπὶ τὴν Β∠. ὀρθογώνια ἄρα ἐστὶ τὰ ΚΜΛ, ΚΞΝ, ΚΟ∠ τρίγωνα. καί ἐστιν ἡ μὲν ΞΝ τῇ ΜΛ ἴση· παραλληλόγραμμον γὰρ τὸ ΜΜ ἑκατέρα δὲ τῶν ΞΚ, ΚΝ μείζων ἐστὶν ἑκατέρας τῶν ΜΚ, ΚΛ. μείζων ἄρα καὶ γωνία ἡ ὑπὸ ΜΚΛ τῆς ὑπὸ ΞΚΝ. μεῖζον ἄρα ὀφθήσεται καὶ τὸ ΜΛ τοῦ ΞΝ ὁμοίως καὶ τὸ ΖΜ τοῦ ΗΞ. ὥστε καὶ ὅλη ἡ Ζ Λ ὅλης τῆς ΗΝ μείζων φαίνεται. διὰ τὰ αὐτὰ δὴ καὶ ἡ ΗΜ τῆς Β∠. ἀνισοπλατῆ ἄρα καὶ οὕτω φαίνεται τὰ μεγέθη.