Elementa

Euclid

Euclid. Euclidis Opera omnia, Volume 1-5. Heiberg, Johan Ludvig, editor. Leipzig: Teubner, 1883-88.

τὸ ἀπὸ μέσης παρὰ ῥητὴν παραβαλλόμενον πλάτος ποιεῖ ῥητὴν καὶ ἀσύμμετρον τῇ, παρʼ ἣν παράκειται, μήκει.

ἔστω μέση μὲν ἡ Α, ῥητὴ δὲ ἡ ΓΒ, καὶ τῷ ἀπὸ τῆς Α ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω χωρίον ὀρθογώνιον τὸ ΒΔ πλάτος ποιοῦν τὴν ΓΔ· λέγω, ὅτι ῥητή ἐστιν ἡ ΓΔ καὶ ἀσύμμετρος τῇ ΓΒ μήκει.

ἐπεὶ γὰρ μέση ἐστὶν ἡ Α, δύναται χωρίον περιεχόμενον ὑπὸ ῥητῶν δυνάμει μόνον συμμέτρων. δυνάσθω τὸ ΗΖ. δύναται δὲ καὶ τὸ ΒΔ· ἴσον ἄρα ἐστὶ τὸ ΒΔ τῷ ΗΖ. ἔστι δὲ αὐτῷ καὶ ἰσογώνιον· τῶν δὲ ἴσων τε καὶ ἰσογωνίων παραλληλογράμμων ἀντιπεπόνθασιν αἱ πλευραὶ αἱ περὶ τὰς ἴσας γωνίας· ἀνάλογον ἄρα ἐστὶν ὡς ἡ ΒΓ πρὸς τὴν ΕΗ, οὕτως ἡ ΕΖ πρὸς τὴν ΓΔ. ἔστιν ἄρα καὶ ὡς τὸ ἀπὸ τῆς ΒΓ πρὸς τὸ ἀπὸ τῆς ΕΗ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ἀπὸ τῆς ΓΔ. σύμμετρον δέ ἐστι τὸ ἀπὸ τῆς ΓΒ τῷ ἀπὸ τῆς ΕΗ· ῥητὴ γάρ ἐστιν ἑκατέρα αὐτῶν· σύμμετρον ἄρα ἐστὶ καὶ τὸ ἀπὸ τῆς ΕΖ τῷ ἀπὸ τῆς ΓΔ. ῥητὸν δέ ἐστι τὸ ἀπὸ τῆς ΕΖ· ῥητὸν ἄρα ἐστὶ καὶ τὸ ἀπὸ τῆς ΓΔ· ῥητὴ ἄρα ἐστὶν ἡ ΓΔ. καὶ ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΕΖ τῇ ΕΗ μήκει· δυνάμει γὰρ μόνον εἰσὶ σύμμετροι· ὡς δὲ ἡ ΕΖ πρὸς τὴν ΕΗ, οὕτως τὸ ἀπὸ τῆς ΕΖ πρὸς τὸ ὑπὸ τῶν ΖΕ, ΕΗ, ἀσύμμετρον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΕΖ τῷ ὑπὸ τῶν ΖΕ, ΕΗ. ἀλλὰ τῷ μὲν ἀπὸ τῆς ΕΖ σύμμετρόν ἐστι τὸ ἀπὸ τῆς ΓΔ· ῥηταὶ γάρ εἰσι δυνάμει· τῷ δὲ ὑπὸ τῶν ΖΕ, ΕΗ σύμμετρόν ἐστι τὸ ὑπὸ τῶν ΑΓ, ΓΒ· ἴσα γάρ ἐστι τῷ ἀπὸ τῆς Α· ἀσύμμετρον ἄρα ἐστὶ καὶ τὸ ἀπὸ τῆς ΓΔ τῷ ὑπὸ τῶν ΔΓ, ΓΒ. ὡς δὲ τὸ ἀπὸ τῆς ΓΔ πρὸς τὸ ὑπὸ τῶν ΔΓ, ΓΒ, οὕτως ἐστὶν ἡ ΔΓ πρὸς τὴν ΓΒ· ἀσύμμετρος ἄρα ἐστὶν ἡ ΔΓ τῇ ΓΒ μήκει. ῥητὴ ἄρα ἐστὶν ἡ ΓΔ καὶ ἀσύμμετρος τῇ ΓΒ μήκει· ὅπερ ἔδει δεῖξαι.

ἡ τῇ μέσῃ σύμμετρος μέση ἐστίν.

ἔστω μέση ἡ Α, καὶ τῇ Α σύμμετρος ἔστω ἡ Β· λέγω, ὅτι καὶ ἡ Β μέση ἐστίν.

Ἐκκείσθω γὰρ ῥητὴ ἡ ΓΔ, καὶ τῷ μὲν ἀπὸ τῆς Α ἴσον παρὰ τὴν ΓΔ παραβεβλήσθω χωρίον ὀρθογώνιον τὸ ΓΕ πλάτος ποιοῦν τὴν ΕΔ· ῥητὴ ἄρα ἐστὶν ἡ ΕΔ καὶ ἀσύμμετρος τῇ ΓΔ μήκει. τῷ δὲ ἀπὸ τῆς Β ἴσον παρὰ τὴν ΓΔ παραβεβλήσθω χωρίον ὀρθογώνιον τὸ ΓΖ πλάτος ποιοῦν τὴν ΔΖ. ἐπεὶ οὖν σύμμετρός ἐστιν ἡ Α τῇ Β, σύμμετρόν ἐστι καὶ τὸ ἀπὸ τῆς Α τῷ ἀπὸ τῆς Β. ἀλλὰ τῷ μὲν ἀπὸ τῆς Α ἴσον ἐστὶ τὸ ΕΓ, τῷ δὲ ἀπὸ τῆς Β ἴσον ἐστὶ τὸ ΓΖ· σύμμετρον ἄρα ἐστὶ τὸ ΕΓ τῷ ΓΖ. καί ἐστιν ὡς τὸ ΕΓ πρὸς τὸ ΓΖ, οὕτως ἡ ΕΔ πρὸς τὴν ΔΖ· σύμμετρος ἄρα ἐστὶν ἡ ΕΔ τῇ ΔΖ μήκει. ῥητὴ δέ ἐστιν ἡ ΕΔ καὶ ἀσύμμετρος τῇ ΔΓ μήκει· ῥητὴ ἄρα ἐστὶ καὶ ἡ ΔΖ καὶ ἀσύμμετρος τῇ ΔΓ μήκει· αἱ ΓΔ, ΔΖ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι. ἡ δὲ τὸ ὑπὸ ῥητῶν δυνάμει μόνον συμμέτρων δυναμένη μέση ἐστίν. ἡ ἄρα τὸ ὑπὸ τῶν ΓΔ, ΔΖ δυναμένη μέση ἐστίν· καὶ δύναται τὸ ὑπὸ τῶν ΓΔ, ΔΖ ἡ Β· μέση ἄρα ἐστὶν ἡ Β.

Πόρισμα

ἐκ δὴ τούτου φανερόν, ὅτι τὸ τῷ μέσῳ χωρίῳ σύμμετρον μέσον ἐστίν. δύνανται γὰρ αὐτὰ εὐθεῖαι, αἵ εἰσι δυνάμει σύμμετροι, ὧν ἡ ἑτέρα μέση· ὥστε καὶ ἡ λοιπὴ μέση ἐστίν.

ὡσαύτως δὲ τοῖς ἐπὶ τῶν ῥητῶν εἰρημένοις καὶ ἐπὶ τῶν μέσων ἐξακολουθεῖ, τὴν τῇ μέσῃ μήκει σύμμετρον λέγεσθαι μέσην καὶ σύμμετρον αὐτῇ μὴ μόνον μήκει, ἀλλὰ καὶ δυνάμει, ἐπειδήπερ καθόλου αἱ μήκει σύμμετροι πάντως καὶ δυνάμει. ἐὰν δὲ τῇ μέσῃ σύμμετρός τις ᾖ δυνάμει, εἰ μὲν καὶ μήκει, λέγονται καὶ οὕτως μέσαι καὶ σύμμετροι μήκει καὶ δυνάμει, εἰ δὲ δυνάμει μόνον, λέγονται μέσαι δυνάμει μόνον σύμμετροι.

τὸ ὑπὸ μέσων μήκει συμμέτρων εὐθειῶν κατά τινα τῶν εἰρημένων τρόπων περιεχόμενον ὀρθογώνιον μέσον ἐστίν.

ὑπὸ γὰρ μέσων μήκει συμμέτρων εὐθειῶν τῶν ΑΒ, ΒΓ περιεχέσθω ὀρθογώνιον τὸ ΑΓ· λέγω, ὅτι τὸ ΑΓ μέσον ἐστίν.

Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΑΒ τετράγωνον τὸ ΑΔ· μέσον ἄρα ἐστὶ τὸ ΑΔ. καὶ ἐπεὶ σύμμετρός ἐστιν ἡ ΑΒ τῇ ΒΓ μήκει, ἴση δὲ ἡ ΑΒ τῇ ΒΔ, σύμμετρος ἄρα ἐστὶ καὶ ἡ ΔΒ τῇ ΒΓ μήκει· ὥστε καὶ τὸ ΔΑ τῷ ΑΓ σύμμετρόν ἐστιν. μέσον δὲ τὸ ΔΑ· μέσον ἄρα καὶ τὸ ΑΓ· ὅπερ ἔδει δεῖξαι.

τὸ ὑπὸ μέσων δυνάμει μόνον συμμέτρων εὐθειῶν περιεχόμενον ὀρθογώνιον ἤτοι ῥητὸν ἢ μέσον ἐστίν.

ὑπὸ γὰρ μέσων δυνάμει μόνον συμμέτρων εὐθειῶν τῶν ΑΒ, ΒΓ ὀρθογώνιον περιεχέσθω τὸ ΑΓ· λέγω, ὅτι τὸ ΑΓ ἤτοι ῥητὸν ἢ μέσον ἐστίν.

Ἀναγεγράφθω γὰρ ἀπὸ τῶν ΑΒ, ΒΓ τετράγωνα τὰ ΑΔ, ΒΕ· μέσον ἄρα ἐστὶν ἑκάτερον τῶν ΑΔ, ΒΕ. καὶ ἐκκείσθω ῥητὴ ἡ ΖΗ, καὶ τῷ μὲν ΑΔ ἴσον παρὰ τὴν ΖΗ παραβεβλήσθω ὀρθογώνιον παραλληλόγραμμον τὸ ΗΘ πλάτος ποιοῦν τὴν ΖΘ, τῷ δὲ ΑΓ ἴσον παρὰ τὴν ΘΜ παραβεβλήσθω ὀρθογώνιον παραλληλόγραμμον τὸ ΜΚ πλάτος ποιοῦν τὴν ΘΚ, καὶ ἔτι τῷ ΒΕ ἴσον ὁμοίως παρὰ τὴν ΚΝ παραβεβλήσθω τὸ ΝΛ πλάτος ποιοῦν τὴν ΚΛ· ἐπʼ εὐθείας ἄρα εἰσὶν αἱ ΖΘ, ΘΚ, ΚΛ. ἐπεὶ οὖν μέσον ἐστὶν ἑκάτερον τῶν ΑΔ, ΒΕ, καί ἐστιν ἴσον τὸ μὲν ΑΔ τῷ ΗΘ, τὸ δὲ ΒΕ τῷ ΝΛ, μέσον ἄρα καὶ ἑκάτερον τῶν ΗΘ, ΝΛ. καὶ παρὰ ῥητὴν τὴν ΖΗ παράκειται· ῥητὴ ἄρα ἐστὶν ἑκατέρα τῶν ΖΘ, ΚΛ καὶ ἀσύμμετρος τῇ ΖΗ μήκει. καὶ ἐπεὶ σύμμετρόν ἐστι τὸ ΑΔ τῷ ΒΕ, σύμμετρον ἄρα ἐστὶ καὶ τὸ ΗΘ τῷ ΝΛ. καί ἐστιν ὡς τὸ ΗΘ πρὸς τὸ ΝΛ, οὕτως ἡ ΖΘ πρὸς τὴν ΚΛ· σύμμετρος ἄρα ἐστὶν ἡ ΖΘ τῇ ΚΛ μήκει. αἱ ΖΘ, ΚΛ ἄρα ῥηταί εἰσι μήκει σύμμετροι· ῥητὸν ἄρα ἐστὶ τὸ ὑπὸ τῶν ΖΘ, ΚΛ. καὶ ἐπεὶ ἴση ἐστὶν ἡ μὲν ΔΒ τῇ ΒΑ, ἡ δὲ ΞΒ τῇ ΒΓ, ἔστιν ἄρα ὡς ἡ ΔΒ πρὸς τὴν ΒΓ, οὕτως ἡ ΑΒ πρὸς τὴν ΒΞ. ἀλλʼ ὡς μὲν ἡ ΔΒ πρὸς τὴν ΒΓ, οὕτως τὸ ΔΑ πρὸς τὸ ΑΓ· ὡς δὲ ἡ ΑΒ πρὸς τὴν ΒΞ, οὕτως τὸ ΑΓ πρὸς τὸ ΓΞ· ἔστιν ἄρα ὡς τὸ ΔΑ πρὸς τὸ ΑΓ, οὕτως τὸ ΑΓ πρὸς τὸ ΓΞ. ἴσον δέ ἐστι τὸ μὲν ΑΔ τῷ ΗΘ, τὸ δὲ ΑΓ τῷ ΜΚ, τὸ δὲ ΓΞ τῷ ΝΛ· ἔστιν ἄρα ὡς τὸ ΗΘ πρὸς τὸ ΜΚ, οὕτως τὸ ΜΚ πρὸς τὸ ΝΛ· ἔστιν ἄρα καὶ ὡς ἡ ΖΘ πρὸς τὴν ΘΚ, οὕτως ἡ ΘΚ πρὸς τὴν ΚΛ· τὸ ἄρα ὑπὸ τῶν ΖΘ, ΚΛ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΘΚ. ῥητὸν δὲ τὸ ὑπὸ τῶν ΖΘ, ΚΛ· ῥητὸν ἄρα ἐστὶ καὶ τὸ ἀπὸ τῆς ΘΚ· ῥητὴ ἄρα ἐστὶν ἡ ΘΚ. καὶ εἰ μὲν σύμμετρός ἐστι τῇ ΖΗ μήκει, ῥητόν ἐστι τὸ ΘΝ· εἰ δὲ ἀσύμμετρός ἐστι τῇ ΖΗ μήκει, αἱ ΚΘ, ΘΜ ῥηταί εἰσι δυνάμει μόνον σύμμετροι· μέσον ἄρα τὸ ΘΝ. τὸ ΘΝ ἄρα ἤτοι ῥητὸν ἢ μέσον ἐστίν. ἴσον δὲ τὸ ΘΝ τῷ ΑΓ· τὸ ΑΓ ἄρα ἤτοι ῥητὸν ἢ μέσον ἐστίν.

τὸ ἄρα ὑπὸ μέσων δυνάμει μόνον συμμέτρων, καὶ τὰ ἑξῆς.

μέσον μέσου οὐχ ὑπερέχει ῥητῷ.

εἰ γὰρ δυνατόν, μέσον τὸ ΑΒ μέσου τοῦ ΑΓ ὑπερεχέτω ῥητῷ τῷ ΔΒ, καὶ ἐκκείσθω ῥητὴ ἡ ΕΖ, καὶ τῷ ΑΒ ἴσον παρὰ τὴν ΕΖ παραβεβλήσθω παραλληλόγραμμον ὀρθογώνιον τὸ ΖΘ πλάτος ποιοῦν τὴν ΕΘ, τῷ δὲ ΑΓ ἴσον ἀφῃρήσθω τὸ ΖΗ· λοιπὸν ἄρα τὸ ΒΔ λοιπῷ τῷ ΚΘ ἐστιν ἴσον. ῥητὸν δέ ἐστι τὸ ΔΒ· ῥητὸν ἄρα ἐστὶ καὶ τὸ ΚΘ. ἐπεὶ οὖν μέσον ἐστὶν ἑκάτερον τῶν ΑΒ, ΑΓ, καί ἐστι τὸ μὲν ΑΒ τῷ ΖΘ ἴσον, τὸ δὲ ΑΓ τῷ ΖΗ, μέσον ἄρα καὶ ἑκάτερον τῶν ΖΘ, ΖΗ. καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται· ῥητὴ ἄρα ἐστὶν ἑκατέρα τῶν ΘΕ, ΕΗ καὶ ἀσύμμετρος τῇ ΕΖ μήκει. καὶ ἐπεὶ ῥητόν ἐστι τὸ ΔΒ καί ἐστιν ἴσον τῷ ΚΘ, ῥητὸν ἄρα ἐστὶ καὶ τὸ ΚΘ. καὶ παρὰ ῥητὴν τὴν ΕΖ παράκειται· ῥητὴ ἄρα ἐστὶν ἡ ΗΘ καὶ σύμμετρος τῇ ΕΖ μήκει. ἀλλὰ καὶ ἡ ΕΗ ῥητή ἐστι καὶ ἀσύμμετρος τῇ ΕΖ μήκει· ἀσύμμετρος ἄρα ἐστὶν ἡ ΕΗ τῇ ΗΘ μήκει. καί ἐστιν ὡς ἡ ΕΗ πρὸς τὴν ΗΘ, οὕτως τὸ ἀπὸ τῆς ΕΗ πρὸς τὸ ὑπὸ τῶν ΕΗ, ΗΘ· ἀσύμμετρον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΕΗ τῷ ὑπὸ τῶν ΕΗ, ΗΘ. ἀλλὰ τῷ μὲν ἀπὸ τῆς ΕΗ σύμμετρά ἐστι τὰ ἀπὸ τῶν ΕΗ, ΗΘ τετράγωνα· ῥητὰ γὰρ ἀμφότερα· τῷ δὲ ὑπὸ τῶν ΕΗ, ΗΘ σύμμετρόν ἐστι τὸ δὶς ὑπὸ τῶν ΕΗ, ΗΘ· διπλάσιον γάρ ἐστιν αὐτοῦ· ἀσύμμετρα ἄρα ἐστὶ τὰ ἀπὸ τῶν ΕΗ, ΗΘ τῷ δὶς ὑπὸ τῶν ΕΗ, ΗΘ· καὶ συναμφότερα ἄρα τά τε ἀπὸ τῶν ΕΗ, ΗΘ καὶ τὸ δὶς ὑπὸ τῶν ΕΗ, ΗΘ, ὅπερ ἐστὶ τὸ ἀπὸ τῆς ΕΘ, ἀσύμμετρόν ἐστι τοῖς ἀπὸ τῶν ΕΗ, ΗΘ. ῥητὰ δὲ τὰ ἀπὸ τῶν ΕΗ, ΗΘ· ἄλογον ἄρα τὸ ἀπὸ τῆς ΕΘ. ἄλογος ἄρα ἐστὶν ἡ ΕΘ. ἀλλὰ καὶ ῥητή· ὅπερ ἐστὶν ἀδύνατον.

μέσον ἄρα μέσου οὐχ ὑπερέχει ῥητῷ· ὅπερ ἔδει δεῖξαι.

μέσας εὑρεῖν δυνάμει μόνον συμμέτρους ῥητὸν περιεχούσας.

Ἐκκείσθωσαν δύο ῥηταὶ δυνάμει μόνον σύμμετροι αἱ Α, Β, καὶ εἰλήφθω τῶν Α, Β μέση ἀνάλογον ἡ Γ, καὶ γεγονέτω ὡς ἡ Α πρὸς τὴν Β, οὕτως ἡ Γ πρὸς τὴν Δ.

καὶ ἐπεὶ αἱ Α, Β ῥηταί εἰσι δυνάμει μόνον σύμμετροι, τὸ ἄρα ὑπὸ τῶν Α, Β, τουτέστι τὸ ἀπὸ τῆς Γ, μέσον ἐστίν. μέση ἄρα ἡ Γ. καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς τὴν Β, οὕτως ἡ Γ πρὸς τὴν Δ, αἱ δὲ Α, Β δυνάμει μόνον εἰσὶ σύμμετροι, καὶ αἱ Γ, Δ ἄρα δυνάμει μόνον εἰσὶ σύμμετροι. καί ἐστι μέση ἡ Γ· μέση ἄρα καὶ ἡ Δ. αἱ Γ, Δ ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι. λέγω, ὅτι καὶ ῥητὸν περιέχουσιν. ἐπεὶ γάρ ἐστιν ὡς ἡ Α πρὸς τὴν Β, οὕτως ἡ Γ πρὸς τὴν Δ, ἐναλλὰξ ἄρα ἐστὶν ὡς ἡ Α πρὸς τὴν Γ, ἡ Β πρὸς τὴν Δ. ἀλλʼ ὡς ἡ Α πρὸς τὴν Γ, ἡ Γ πρὸς τὴν Β· καὶ ὡς ἄρα ἡ Γ πρὸς τὴν Β, οὕτως ἡ Β πρὸς τὴν Δ· τὸ ἄρα ὑπὸ τῶν Γ, Δ ἴσον ἐστὶ τῷ ἀπὸ τῆς Β. ῥητὸν δὲ τὸ ἀπὸ τῆς Β· ῥητὸν ἄρα ἐστὶ καὶ τὸ ὑπὸ τῶν Γ, Δ.

Εὕρηνται ἄρα μέσαι δυνάμει μόνον σύμμετροι ῥητὸν περιέχουσαι· ὅπερ ἔδει δεῖξαι.

μέσας εὑρεῖν δυνάμει μόνον συμμέτρους μέσον περιεχούσας.

Ἐκκείσθωσαν τρεῖς ῥηταὶ δυνάμει μόνον σύμμετροι αἱ Α, Β, Γ, καὶ εἰλήφθω τῶν Α, Β μέση ἀνάλογον ἡ Δ, καὶ γεγονέτω ὡς ἡ Β πρὸς τὴν Γ, ἡ Δ πρὸς τὴν Ε.

ἐπεὶ αἱ Α, Β ῥηταί εἰσι δυνάμει μόνον σύμμετροι, τὸ ἄρα ὑπὸ τῶν Α, Β, τουτέστι τὸ ἀπὸ τῆς Δ, μέσον ἐστίν. μέση ἄρα ἡ Δ. καὶ ἐπεὶ αἱ Β, Γ δυνάμει μόνον εἰσὶ σύμμετροι, καί ἐστιν ὡς ἡ Β πρὸς τὴν Γ, ἡ Δ πρὸς τὴν Ε, καὶ αἱ Δ, Ε ἄρα δυνάμει μόνον εἰσὶ σύμμετροι. μέση δὲ ἡ Δ· μέση ἄρα καὶ ἡ Ε· αἱ Δ, Ε ἄρα μέσαι εἰσὶ δυνάμει μόνον σύμμετροι. λέγω δή, ὅτι καὶ μέσον περιέχουσιν. ἐπεὶ γάρ ἐστιν ὡς ἡ Β πρὸς τὴν Γ, ἡ Δ πρὸς τὴν Ε, ἐναλλὰξ ἄρα ὡς ἡ Β πρὸς τὴν Δ, ἡ Γ πρὸς τὴν Ε. ὡς δὲ ἡ Β πρὸς τὴν Δ, ἡ Δ πρὸς τὴν Α· καὶ ὡς ἄρα ἡ Δ πρὸς τὴν Α, ἡ Γ πρὸς τὴν Ε· τὸ ἄρα ὑπὸ τῶν Α, Γ ἴσον ἐστὶ τῷ ὑπὸ τῶν Δ, Ε. μέσον δὲ τὸ ὑπὸ τῶν Α, Γ· μέσον ἄρα καὶ τὸ ὑπὸ τῶν Δ, Ε.

Εὕρηνται ἄρα μέσαι δυνάμει μόνον σύμμετροι μέσον περιέχουσαι· ὅπερ ἔδει δεῖξαι.

λῆμμα

εὑρεῖν δύο τετραγώνους ἀριθμούς, ὥστε καὶ τὸν συγκείμενον ἐξ αὐτῶν εἶναι τετράγωνον.

Ἐκκείσθωσαν δύο ἀριθμοὶ οἱ ΑΒ, ΒΓ, ἔστωσαν δὲ ἤτοι ἄρτιοι ἢ περιττοί. καὶ ἐπεί, ἐάν τε ἀπὸ ἀρτίου ἄρτιος ἀφαιρεθῇ, ἐάν τε ἀπὸ περισσοῦ περισσός, ὁ λοιπὸς ἄρτιός ἐστιν, ὁ λοιπὸς ἄρα ὁ ΑΓ ἄρτιός ἐστιν. τετμήσθω ὁ ΑΓ δίχα κατὰ τὸ Δ. ἔστωσαν δὲ καὶ οἱ ΑΒ, ΒΓ ἤτοι ὅμοιοι ἐπίπεδοι ἢ τετράγωνοι, οἳ καὶ αὐτοὶ ὅμοιοί εἰσιν ἐπίπεδοι· ὁ ἄρα ἐκ τῶν ΑΒ, ΒΓ μετὰ τοῦ ἀπὸ τοῦ ΓΔ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ ΒΔ τετραγώνῳ. καί ἐστι τετράγωνος ὁ ἐκ τῶν ΑΒ, ΒΓ, ἐπειδήπερ ἐδείχθη, ὅτι, ἐὰν δύο ὅμοιοι ἐπίπεδοι πολλαπλασιάσαντες ἀλλήλους ποιῶσί τινα, ὁ γενόμενος τετράγωνός ἐστιν. εὕρηνται ἄρα δύο τετράγωνοι ἀριθμοὶ ὅ τε ἐκ τῶν ΑΒ, ΒΓ καὶ ὁ ἀπὸ τοῦ ΓΔ, οἳ συντεθέντες ποιοῦσι τὸν ἀπὸ τοῦ ΒΔ τετράγωνον.

καὶ φανερόν, ὅτι εὕρηνται πάλιν δύο τετράγωνοι ὅ τε ἀπὸ τοῦ ΒΔ καὶ ὁ ἀπὸ τοῦ ΓΔ, ὥστε τὴν ὑπεροχὴν αὐτῶν τὸν ὑπὸ ΑΒ, ΒΓ εἶναι τετράγωνον, ὅταν οἱ ΑΒ, ΒΓ ὅμοιοι ὦσιν ἐπίπεδοι. ὅταν δὲ μὴ ὦσιν ὅμοιοι ἐπίπεδοι, εὕρηνται δύο τετράγωνοι ὅ τε ἀπὸ τοῦ ΒΔ καὶ ὁ ἀπὸ τοῦ ΔΓ, ὧν ἡ ὑπεροχὴ ὁ ὑπὸ τῶν ΑΒ, ΒΓ οὐκ ἔστι τετράγωνος· ὅπερ ἔδει δεῖξαι.

λῆμμα

εὑρεῖν δύο τετραγώνους ἀριθμούς, ὥστε τὸν ἐξ αὐτῶν συγκείμενον μὴ εἶναι τετράγωνον.

ἔστω γὰρ ὁ ἐκ τῶν ΑΒ, ΒΓ, ὡς ἔφαμεν, τετράγωνος, καὶ ἄρτιος ὁ ΓΑ, καὶ τετμήσθω ὁ ΓΑ δίχα τῷ Δ. φανερὸν δή, ὅτι ὁ ἐκ τῶν ΑΒ, ΒΓ τετράγωνος μετὰ τοῦ ἀπὸ τοῦ

ΓΔ τετραγώνου ἴσος ἐστὶ τῷ ἀπὸ τοῦ ΒΔ τετραγώνῳ. ἀφῃρήσθω μονὰς ἡ ΔΕ· ὁ ἄρα ἐκ τῶν ΑΒ, ΒΓ μετὰ τοῦ ἀπὸ τοῦ ΓΕ ἐλάσσων ἐστὶ τοῦ ἀπὸ τοῦ ΒΔ τετραγώνου. λέγω οὖν, ὅτι ὁ ἐκ τῶν ΑΒ, ΒΓ τετράγωνος μετὰ τοῦ ἀπὸ τοῦ ΓΕ οὐκ ἔσται τετράγωνος.

εἰ γὰρ ἔσται τετράγωνος, ἤτοι ἴσος ἐστὶ τῷ ἀπὸ τοῦ ΒΕ ἢ ἐλάσσων τοῦ ἀπὸ τοῦ ΒΕ, οὐκέτι δὲ καὶ μείζων, ἵνα μὴ τμηθῇ ἡ μονάς. ἔστω, εἰ δυνατόν, πρότερον ὁ ἐκ τῶν ΑΒ, ΒΓ μετὰ τοῦ ἀπὸ ΓΕ ἴσος τῷ ἀπὸ ΒΕ, καὶ ἔστω τῆς ΔΕ μονάδος διπλασίων ὁ ΗΑ. ἐπεὶ οὖν ὅλος ὁ ΑΓ ὅλου τοῦ ΓΔ ἐστι διπλασίων, ὧν ὁ ΑΗ τοῦ ΔΕ ἐστι διπλασίων, καὶ λοιπὸς ἄρα ὁ ΗΓ λοιποῦ τοῦ ΕΓ ἐστι διπλασίων· δίχα ἄρα τέτμηται ὁ ΗΓ τῷ Ε. ὁ ἄρα ἐκ τῶν ΗΒ, ΒΓ μετὰ τοῦ ἀπὸ ΓΕ ἴσος ἐστὶ τῷ ἀπὸ ΒΕ τετραγώνῳ. ἀλλὰ καὶ ὁ ἐκ τῶν ΑΒ, ΒΓ μετὰ τοῦ ἀπὸ ΓΕ ἴσος ὑπόκειται τῷ ἀπὸ τοῦ ΒΕ τετραγώνῳ· ὁ ἄρα ἐκ τῶν ΗΒ, ΒΓ μετὰ τοῦ ἀπὸ ΓΕ ἴσος ἐστὶ τῷ ἐκ τῶν ΑΒ, ΒΓ μετὰ τοῦ ἀπὸ ΓΕ. καὶ κοινοῦ ἀφαιρεθέντος τοῦ ἀπὸ ΓΕ συνάγεται ὁ ΑΒ ἴσος τῷ ΗΒ· ὅπερ ἄτοπον. οὐκ ἄρα ὁ ἐκ τῶν ΑΒ, ΒΓ μετὰ τοῦ ἀπὸ τοῦ ΓΕ ἴσος ἐστὶ τῷ ἀπὸ ΒΕ. λέγω δή, ὅτι οὐδὲ ἐλάσσων τοῦ ἀπὸ ΒΕ. εἰ γὰρ δυνατόν, ἔστω τῷ ἀπὸ ΒΖ ἴσος, καὶ τοῦ ΔΖ διπλασίων ὁ ΘΑ. καὶ συναχθήσεται πάλιν διπλασίων ὁ ΘΓ τοῦ ΓΖ· ὥστε καὶ τὸν ΓΘ δίχα τετμῆσθαι κατὰ τὸ Ζ, καὶ διὰ τοῦτο τὸν ἐκ τῶν ΘΒ, ΒΓ μετὰ τοῦ ἀπὸ ΖΓ ἴσον γίνεσθαι τῷ ἀπὸ ΒΖ. ὑπόκειται δὲ καὶ ὁ ἐκ τῶν ΑΒ, ΒΓ μετὰ τοῦ ἀπὸ ΓΕ ἴσος τῷ ἀπὸ ΒΖ. ὥστε καὶ ὁ ἐκ τῶν ΘΒ, ΒΓ μετὰ τοῦ ἀπὸ ΓΖ ἴσος ἔσται τῷ ἐκ τῶν ΑΒ, ΒΓ μετὰ τοῦ ἀπὸ ΓΕ· ὅπερ ἄτοπον. οὐκ ἄρα ὁ ἐκ τῶν ΑΒ, ΒΓ μετὰ τοῦ ἀπὸ ΓΕ ἴσος ἐστὶ τῷ ἐλάσσονι τοῦ ἀπὸ ΒΕ. ἐδείχθη δέ, ὅτι οὐδὲ αὐτῷ τῷ ἀπὸ ΒΕ. οὐκ ἄρα ὁ ἐκ τῶν ΑΒ, ΒΓ μετὰ τοῦ ἀπὸ ΓΕ τετράγωνός ἐστιν. δυνατοῦ δὲ ὄντος καὶ κατὰ πλείονας τρόπους τοὺς εἰρημένους ἀριθμοὺς ἐπιδεικνύειν, ἀρκείσθωσαν ἡμῖν οἱ εἰρημένοι, ἵνα μὴ μακροτέρας οὔσης τῆς πραγματείας ἐπὶ πλέον αὐτὴν μηκύνωμεν. ὅπερ ἔδει δεῖξαι.

εὑρεῖν δύο ῥητὰς δυνάμει μόνον συμμέτρους, ὥστε τὴν μείζονα τῆς ἐλάσσονος μεῖζον δύνασθαι τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει.

Ἐκκείσθω γάρ τις ῥητὴ ἡ ΑΒ καὶ δύο τετράγωνοι ἀριθμοὶ οἱ ΓΔ, ΔΕ, ὥστε τὴν ὑπεροχὴν αὐτῶν τὸν ΓΕ μὴ εἶναι τετράγωνον, καὶ γεγράφθω ἐπὶ τῆς ΑΒ ἡμικύκλιον τὸ ΑΖΒ, καὶ πεποιήσθω ὡς ὁ ΔΓ πρὸς τὸν ΓΕ, οὕτως τὸ ἀπὸ τῆς ΒΑ τετράγωνον πρὸς τὸ ἀπὸ τῆς ΑΖ τετράγωνον καὶ ἐπεζεύχθω ἡ ΖΒ.

ἐπεὶ οὖν ἐστιν ὡς τὸ ἀπὸ τῆς ΒΑ πρὸς τὸ ἀπὸ τῆς ΑΖ, οὕτως ὁ ΔΓ πρὸς τὸν ΓΕ, τὸ ἀπὸ τῆς ΒΑ ἄρα πρὸς τὸ ἀπὸ τῆς ΑΖ λόγον ἔχει, ὃν ἀριθμὸς ὁ ΔΓ πρὸς ἀριθμὸν τὸν ΓΕ· σύμμετρον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΒΑ τῷ ἀπὸ τῆς ΑΖ. ῥητὸν δὲ τὸ ἀπὸ τῆς ΑΒ· ῥητὸν ἄρα καὶ τὸ ἀπὸ τῆς ΑΖ· ῥητὴ ἄρα καὶ ἡ ΑΖ. καὶ ἐπεὶ ὁ ΔΓ πρὸς τὸν ΓΕ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, οὐδὲ τὸ ἀπὸ τῆς ΒΑ ἄρα πρὸς τὸ ἀπὸ τῆς ΑΖ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν· ἀσύμμετρος ἄρα ἐστὶν ἡ ΑΒ τῇ ΑΖ μήκει· αἱ ΒΑ, ΑΖ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι. καὶ ἐπεί ἐστιν ὡς ὁ ΔΓ πρὸς τὸν ΓΕ, οὕτως τὸ ἀπὸ τῆς ΒΑ πρὸς τὸ ἀπὸ τῆς ΑΖ, ἀναστρέψαντι ἄρα ὡς ὁ ΓΔ πρὸς τὸν ΔΕ, οὕτως τὸ ἀπὸ τῆς ΑΒ πρὸς τὸ ἀπὸ τῆς ΒΖ. ὁ δὲ ΓΔ πρὸς τὸν ΔΕ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν· καὶ τὸ ἀπὸ τῆς ΑΒ ἄρα πρὸς τὸ ἀπὸ τῆς ΒΖ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν· σύμμετρος ἄρα ἐστὶν ἡ ΑΒ τῇ ΒΖ μήκει. καί ἐστι τὸ ἀπὸ τῆς ΑΒ ἴσον τοῖς ἀπὸ τῶν ΑΖ, ΖΒ· ἡ ΑΒ ἄρα τῆς ΑΖ μεῖζον δύναται τῇ ΒΖ συμμέτρῳ ἑαυτῇ.

Εὕρηνται ἄρα δύο ῥηταὶ δυνάμει μόνον σύμμετροι αἱ ΒΑ, ΑΖ, ὥστε τὴν μείζονα τὴν ΑΒ τῆς ἐλάσσονος τῆς ΑΖ μεῖζον δύνασθαι τῷ ἀπὸ τῆς ΒΖ συμμέτρου ἑαυτῇ μήκει· ὅπερ ἔδει δεῖξαι.

εὑρεῖν δύο ῥητὰς δυνάμει μόνον συμμέτρους, ὥστε τὴν μείζονα τῆς ἐλάσσονος μεῖζον δύνασθαι τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει.

Ἐκκείσθω ῥητὴ ἡ ΑΒ καὶ δύο τετράγωνοι ἀριθμοὶ οἱ ΓΕ, ΕΔ, ὥστε τὸν συγκείμενον ἐξ αὐτῶν τὸν ΓΔ μὴ εἶναι τετράγωνον, καὶ γεγράφθω ἐπὶ τῆς ΑΒ ἡμικύκλιον τὸ ΑΖΒ, καὶ πεποιήσθω ὡς ὁ ΔΓ πρὸς τὸν ΓΕ, οὕτως τὸ ἀπὸ τῆς ΒΑ πρὸς τὸ ἀπὸ τῆς ΑΖ, καὶ ἐπεζεύχθω ἡ ΖΒ.

ὁμοίως δὴ δείξομεν τῷ πρὸ τούτου, ὅτι αἱ ΒΑ, ΑΖ ῥηταί εἰσι δυνάμει μόνον σύμμετροι. καὶ ἐπεί ἐστιν ὡς ὁ ΔΓ πρὸς τὸν ΓΕ, οὕτως τὸ ἀπὸ τῆς ΒΑ πρὸς τὸ ἀπὸ τῆς ΑΖ, ἀναστρέψαντι ἄρα ὡς ὁ ΓΔ πρὸς τὸν ΔΕ, οὕτως τὸ ἀπὸ τῆς ΑΒ πρὸς τὸ ἀπὸ τῆς ΒΖ. ὁ δὲ ΓΔ πρὸς τὸν ΔΕ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν· οὐδʼ ἄρα τὸ ἀπὸ τῆς ΑΒ πρὸς τὸ ἀπὸ τῆς ΒΖ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν· ἀσύμμετρος ἄρα ἐστὶν ἡ ΑΒ τῇ ΒΖ μήκει. καὶ δύναται ἡ ΑΒ τῆς ΑΖ μεῖζον τῷ ἀπὸ τῆς ΖΒ ἀσυμμέτρου ἑαυτῇ.

αἱ ΑΒ, ΑΖ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι, καὶ ἡ ΑΒ τῆς ΑΖ μεῖζον δύναται τῷ ἀπὸ τῆς ΖΒ ἀσυμμέτρου ἑαυτῇ μήκει· ὅπερ ἔδει δεῖξαι.

εὑρεῖν δύο μέσας δυνάμει μόνον συμμέτρους ῥητὸν περιεχούσας, ὥστε τὴν μείζονα τῆς ἐλάσσονος μεῖζον δύνασθαι τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει.

Ἐκκείσθωσαν δύο ῥηταὶ δυνάμει μόνον σύμμετροι αἱ α, Β, ὥστε τὴν Α μείζονα οὖσαν τῆς ἐλάσσονος τῆς Β μεῖζον δύνασθαι τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει. καὶ τῷ ὑπὸ τῶν Α, Β ἴσον ἔστω τὸ ἀπὸ τῆς Γ. μέσον δὲ τὸ ὑπὸ τῶν Α, Β· μέσον ἄρα καὶ τὸ ἀπὸ τῆς Γ· μέση ἄρα καὶ ἡ Γ. τῷ δὲ ἀπὸ τῆς Β ἴσον ἔστω τὸ ὑπὸ τῶν Γ, Δ. ῥητὸν δὲ τὸ ἀπὸ τῆς Β· ῥητὸν ἄρα καὶ τὸ ὑπὸ τῶν Γ, Δ. καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς τὴν Β, οὕτως τὸ ὑπὸ τῶν Α, Β πρὸς τὸ ἀπὸ τῆς Β, ἀλλὰ τῷ μὲν ὑπὸ τῶν Α, Β ἴσον ἐστὶ τὸ ἀπὸ τῆς Γ, τῷ δὲ ἀπὸ τῆς Β ἴσον τὸ ὑπὸ τῶν Γ, δ, ὡς ἄρα ἡ Α πρὸς τὴν Β, οὕτως τὸ ἀπὸ τῆς Γ πρὸς τὸ ὑπὸ τῶν Γ, Δ. ὡς δὲ τὸ ἀπὸ τῆς Γ πρὸς τὸ ὑπὸ τῶν Γ, Δ, οὕτως ἡ Γ πρὸς τὴν Δ· καὶ ὡς ἄρα ἡ Α πρὸς τὴν Β, οὕτως ἡ Γ πρὸς τὴν Δ. σύμμετρος δὲ ἡ Α τῇ Β δυνάμει μόνον· σύμμετρος ἄρα καὶ ἡ Γ τῇ Δ δυνάμει μόνον. καί ἐστι μέση ἡ Γ· μέση ἄρα καὶ ἡ Δ. καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς τὴν Β, ἡ Γ πρὸς τὴν Δ, ἡ δὲ Α τῆς Β μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ, καὶ ἡ Γ ἄρα τῆς Δ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ.

Εὕρηνται ἄρα δύο μέσαι δυνάμει μόνον σύμμετροι αἱ Γ, Δ ῥητὸν περιέχουσαι, καὶ ἡ Γ τῆς Δ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει.

ὁμοίως δὴ δειχθήσεται καὶ τῷ ἀπὸ ἀσυμμέτρου, ὅταν ἡ Α τῆς Β μεῖζον δύνηται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ.

εὑρεῖν δύο μέσας δυνάμει μόνον συμμέτρους μέσον περιεχούσας, ὥστε τὴν μείζονα τῆς ἐλάσσονος μεῖζον δύνασθαι τῷ ἀπὸ συμμέτρου ἑαυτῇ.

Ἐκκείσθωσαν τρεῖς ῥηταὶ δυνάμει μόνον σύμμετροι αἱ α, Β, Γ, ὥστε τὴν Α τῆς Γ μεῖζον δύνασθαι τῷ ἀπὸ συμμέτρου ἑαυτῇ, καὶ τῷ μὲν ὑπὸ τῶν Α, Β ἴσον ἔστω τὸ ἀπὸ τῆς Δ. μέσον ἄρα τὸ ἀπὸ τῆς Δ· καὶ ἡ Δ ἄρα μέση ἐστίν. τῷ δὲ ὑπὸ τῶν Β, Γ ἴσον ἔστω τὸ ὑπὸ τῶν Δ, Ε. καὶ ἐπεί ἐστιν ὡς τὸ ὑπὸ τῶν Α, Β πρὸς τὸ ὑπὸ τῶν Β, Γ, οὕτως ἡ Α πρὸς τὴν Γ, ἀλλὰ τῷ μὲν ὑπὸ τῶν Α, Β ἴσον ἐστὶ τὸ ἀπὸ τῆς Δ, τῷ δὲ ὑπὸ τῶν Β, Γ ἴσον τὸ ὑπὸ τῶν Δ, Ε, ἔστιν ἄρα ὡς ἡ Α πρὸς τὴν Γ, οὕτως τὸ ἀπὸ τῆς Δ πρὸς τὸ ὑπὸ τῶν Δ, Ε. ὡς δὲ τὸ ἀπὸ τῆς Δ πρὸς τὸ ὑπὸ τῶν Δ, Ε, οὕτως ἡ Δ πρὸς τὴν Ε· καὶ ὡς ἄρα ἡ Α πρὸς τὴν Γ, οὕτως ἡ Δ πρὸς τὴν Ε· σύμμετρος δὲ ἡ Α τῇ Γ δυνάμει μόνον. σύμμετρος ἄρα καὶ ἡ Δ τῇ Ε δυνάμει μόνον. μέση δὲ ἡ Δ· μέση ἄρα καὶ ἡ Ε. καὶ ἐπεί ἐστιν ὡς ἡ Α πρὸς τὴν Γ, ἡ Δ πρὸς τὴν Ε, ἡ δὲ Α τῆς Γ μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ, καὶ ἡ Δ ἄρα τῆς Ε μεῖζον δυνήσεται τῷ ἀπὸ συμμέτρου ἑαυτῇ. λέγω δή, ὅτι καὶ μέσον ἐστὶ τὸ ὑπὸ τῶν Δ, Ε. ἐπεὶ γὰρ ἴσον ἐστὶ τὸ ὑπὸ τῶν Β, Γ τῷ ὑπὸ τῶν Δ, Ε, μέσον δὲ τὸ ὑπὸ τῶν Β, Γ αἱ γὰρ Β, Γ ῥηταί εἰσι δυνάμει μόνον σύμμετροι, μέσον ἄρα καὶ τὸ ὑπὸ τῶν Δ, Ε.

Εὕρηνται ἄρα δύο μέσαι δυνάμει μόνον σύμμετροι αἱ Δ, Ε μέσον περιέχουσαι, ὥστε τὴν μείζονα τῆς ἐλάσσονος μεῖζον δύνασθαι τῷ ἀπὸ συμμέτρου ἑαυτῇ.

ὁμοίως δὴ πάλιν δειχθήσεται καὶ τῷ ἀπὸ ἀσυμμέτρου, ὅταν ἡ Α τῆς Γ μεῖζον δύνηται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ.

λῆμμα

ἔστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν α, καὶ ἤχθω κάθετος ἡ ΑΔ· λέγω, ὅτι τὸ μὲν ὑπὸ τῶν ΓΒΔ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΒΑ, τὸ δὲ ὑπὸ τῶν ΒΓΔ ἴσον τῷ ἀπὸ τῆς ΓΑ, καὶ τὸ ὑπὸ τῶν ΒΔ, ΔΓ ἴσον τῷ ἀπὸ τῆς ΑΔ, καὶ ἔτι τὸ ὑπὸ τῶν ΒΓ, ΑΔ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΒΑ, ΑΓ.

καὶ πρῶτον, ὅτι τὸ ὑπὸ τῶν ΓΒΔ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΒΑ.

ἐπεὶ γὰρ ἐν ὀρθογωνίῳ τριγώνῳ ἀπὸ τῆς ὀρθῆς γωνίας ἐπὶ τὴν βάσιν κάθετος ἦκται ἡ ΑΔ, τὰ ΑΒΔ, ΑΔΓ ἄρα τρίγωνα ὅμοιά ἐστι τῷ τε ὅλῳ τῷ ΑΒΓ καὶ ἀλλήλοις. καὶ ἐπεὶ ὅμοιόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ ΑΒΔ τριγώνῳ, ἔστιν ἄρα ὡς ἡ ΓΒ πρὸς τὴν ΒΑ, οὕτως ἡ ΒΑ πρὸς τὴν ΒΔ· τὸ ἄρα ὑπὸ τῶν ΓΒΔ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΑΒ.

διὰ τὰ αὐτὰ δὴ καὶ τὸ ὑπὸ τῶν ΒΓΔ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΑΓ.

καὶ ἐπεί, ἐὰν ἐν ὀρθογωνίῳ τριγώνῳ ἀπὸ τῆς ὀρθῆς γωνίας ἐπὶ τὴν βάσιν κάθετος ἀχθῇ, ἡ ἀχθεῖσα τῶν τῆς βάσεως τμημάτων μέση ἀνάλογόν ἐστιν, ἔστιν ἄρα ὡς ἡ ΒΔ πρὸς τὴν ΔΑ, οὕτως ἡ ΑΔ πρὸς τὴν ΔΓ· τὸ ἄρα ὑπὸ τῶν ΒΔ, ΔΓ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΔΑ.

λέγω, ὅτι καὶ τὸ ὑπὸ τῶν ΒΓ, ΑΔ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΒΑ, ΑΓ. ἐπεὶ γάρ, ὡς ἔφαμεν, ὅμοιόν ἐστι τὸ ΑΒΓ τῷ ΑΒΔ, ἔστιν ἄρα ὡς ἡ ΒΓ πρὸς τὴν ΓΑ, οὕτως ἡ ΒΑ πρὸς τὴν ΑΔ. ἐὰν δὲ τέσσαρες εὐθεῖαι ἀνάλογον ὦσιν, τὸ ὑπὸ τῶν ἄκρων ἴσον ἐστὶ τῷ ὑπὸ τῶν μέσων. τὸ ἄρα ὑπὸ τῶν ΒΓ, ΑΔ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΒΑ, ΑΓ· ὅπερ ἔδει δεῖξαι.

εὑρεῖν δύο εὐθείας δυνάμει ἀσυμμέτρους ποιούσας τὸ μὲν συγκείμενον ἐκ τῶν ἀπʼ αὐτῶν τετραγώνων ῥητόν, τὸ δʼ ὑπʼ αὐτῶν μέσον.

Ἐκκείσθωσαν δύο ῥηταὶ δυνάμει μόνον σύμμετροι αἱ ΑΒ, ΒΓ, ὥστε τὴν μείζονα τὴν ΑΒ τῆς ἐλάσσονος τῆς ΒΓ μεῖζον δύνασθαι τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ, καὶ τετμήσθω ἡ ΒΓ δίχα κατὰ τὸ Δ, καὶ τῷ ἀφʼ ὁποτέρας τῶν ΒΔ, ΔΓ ἴσον παρὰ τὴν ΑΒ παραβεβλήσθω παραλληλόγραμμον ἐλλεῖπον εἴδει τετραγώνῳ, καὶ ἔστω τὸ ὑπὸ τῶν ΑΕΒ, καὶ γεγράφθω ἐπὶ τῆς ΑΒ ἡμικύκλιον τὸ ΑΖΒ, καὶ ἤχθω τῇ ΑΒ πρὸς ὀρθὰς ἡ ΕΖ, καὶ ἐπεζεύχθωσαν αἱ ΑΖ, ΖΒ.

καὶ ἐπεὶ δύο εὐθεῖαι ἄνισοί εἰσιν αἱ ΑΒ, ΒΓ, καὶ ἡ ΑΒ τῆς ΒΓ μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ, τῷ δὲ τετάρτῳ τοῦ ἀπὸ τῆς ΒΓ, τουτέστι τῷ ἀπὸ τῆς ἡμισείας αὐτῆς, ἴσον παρὰ τὴν ΑΒ παραβέβληται παραλληλόγραμμον ἐλλεῖπον εἴδει τετραγώνῳ καὶ ποιεῖ τὸ ὑπὸ τῶν ΑΕΒ, ἀσύμμετρος ἄρα ἐστὶν ἡ ΑΕ τῇ ΕΒ. καί ἐστιν ὡς ἡ ΑΕ πρὸς ΕΒ, οὕτως τὸ ὑπὸ τῶν ΒΑ, ΑΕ πρὸς τὸ ὑπὸ τῶν ΑΒ, ΒΕ, ἴσον δὲ τὸ μὲν ὑπὸ τῶν ΒΑ, ΑΕ τῷ ἀπὸ τῆς ΑΖ, τὸ δὲ ὑπὸ τῶν ΑΒ, ΒΕ τῷ ἀπὸ τῆς ΒΖ· ἀσύμμετρον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΑΖ τῷ ἀπὸ τῆς ΖΒ· αἱ ΑΖ, ΖΒ ἄρα δυνάμει εἰσὶν ἀσύμμετροι. καὶ ἐπεὶ ἡ ΑΒ ῥητή ἐστιν, ῥητὸν ἄρα ἐστὶ καὶ τὸ ἀπὸ τῆς ΑΒ· ὥστε καὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΖ, ΖΒ ῥητόν ἐστιν. καὶ ἐπεὶ πάλιν τὸ ὑπὸ τῶν ΑΕ, ΕΒ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΕΖ, ὑπόκειται δὲ τὸ ὑπὸ τῶν ΑΕ, ΕΒ καὶ τῷ ἀπὸ τῆς ΒΔ ἴσον, ἴση ἄρα ἐστὶν ἡ ΖΕ τῇ ΒΔ· διπλῆ ἄρα ἡ ΒΓ τῆς ΖΕ· ὥστε καὶ τὸ ὑπὸ τῶν ΑΒ, ΒΓ σύμμετρόν ἐστι τῷ ὑπὸ τῶν ΑΒ, ΕΖ. μέσον δὲ τὸ ὑπὸ τῶν ΑΒ, ΒΓ· μέσον ἄρα καὶ τὸ ὑπὸ τῶν ΑΒ, ΕΖ. ἴσον δὲ τὸ ὑπὸ τῶν ΑΒ, ΕΖ τῷ ὑπὸ τῶν ΑΖ, ΖΒ· μέσον ἄρα καὶ τὸ ὑπὸ τῶν ΑΖ, ΖΒ. ἐδείχθη δὲ καὶ ῥητὸν τὸ συγκείμενον ἐκ τῶν ἀπʼ αὐτῶν τετραγώνων.

Εὕρηνται ἄρα δύο εὐθεῖαι δυνάμει ἀσύμμετροι αἱ ΑΖ, ΖΒ ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπʼ αὐτῶν τετραγώνων ῥητόν, τὸ δὲ ὑπʼ αὐτῶν μέσον· ὅπερ ἔδει δεῖξαι.

εὑρεῖν δύο εὐθείας δυνάμει ἀσυμμέτρους ποιούσας τὸ μὲν συγκείμενον ἐκ τῶν ἀπʼ αὐτῶν τετραγώνων μέσον, τὸ δʼ ὑπʼ αὐτῶν ῥητόν.

Ἐκκείσθωσαν δύο μέσαι δυνάμει μόνον σύμμετροι αἱ ΑΒ, ΒΓ ῥητὸν περιέχουσαι τὸ ὑπʼ αὐτῶν, ὥστε τὴν ΑΒ τῆς ΒΓ μεῖζον δύνασθαι τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ, καὶ γεγράφθω ἐπὶ τῆς ΑΒ τὸ ΑΔΒ ἡμικύκλιον, καὶ τετμήσθω ἡ ΒΓ δίχα κατὰ τὸ Ε, καὶ παραβεβλήσθω παρὰ τὴν ΑΒ τῷ ἀπὸ τῆς ΒΕ ἴσον παραλληλόγραμμον ἐλλεῖπον εἴδει τετραγώνῳ τὸ ὑπὸ τῶν ΑΖΒ· ἀσύμμετρος ἄρα ἐστὶν ἡ ΑΖ τῇ ΖΒ μήκει. καὶ ἤχθω ἀπὸ τοῦ Ζ τῇ ΑΒ πρὸς ὀρθὰς ἡ ΖΔ, καὶ ἐπεζεύχθωσαν αἱ ΑΔ, ΔΒ.

ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΖ τῇ ΖΒ, ἀσύμμετρον ἄρα ἐστὶ καὶ τὸ ὑπὸ τῶν ΒΑ, ΑΖ τῷ ὑπὸ τῶν ΑΒ, ΒΖ. ἴσον δὲ τὸ μὲν ὑπὸ τῶν ΒΑ, ΑΖ τῷ ἀπὸ τῆς ΑΔ, τὸ δὲ ὑπὸ τῶν ΑΒ, ΒΖ τῷ ἀπὸ τῆς ΔΒ· ἀσύμμετρον ἄρα ἐστὶ καὶ τὸ ἀπὸ τῆς ΑΔ τῷ ἀπὸ τῆς ΔΒ. καὶ ἐπεὶ μέσον ἐστὶ τὸ ἀπὸ τῆς ΑΒ, μέσον ἄρα καὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΔ, ΔΒ. καὶ ἐπεὶ διπλῆ ἐστιν ἡ ΒΓ τῆς ΔΖ, διπλάσιον ἄρα καὶ τὸ ὑπὸ τῶν ΑΒ, ΒΓ τοῦ ὑπὸ τῶν ΑΒ, ΖΔ. ῥητὸν δὲ τὸ ὑπὸ τῶν ΑΒ, ΒΓ· ῥητὸν ἄρα καὶ τὸ ὑπὸ τῶν ΑΒ, ΖΔ. τὸ δὲ ὑπὸ τῶν ΑΒ, ΖΔ ἴσον τῷ ὑπὸ τῶν ΑΔ, ΔΒ· ὥστε καὶ τὸ ὑπὸ τῶν ΑΔ, ΔΒ ῥητόν ἐστιν.

Εὕρηνται ἄρα δύο εὐθεῖαι δυνάμει ἀσύμμετροι αἱ ΑΔ, ΔΒ ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπʼ αὐτῶν τετραγώνων μέσον, τὸ δʼ ὑπʼ αὐτῶν ῥητόν· ὅπερ ἔδει δεῖξαι.

εὑρεῖν δύο εὐθείας δυνάμει ἀσυμμέτρους ποιούσας τό τε συγκείμενον ἐκ τῶν ἀπʼ αὐτῶν τετραγώνων μέσον καὶ τὸ ὑπʼ αὐτῶν μέσον καὶ ἔτι ἀσύμμετρον τῷ συγκειμένῳ ἐκ τῶν ἀπʼ αὐτῶν τετραγώνῳ.

Ἐκκείσθωσαν δύο μέσαι δυνάμει μόνον σύμμετροι αἱ ΑΒ, ΒΓ μέσον περιέχουσαι, ὥστε τὴν ΑΒ τῆς ΒΓ μεῖζον δύνασθαι τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ, καὶ γεγράφθω ἐπὶ τῆς ΑΒ ἡμικύκλιον τὸ ΑΔΒ, καὶ τὰ λοιπὰ γεγονέτω τοῖς ἐπάνω ὁμοίως.

καὶ ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΖ τῇ ΖΒ μήκει, ἀσύμμετρός ἐστι καὶ ἡ ΑΔ τῇ ΔΒ δυνάμει. καὶ ἐπεὶ μέσον ἐστὶ τὸ ἀπὸ τῆς ΑΒ, μέσον ἄρα καὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΔ, ΔΒ. καὶ ἐπεὶ τὸ ὑπὸ τῶν ΑΖ, ΖΒ ἴσον ἐστὶ τῷ ἀφʼ ἑκατέρας τῶν ΒΕ, ΔΖ, ἴση ἄρα ἐστὶν ἡ ΒΕ τῇ ΔΖ· διπλῆ ἄρα ἡ ΒΓ τῆς ΖΔ· ὥστε καὶ τὸ ὑπὸ τῶν ΑΒ, ΒΓ διπλάσιόν ἐστι τοῦ ὑπὸ τῶν ΑΒ, ΖΔ. μέσον δὲ τὸ ὑπὸ τῶν ΑΒ, ΒΓ· μέσον ἄρα καὶ τὸ ὑπὸ τῶν ΑΒ, ΖΔ. καί ἐστιν ἴσον τῷ ὑπὸ τῶν ΑΔ, ΔΒ· μέσον ἄρα καὶ τὸ ὑπὸ τῶν ΑΔ, ΔΒ. καὶ ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΒ τῇ ΒΓ μήκει, σύμμετρος δὲ ἡ ΓΒ τῇ ΒΕ, ἀσύμμετρος ἄρα καὶ ἡ ΑΒ τῇ ΒΕ μήκει· ὥστε καὶ τὸ ἀπὸ τῆς ΑΒ τῷ ὑπὸ τῶν ΑΒ, ΒΕ ἀσύμμετρόν ἐστιν. ἀλλὰ τῷ μὲν ἀπὸ τῆς ΑΒ ἴσα ἐστὶ τὰ ἀπὸ τῶν ΑΔ, ΔΒ, τῷ δὲ ὑπὸ τῶν ΑΒ, ΒΕ ἴσον ἐστὶ τὸ ὑπὸ τῶν ΑΒ, ΖΔ, τουτέστι τὸ ὑπὸ τῶν ΑΔ, ΔΒ· ἀσύμμετρον ἄρα ἐστὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΔ, ΔΒ τῷ ὑπὸ τῶν ΑΔ, ΔΒ.

Εὕρηνται ἄρα δύο εὐθεῖαι αἱ ΑΔ, ΔΒ δυνάμει ἀσύμμετροι ποιοῦσαι τό τε συγκείμενον ἐκ τῶν ἀπʼ αὐτῶν μέσον καὶ τὸ ὑπʼ αὐτῶν μέσον καὶ ἔτι ἀσύμμετρον τῷ συγκειμένῳ ἐκ τῶν ἀπʼ αὐτῶν τετραγώνων· ὅπερ ἔδει δεῖξαι.

ἐὰν δύο ῥηταὶ δυνάμει μόνον σύμμετροι συντεθῶσιν, ἡ ὅλη ἄλογός ἐστιν, καλείσθω δὲ ἐκ δύο ὀνομάτων.

Συγκείσθωσαν γὰρ δύο ῥηταὶ δυνάμει μόνον σύμμετροι αἱ ΑΒ, ΒΓ· λέγω, ὅτι ὅλη ἡ ΑΓ ἄλογός ἐστιν.

ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΒ τῇ ΒΓ μήκει· δυνάμει γὰρ μόνον εἰσὶ σύμμετροι· ὡς δὲ ἡ ΑΒ πρὸς τὴν ΒΓ, οὕτως τὸ ὑπὸ τῶν ΑΒΓ πρὸς τὸ ἀπὸ τῆς ΒΓ, ἀσύμμετρον ἄρα ἐστὶ τὸ ὑπὸ τῶν ΑΒ, ΒΓ τῷ ἀπὸ τῆς ΒΓ. ἀλλὰ τῷ μὲν ὑπὸ τῶν ΑΒ, ΒΓ σύμμετρόν ἐστι τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ, τῷ δὲ ἀπὸ τῆς ΒΓ σύμμετρά ἐστι τὰ ἀπὸ τῶν ΑΒ, ΒΓ· αἱ γὰρ ΑΒ, ΒΓ ῥηταί εἰσι δυνάμει μόνον σύμμετροι· ἀσύμμετρον ἄρα ἐστὶ τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ τοῖς ἀπὸ τῶν ΑΒ, ΒΓ. καὶ συνθέντι τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ μετὰ τῶν ἀπὸ τῶν ΑΒ, ΒΓ, τουτέστι τὸ ἀπὸ τῆς ΑΓ, ἀσύμμετρόν ἐστι τῷ συγκειμένῳ ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ. ῥητὸν δὲ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ· ἄλογον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΑΓ· ὥστε καὶ ἡ ΑΓ ἄλογός ἐστιν, καλείσθω δὲ ἐκ δύο ὀνομάτων· ὅπερ ἔδει δεῖξαι.

ἐὰν δύο μέσαι δυνάμει μόνον σύμμετροι συντεθῶσι ῥητὸν περιέχουσαι, ἡ ὅλη ἄλογός ἐστιν, καλείσθω δὲ ἐκ δύο μέσων πρώτη.

Συγκείσθωσαν γὰρ δύο μέσαι δυνάμει μόνον σύμμετροι αἱ ΑΒ, ΒΓ ῥητὸν περιέχουσαι· λέγω, ὅτι ὅλη ἡ ΑΓ ἄλογός ἐστιν.

ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΑΒ τῇ ΒΓ μήκει, καὶ τὰ ἀπὸ τῶν ΑΒ, ΒΓ ἄρα ἀσύμμετρά ἐστι τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ· καὶ συνθέντι τὰ ἀπὸ τῶν ΑΒ, ΒΓ μετὰ τοῦ δὶς ὑπὸ τῶν ΑΒ, ΒΓ, ὅπερ ἐστὶ τὸ ἀπὸ τῆς ΑΓ, ἀσύμμετρόν ἐστι τῷ ὑπὸ τῶν ΑΒ, ΒΓ. ῥητὸν δὲ τὸ ὑπὸ τῶν ΑΒ, ΒΓ· ὑπόκεινται γὰρ αἱ ΑΒ, ΒΓ ῥητὸν περιέχουσαι· ἄλογον ἄρα τὸ ἀπὸ τῆς ΑΓ· ἄλογος ἄρα ἡ ΑΓ, καλείσθω δὲ ἐκ δύο μέσων πρώτη· ὅπερ ἔδει δεῖξαι.

ἐὰν δύο μέσαι δυνάμει μόνον σύμμετροι συντεθῶσι μέσον περιέχουσαι, ἡ ὅλη ἄλογός ἐστιν, καλείσθω δὲ ἐκ δύο μέσων δευτέρα.

Συγκείσθωσαν γὰρ δύο μέσαι δυνάμει μόνον σύμμετροι αἱ ΑΒ, ΒΓ μέσον περιέχουσαι· λέγω, ὅτι ἄλογός ἐστιν ἡ ΑΓ.

Ἐκκείσθω γὰρ ῥητὴ ἡ ΔΕ, καὶ τῷ ἀπὸ τῆς ΑΓ ἴσον παρὰ τὴν ΔΕ παραβεβλήσθω τὸ ΔΖ πλάτος ποιοῦν τὴν ΔΗ. καὶ ἐπεὶ τὸ ἀπὸ τῆς ΑΓ ἴσον ἐστὶ τοῖς τε ἀπὸ τῶν ΑΒ, ΒΓ καὶ τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ, παραβεβλήσθω δὴ τοῖς ἀπὸ τῶν ΑΒ, ΒΓ παρὰ τὴν ΔΕ ἴσον τὸ ΕΘ· λοιπὸν ἄρα τὸ ΘΖ ἴσον ἐστὶ τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ. καὶ ἐπεὶ μέση ἐστὶν ἑκατέρα τῶν ΑΒ, ΒΓ, μέσα ἄρα ἐστὶ καὶ τὰ ἀπὸ τῶν ΑΒ, ΒΓ. μέσον δὲ ὑπόκειται καὶ τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ. καί ἐστι τοῖς μὲν ἀπὸ τῶν ΑΒ, ΒΓ ἴσον τὸ ΕΘ, τῷ δὲ δὶς ὑπὸ τῶν ΑΒ, ΒΓ ἴσον τὸ ΖΘ· μέσον ἄρα ἑκάτερον τῶν ΕΘ, ΘΖ. καὶ παρὰ ῥητὴν τὴν ΔΕ παράκειται· ῥητὴ ἄρα ἐστὶν ἑκατέρα τῶν ΔΘ, ΘΗ καὶ ἀσύμμετρος τῇ ΔΕ μήκει. ἐπεὶ οὖν ἀσύμμετρός ἐστιν ἡ ΑΒ τῇ ΒΓ μήκει, καί ἐστιν ὡς ἡ ΑΒ πρὸς τὴν ΒΓ, οὕτως τὸ ἀπὸ τῆς ΑΒ πρὸς τὸ ὑπὸ τῶν ΑΒ, ΒΓ, ἀσύμμετρον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΑΒ τῷ ὑπὸ τῶν ΑΒ, ΒΓ. ἀλλὰ τῷ μὲν ἀπὸ τῆς ΑΒ σύμμετρόν ἐστι τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ τετραγώνων, τῷ δὲ ὑπὸ τῶν ΑΒ, ΒΓ σύμμετρόν ἐστι τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ. ἀσύμμετρον ἄρα ἐστὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ. ἀλλὰ τοῖς μὲν ἀπὸ τῶν ΑΒ, ΒΓ ἴσον ἐστὶ τὸ ΕΘ, τῷ δὲ δὶς ὑπὸ τῶν ΑΒ, ΒΓ ἴσον ἐστὶ τὸ ΘΖ. ἀσύμμετρον ἄρα ἐστὶ τὸ ΕΘ τῷ ΘΖ· ὥστε καὶ ἡ ΔΘ τῇ ΘΗ ἐστιν ἀσύμμετρος μήκει. αἱ ΔΘ, ΘΗ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι. ὥστε ἡ ΔΗ ἄλογός ἐστιν. ῥητὴ δὲ ἡ ΔΕ· τὸ δὲ ὑπὸ ἀλόγου καὶ ῥητῆς περιεχόμενον ὀρθογώνιον ἄλογόν ἐστιν· ἄλογον ἄρα ἐστὶ τὸ ΔΖ χωρίον, καὶ ἡ δυναμένη αὐτὸ ἄλογός ἐστιν. δύναται δὲ τὸ ΔΖ ἡ ΑΓ· ἄλογος ἄρα ἐστὶν ἡ ΑΓ, καλείσθω δὲ ἐκ δύο μέσων δευτέρα. ὅπερ ἔδει δεῖξαι.

ἐὰν δύο εὐθεῖαι δυνάμει ἀσύμμετροι συντεθῶσι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπʼ αὐτῶν τετραγώνων ῥητόν, τὸ δʼ ὑπʼ αὐτῶν μέσον, ἡ ὅλη εὐθεῖα ἄλογός ἐστιν, καλείσθω δὲ μείζων.

Συγκείσθωσαν γὰρ δύο εὐθεῖαι δυνάμει ἀσύμμετροι αἱ ΑΒ, ΒΓ ποιοῦσαι τὰ προκείμενα· λέγω, ὅτι ἄλογός ἐστιν ἡ ΑΓ.

ἐπεὶ γὰρ τὸ ὑπὸ τῶν ΑΒ, ΒΓ μέσον ἐστίν, καὶ τὸ δὶς ἄρα ὑπὸ τῶν ΑΒ, ΒΓ μέσον ἐστίν. τὸ δὲ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ ῥητόν· ἀσύμμετρον ἄρα ἐστὶ τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ τῷ συγκειμένῳ ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ· ὥστε καὶ τὰ ἀπὸ τῶν ΑΒ, ΒΓ μετὰ τοῦ δὶς ὑπὸ τῶν ΑΒ, ΒΓ, ὅπερ ἐστὶ τὸ ἀπὸ τῆς ΑΓ, ἀσύμμετρόν ἐστι τῷ συγκειμένῳ ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ ῥητὸν δὲ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ · ἄλογον ἄρα ἐστὶ τὸ ἀπὸ τῆς ΑΓ. ὥστε καὶ ἡ ΑΓ ἄλογός ἐστιν, καλείσθω δὲ μείζων. ὅπερ ἔδει δεῖξαι.

ἐὰν δύο εὐθεῖαι δυνάμει ἀσύμμετροι συντεθῶσι ποιοῦσαι τὸ μὲν συγκείμενον ἐκ τῶν ἀπʼ αὐτῶν τετραγώνων μέσον, τὸ δʼ ὑπʼ αὐτῶν ῥητόν, ἡ ὅλη εὐθεῖα ἄλογός ἐστιν, καλείσθω δὲ ῥητὸν καὶ μέσον δυναμένη.

Συγκείσθωσαν γὰρ δύο εὐθεῖαι δυνάμει ἀσύμμετροι αἱ ΑΒ, ΒΓ ποιοῦσαι τὰ προκείμενα· λέγω, ὅτι ἄλογός ἐστιν ἡ ΑΓ.

ἐπεὶ γὰρ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ μέσον ἐστίν, τὸ δὲ δὶς ὑπὸ τῶν ΑΒ, ΒΓ ῥητόν, ἀσύμμετρον ἄρα ἐστὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ· ὥστε καὶ τὸ ἀπὸ τῆς ΑΓ ἀσύμμετρόν ἐστι τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ. ῥητὸν δὲ τὸ δὶς ὑπὸ τῶν ΑΒ, ΒΓ· ἄλογον ἄρα τὸ ἀπὸ τῆς ΑΓ. ἄλογος ἄρα ἡ ΑΓ, καλείσθω δὲ ῥητὸν καὶ μέσον δυναμένη. ὅπερ ἔδει δεῖξαι.

ἐὰν δύο εὐθεῖαι δυνάμει ἀσύμμετροι συντεθῶσι ποιοῦσαι τό τε συγκείμενον ἐκ τῶν ἀπʼ αὐτῶν τετραγώνων μέσον καὶ τὸ ὑπʼ αὐτῶν μέσον καὶ ἔτι ἀσύμμετρον τῷ συγκειμένῳ ἐκ τῶν ἀπʼ αὐτῶν τετραγώνων, ἡ ὅλη εὐθεῖα ἄλογός ἐστιν, καλείσθω δὲ δύο μέσα δυναμένη.

Συγκείσθωσαν γὰρ δύο εὐθεῖαι δυνάμει ἀσύμμετροι αἱ ΑΒ, ΒΓ ποιοῦσαι τὰ προκείμενα· λέγω, ὅτι ἡ ΑΓ ἄλογός ἐστιν.

Ἐκκείσθω ῥητὴ ἡ ΔΕ, καὶ παραβεβλήσθω παρὰ τὴν ΔΕ τοῖς μὲν ἀπὸ τῶν ΑΒ, ΒΓ ἴσον τὸ ΔΖ, τῷ δὲ δὶς ὑπὸ τῶν ΑΒ, ΒΓ ἴσον τὸ ΗΘ· ὅλον ἄρα τὸ ΔΘ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΑΓ τετραγώνῳ. καὶ ἐπεὶ μέσον ἐστὶ τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΒ, ΒΓ, καί ἐστιν ἴσον τῷ ΔΖ, μέσον ἄρα ἐστὶ καὶ τὸ ΔΖ. καὶ παρὰ ῥητὴν τὴν ΔΕ παράκειται· ῥητὴ ἄρα ἐστὶν ἡ ΔΗ καὶ ἀσύμμετρος τῇ ΔΕ μήκει. διὰ τὰ αὐτὰ δὴ καὶ ἡ ΗΚ ῥητή ἐστι καὶ ἀσύμμετρος τῇ ΗΖ, τουτέστι τῇ ΔΕ, μήκει. καὶ ἐπεὶ ἀσύμμετρά ἐστι τὰ ἀπὸ τῶν ΑΒ, ΒΓ τῷ δὶς ὑπὸ τῶν ΑΒ, ΒΓ, ἀσύμμετρόν ἐστι τὸ ΔΖ τῷ ΗΘ· ὥστε καὶ ἡ ΔΗ τῇ ΗΚ ἀσύμμετρός ἐστιν. καί εἰσι ῥηταί· αἱ ΔΗ, ΗΚ ἄρα ῥηταί εἰσι δυνάμει μόνον σύμμετροι· ἄλογος ἄρα ἐστὶν ἡ ΔΚ ἡ καλουμένη ἐκ δύο ὀνομάτων. ῥητὴ δὲ ἡ ΔΕ· ἄλογον ἄρα ἐστὶ τὸ ΔΘ καὶ ἡ δυναμένη αὐτὸ ἄλογός ἐστιν. δύναται δὲ τὸ ΘΔ ἡ ΑΓ· ἄλογος ἄρα ἐστὶν ἡ ΑΓ, καλείσθω δὲ δύο μέσα δυναμένη. ὅπερ ἔδει δεῖξαι.

λῆμμα

ὅτι δὲ αἱ εἰρημέναι ἄλογοι μοναχῶς διαιροῦνται εἰς τὰς εὐθείας, ἐξ ὧν σύγκεινται ποιουσῶν τὰ προκείμενα εἴδη, δείξομεν ἤδη προεκθέμενοι λημμάτιον τοιοῦτον·

Ἐκκείσθω εὐθεῖα ἡ ΑΒ καὶ τετμήσθω ἡ ὅλη εἰς ἄνισα καθʼ ἑκάτερον τῶν Γ, Δ, ὑποκείσθω δὲ μείζων ἡ ΑΓ τῆς ΔΒ· λέγω, ὅτι τὰ ἀπὸ τῶν ΑΓ, ΓΒ μείζονά ἐστι τῶν ἀπὸ τῶν ΑΔ, ΔΒ.

τετμήσθω γὰρ ἡ ΑΒ δίχα κατὰ τὸ Ε. καὶ ἐπεὶ μείζων ἐστὶν ἡ ΑΓ τῆς ΔΒ, κοινὴ ἀφῃρήσθω ἡ ΔΓ· λοιπὴ ἄρα ἡ ΑΔ λοιπῆς τῆς ΓΒ μείζων ἐστίν. ἴση δὲ ἡ ΑΕ τῇ ΕΒ· ἐλάττων ἄρα ἡ ΔΕ τῆς ΕΓ· τὰ Γ, Δ ἄρα σημεῖα οὐκ ἴσον ἀπέχουσι τῆς διχοτομίας. καὶ ἐπεὶ τὸ ὑπὸ τῶν ΑΓ, ΓΒ μετὰ τοῦ ἀπὸ τῆς ΕΓ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΕΒ, ἀλλὰ μὴν καὶ τὸ ὑπὸ τῶν ΑΔ, ΔΒ μετὰ τοῦ ἀπὸ ΔΕ ἴσον ἐστὶ τῷ ἀπὸ τῆς ΕΒ, τὸ ἄρα ὑπὸ τῶν ΑΓ, ΓΒ μετὰ τοῦ ἀπὸ τῆς ΕΓ ἴσον ἐστὶ τῷ ὑπὸ τῶν ΑΔ, ΔΒ μετὰ τοῦ ἀπὸ τῆς ΔΕ· ὧν τὸ ἀπὸ τῆς ΔΕ ἔλασσόν ἐστι τοῦ ἀπὸ τῆς ΕΓ· καὶ λοιπὸν ἄρα τὸ ὑπὸ τῶν ΑΓ, ΓΒ ἔλασσόν ἐστι τοῦ ὑπὸ τῶν ΑΔ, ΔΒ. ὥστε καὶ τὸ δὶς ὑπὸ τῶν ΑΓ, ΓΒ ἔλασσόν ἐστι τοῦ δὶς ὑπὸ ΑΔ, ΔΒ. καὶ λοιπὸν ἄρα τὸ συγκείμενον ἐκ τῶν ἀπὸ τῶν ΑΓ, ΓΒ μεῖζόν ἐστι τοῦ συγκειμένου ἐκ τῶν ἀπὸ τῶν ΑΔ, ΔΒ· ὅπερ ἔδει δεῖξαι.