Elementa

Euclid

Euclid. Euclidis Opera omnia, Volume 1-5. Heiberg, Johan Ludvig, editor. Leipzig: Teubner, 1883-88.

δύο μεγεθῶν ἀνίσων ἐκκειμένων, ἐὰν ἀπὸ τοῦ μείζονος ἀφαιρεθῇ μεῖζον ἢ τὸ ἥμισυ καὶ τοῦ καταλειπομένου μεῖζον ἢ τὸ ἥμισυ, καὶ τοῦτο ἀεὶ γίγνηται, λειφθήσεταί τι μέγεθος, ὃ ἔσται ἔλασσον τοῦ ἐκκειμένου ἐλάσσονος μεγέθους.

ἔστω δύο μεγέθη ἄνισα τὰ ΑΒ, Γ, ὧν μεῖζον τὸ ΑΒ· λέγω, ὅτι, ἐὰν ἀπὸ τοῦ ΑΒ ἀφαιρεθῇ μεῖζον ἢ τὸ ἥμισυ καὶ τοῦ καταλειπομένου μεῖζον ἢ τὸ ἥμισυ, καὶ τοῦτο ἀεὶ γίγνηται, λειφθήσεταί τι μέγεθος, ὃ ἔσται ἔλασσον τοῦ Γ μεγέθους.

τὸ Γ γὰρ πολλαπλασιαζόμενον ἔσται ποτὲ τοῦ ΑΒ μεῖζον. πεπολλαπλασιάσθω, καὶ ἔστω τὸ ΔΕ τοῦ μὲν Γ πολλαπλάσιον, τοῦ δὲ ΑΒ μεῖζον, καὶ διῃρήσθω τὸ ΔΕ εἰς τὰ τῷ Γ ἴσα τὰ ΔΖ, ΖΗ, ΗΕ, καὶ ἀφῃρήσθω ἀπὸ μὲν τοῦ ΑΒ μεῖζον ἢ τὸ ἥμισυ τὸ ΒΘ, ἀπὸ δὲ τοῦ ΑΘ μεῖζον ἢ τὸ ἥμισυ τὸ ΘΚ, καὶ τοῦτο ἀεὶ γιγνέσθω, ἕως ἂν αἱ ἐν τῷ ΑΒ διαιρέσεις ἰσοπληθεῖς γένωνται ταῖς ἐν τῷ ΔΕ διαιρέσεσιν.

ἔστωσαν οὖν αἱ ΑΚ, ΚΘ, ΘΒ διαιρέσεις ἰσοπληθεῖς οὖσαι ταῖς ΔΖ, ΖΗ, ΗΕ· καὶ ἐπεὶ μεῖζόν ἐστι τὸ ΔΕ τοῦ ΑΒ, καὶ ἀφῄρηται ἀπὸ μὲν τοῦ ΔΕ ἔλασσον τοῦ ἡμίσεος τὸ ΕΗ, ἀπὸ δὲ τοῦ ΑΒ μεῖζον ἢ τὸ ἥμισυ τὸ ΒΘ, λοιπὸν ἄρα τὸ ΗΔ λοιποῦ τοῦ ΘΑ μεῖζόν ἐστιν. καὶ ἐπεὶ μεῖζόν ἐστι τὸ ΗΔ τοῦ ΘΑ, καὶ ἀφῄρηται τοῦ μὲν ΗΔ ἥμισυ τὸ ΗΖ, τοῦ δὲ ΘΑ μεῖζον ἢ τὸ ἥμισυ τὸ ΘΚ, λοιπὸν ἄρα τὸ ΔΖ λοιποῦ τοῦ ΑΚ μεῖζόν ἐστιν. ἴσον δὲ τὸ ΔΖ τῷ Γ· καὶ τὸ Γ ἄρα τοῦ ΑΚ μεῖζόν ἐστιν. ἔλασσον ἄρα τὸ ΑΚ τοῦ Γ.

καταλείπεται ἄρα ἀπὸ τοῦ ΑΒ μεγέθους τὸ ΑΚ μέγεθος ἔλασσον ὂν τοῦ ἐκκειμένου ἐλάσσονος μεγέθους τοῦ Γ· ὅπερ ἔδει δεῖξαι. ¯ὁμοίως δὲ δειχθήσεται, κἂν ἡμίση ᾖ τὰ ἀφαιρούμενα.

ἐὰν δύο μεγεθῶν ἐκκειμένων ἀνίσων ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ καταλειπόμενον μηδέποτε καταμετρῇ τὸ πρὸ ἑαυτοῦ, ἀσύμμετρα ἔσται τὰ μεγέθη.

δύο γὰρ μεγεθῶν ὄντων ἀνίσων τῶν ΑΒ, ΓΔ καὶ ἐλάσσονος τοῦ ΑΒ ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος τὸ περιλειπόμενον μηδέποτε καταμετρείτω τὸ πρὸ ἑαυτοῦ· λέγω, ὅτι ἀσύμμετρά ἐστι τὰ ΑΒ, ΓΔ μεγέθη.

εἰ γάρ ἐστι σύμμετρα, μετρήσει τι αὐτὰ μέγεθος. μετρείτω, εἰ δυνατόν, καὶ ἔστω τὸ Ε· καὶ τὸ μὲν ΑΒ τὸ ΖΔ καταμετροῦν λειπέτω ἑαυτοῦ ἔλασσον τὸ ΓΖ, τὸ δὲ ΓΖ τὸ ΒΗ καταμετροῦν λειπέτω ἑαυτοῦ ἔλασσον τὸ ΑΗ, καὶ τοῦτο ἀεὶ γινέσθω, ἕως οὗ λειφθῇ τι μέγεθος, ὅ ἐστιν ἔλασσον τοῦ Ε. γεγονέτω, καὶ λελείφθω τὸ ΑΗ ἔλασσον τοῦ Ε. ἐπεὶ οὖν τὸ Ε τὸ ΑΒ μετρεῖ, ἀλλὰ τὸ ΑΒ τὸ ΔΖ μετρεῖ, καὶ τὸ Ε ἄρα τὸ ΖΔ μετρήσει. μετρεῖ δὲ καὶ ὅλον τὸ ΓΔ· καὶ λοιπὸν ἄρα τὸ ΓΖ μετρήσει. ἀλλὰ τὸ ΓΖ τὸ ΒΗ μετρεῖ· καὶ τὸ Ε ἄρα τὸ ΒΗ μετρεῖ. μετρεῖ δὲ καὶ ὅλον τὸ ΑΒ· καὶ λοιπὸν ἄρα τὸ ΑΗ μετρήσει, τὸ μεῖζον τὸ ἔλασσον. ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα τὰ ΑΒ, ΓΔ μεγέθη μετρήσει τι μέγεθος· ἀσύμμετρα ἄρα ἐστὶ τὰ ΑΒ, ΓΔ μεγέθη.

ἐὰν ἄρα δύο μεγεθῶν ἀνίσων, καὶ τὰ ἑξῆς.

δύο μεγεθῶν συμμέτρων δοθέντων τὸ μέγιστον αὐτῶν κοινὸν μέτρον εὑρεῖν.

ἔστω τὰ δοθέντα δύο μεγέθη σύμμετρα τὰ ΑΒ, ΓΔ, ὧν ἔλασσον τὸ ΑΒ· δεῖ δὴ τῶν ΑΒ, ΓΔ τὸ μέγιστον κοινὸν μέτρον εὑρεῖν.

τὸ ΑΒ γὰρ μέγεθος ἤτοι μετρεῖ τὸ ΓΔ ἢ οὔ. εἰ μὲν οὖν μετρεῖ, μετρεῖ δὲ καὶ ἑαυτό, τὸ ΑΒ ἄρα τῶν ΑΒ, ΓΔ κοινὸν μέτρον ἐστίν· καὶ φανερόν, ὅτι καὶ μέγιστον. μεῖζον γὰρ τοῦ ΑΒ μεγέθους τὸ ΑΒ οὐ μετρήσει.

μὴ μετρείτω δὴ τὸ ΑΒ τὸ ΓΔ. καὶ ἀνθυφαιρουμένου ἀεὶ τοῦ ἐλάσσονος ἀπὸ τοῦ μείζονος, τὸ περιλειπόμενον μετρήσει ποτὲ τὸ πρὸ ἑαυτοῦ διὰ τὸ μὴ εἶναι ἀσύμμετρα τὰ ΑΒ, ΓΔ· καὶ τὸ μὲν ΑΒ τὸ ΕΔ καταμετροῦν λειπέτω ἑαυτοῦ ἔλασσον τὸ ΕΓ, τὸ δὲ ΕΓ τὸ ΖΒ καταμετροῦν λειπέτω ἑαυτοῦ ἔλασσον τὸ ΑΖ, τὸ δὲ ΑΖ τὸ ΓΕ μετρείτω.

ἐπεὶ οὖν τὸ ΑΖ τὸ ΓΕ μετρεῖ, ἀλλὰ τὸ ΓΕ τὸ ΖΒ μετρεῖ, καὶ τὸ ΑΖ ἄρα τὸ ΖΒ μετρήσει. μετρεῖ δὲ καὶ ἑαυτό· καὶ ὅλον ἄρα τὸ ΑΒ μετρήσει τὸ ΑΖ. ἀλλὰ τὸ ΑΒ τὸ ΔΕ μετρεῖ· καὶ τὸ ΑΖ ἄρα τὸ ΕΔ μετρήσει. μετρεῖ δὲ καὶ τὸ ΓΕ· καὶ ὅλον ἄρα τὸ ΓΔ μετρεῖ· τὸ ΑΖ ἄρα τῶν ΑΒ, ΓΔ κοινὸν μέτρον ἐστίν. λέγω δή, ὅτι καὶ μέγιστον. εἰ γὰρ μή, ἔσται τι μέγεθος μεῖζον τοῦ ΑΖ, ὃ μετρήσει τὰ ΑΒ, ΓΔ. ἔστω τὸ Η. ἐπεὶ οὖν τὸ Η τὸ ΑΒ μετρεῖ, ἀλλὰ τὸ ΑΒ τὸ ΕΔ μετρεῖ, καὶ τὸ Η ἄρα τὸ ΕΔ μετρήσει. μετρεῖ δὲ καὶ ὅλον τὸ ΓΔ· καὶ λοιπὸν ἄρα τὸ ΓΕ μετρήσει τὸ Η. ἀλλὰ τὸ ΓΕ τὸ ΖΒ μετρεῖ· καὶ τὸ Η ἄρα τὸ ΖΒ μετρήσει. μετρεῖ δὲ καὶ ὅλον τὸ ΑΒ, καὶ λοιπὸν τὸ ΑΖ μετρήσει, τὸ μεῖζον τὸ ἔλασσον· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα μεῖζόν τι μέγεθος τοῦ ΑΖ τὰ ΑΒ, ΓΔ μετρήσει· τὸ ΑΖ ἄρα τῶν ΑΒ, ΓΔ τὸ μέγιστον κοινὸν μέτρον ἐστίν.

δύο ἄρα μεγεθῶν συμμέτρων δοθέντων τῶν ΑΒ, ΓΔ τὸ μέγιστον κοινὸν μέτρον ηὕρηται· ὅπερ ἔδει δεῖξαι.

Πόρισμα

ἐκ δὴ τούτου φανερόν, ὅτι, ἐὰν μέγεθος δύο μεγέθη μετρῇ, καὶ τὸ μέγιστον αὐτῶν κοινὸν μέτρον μετρήσει.

τριῶν μεγεθῶν συμμέτρων δοθέντων τὸ μέγιστον αὐτῶν κοινὸν μέτρον εὑρεῖν.

ἔστω τὰ δοθέντα τρία μεγέθη σύμμετρα τὰ Α, Β, Γ· δεῖ δὴ τῶν Α, Β, Γ τὸ μέγιστον κοινὸν μέτρον εὑρεῖν.

εἰλήφθω γὰρ δύο τῶν Α, Β τὸ μέγιστον κοινὸν μέτρον, καὶ ἔστω τὸ Δ· τὸ δὴ Δ τὸ Γ ἤτοι μετρεῖ ἢ οὔ μετρεῖ. μετρείτω πρότερον. ἐπεὶ οὖν τὸ Δ τὸ Γ μετρεῖ, μετρεῖ δὲ καὶ τὰ Α, Β, τὸ Δ ἄρα τὰ Α, Β, Γ μετρεῖ· τὸ Δ ἄρα τῶν Α, Β, Γ κοινὸν μέτρον ἐστίν. καὶ φανερόν, ὅτι καὶ μέγιστον· μεῖζον γὰρ τοῦ Δ μεγέθους τὰ Α, Β οὐ μετρεῖ.

μὴ μετρείτω δὴ τὸ Δ τὸ Γ. λέγω πρῶτον, ὅτι σύμμετρά ἐστι τὰ Γ, Δ. ἐπεὶ γὰρ σύμμετρά ἐστι τὰ Α, Β, Γ, μετρήσει τι αὐτὰ μέγεθος, ὃ δηλαδὴ καὶ τὰ Α, Β μετρήσει· ὥστε καὶ τὸ τῶν Α, Β μέγιστον κοινὸν μέτρον τὸ Δ μετρήσει. μετρεῖ δὲ καὶ τὸ Γ· ὥστε τὸ εἰρημένον μέγεθος μετρήσει τὰ Γ, Δ· σύμμετρα ἄρα ἐστὶ τὰ Γ, Δ. εἰλήφθω οὖν αὐτῶν τὸ μέγιστον κοινὸν μέτρον, καὶ ἔστω τὸ Ε. ἐπεὶ οὖν τὸ Ε τὸ Δ μετρεῖ, ἀλλὰ τὸ Δ τὰ Α, Β μετρεῖ, καὶ τὸ Ε ἄρα τὰ Α, Β μετρήσει. μετρεῖ δὲ καὶ τὸ Γ. τὸ Ε ἄρα τὰ Α, Β, Γ μετρεῖ· τὸ Ε ἄρα τῶν Α, Β, Γ κοινόν ἐστι μέτρον. λέγω δή, ὅτι καὶ μέγιστον. εἰ γὰρ δυνατόν, ἔστω τι τοῦ Ε μεῖζον μέγεθος τὸ Ζ, καὶ μετρείτω τὰ Α, Β, Γ. καὶ ἐπεὶ τὸ Ζ τὰ Α, Β, Γ μετρεῖ, καὶ τὰ Α, Β ἄρα μετρήσει καὶ τὸ τῶν Α, Β μέγιστον κοινὸν μέτρον μετρήσει. τὸ δὲ τῶν Α, Β μέγιστον κοινὸν μέτρον ἐστὶ τὸ Δ· τὸ Ζ ἄρα τὸ Δ μετρεῖ. μετρεῖ δὲ καὶ τὸ Γ· τὸ Ζ ἄρα τὰ Γ, Δ μετρεῖ· καὶ τὸ τῶν Γ, Δ ἄρα μέγιστον κοινὸν μέτρον μετρήσει τὸ Ζ. ἔστι δὲ τὸ ε· τὸ Ζ ἄρα τὸ Ε μετρήσει, τὸ μεῖζον τὸ ἔλασσον· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα μεῖζόν τι τοῦ Ε μεγέθους μέγεθος τὰ Α, Β, Γ μετρεῖ· τὸ Ε ἄρα τῶν Α, Β, Γ τὸ μέγιστον κοινὸν μέτρον ἐστίν, ἐὰν μὴ μετρῇ τὸ Δ τὸ Γ, ἐὰν δὲ μετρῇ, αὐτὸ τὸ Δ.

τριῶν ἄρα μεγεθῶν συμμέτρων δοθέντων τὸ μέγιστον κοινὸν μέτρον ηὕρηται ὅπερ ἔδει δεῖξαι.

Πόρισμα

ἐκ δὴ τούτου φανερόν, ὅτι, ἐὰν μέγεθος τρία μεγέθη μετρῇ, καὶ τὸ μέγιστον αὐτῶν κοινὸν μέτρον μετρήσει.

ὁμοίως δὴ καὶ ἐπὶ πλειόνων τὸ μέγιστον κοινὸν μέτρον ληφθήσεται, καὶ τὸ πόρισμα προχωρήσει. ὅπερ ἔδει δεῖξαι.

τὰ σύμμετρα μεγέθη πρὸς ἄλληλα λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν.

ἔστω σύμμετρα μεγέθη τὰ Α, Β· λέγω, ὅτι τὸ Α πρὸς τὸ Β λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν.

ἐπεὶ γὰρ σύμμετρά ἐστι τὰ Α, Β, μετρήσει τι αὐτὰ μέγεθος. μετρείτω, καὶ ἔστω τὸ Γ. καὶ ὁσάκις τὸ Γ τὸ Α μετρεῖ τοσαῦται μονάδες ἔστωσαν ἐν τῷ Δ, ὁσάκις δὲ τὸ Γ τὸ Β μετρεῖ, τοσαῦται μονάδες ἔστωσαν ἐν τῷ Ε.

ἐπεὶ οὖν τὸ Γ τὸ Α μετρεῖ κατὰ τὰς ἐν τῷ Δ μονάδας, μετρεῖ δὲ καὶ ἡ μονὰς τὸν Δ κατὰ τὰς ἐν αὐτῷ μονάδας, ἰσάκις ἄρα ἡ μονὰς τὸν Δ μετρεῖ ἀριθμὸν καὶ τὸ Γ μέγεθος τὸ Α· ἔστιν ἄρα ὡς τὸ Γ πρὸς τὸ Α, οὕτως ἡ μονὰς πρὸς τὸν Δ· ἀνάπαλιν ἄρα, ὡς τὸ Α πρὸς τὸ Γ, οὕτως ὁ Δ πρὸς τὴν μονάδα. πάλιν ἐπεὶ τὸ Γ τὸ Β μετρεῖ κατὰ τὰς ἐν τῷ Ε μονάδας, μετρεῖ δὲ καὶ ἡ μονὰς τὸν Ε κατὰ τὰς ἐν αὐτῷ μονάδας, ἰσάκις ἄρα ἡ μονὰς τὸν Ε μετρεῖ καὶ τὸ Γ τὸ Β· ἔστιν ἄρα ὡς τὸ Γ πρὸς τὸ Β, οὕτως ἡ μονὰς πρὸς τὸν Ε. ἐδείχθη δὲ καὶ ὡς τὸ Α πρὸς τὸ Γ, ὁ Δ πρὸς τὴν μονάδα· διʼ ἴσου ἄρα ἐστὶν ὡς τὸ Α πρὸς τὸ Β, οὕτως ὁ Δ ἀριθμὸς πρὸς τὸν Ε.

τὰ ἄρα σύμμετρα μεγέθη τὰ Α, Β πρὸς ἄλληλα λόγον ἔχει, ὃν ἀριθμὸς ὁ Δ πρὸς ἀριθμὸν τὸν Ε· ὅπερ ἔδει δεῖξαι.

ἐὰν δύο μεγέθη πρὸς ἄλληλα λόγον ἔχῃ, ὃν ἀριθμὸς πρὸς ἀριθμόν, σύμμετρα ἔσται τὰ μεγέθη.

δύο γὰρ μεγέθη τὰ Α, Β πρὸς ἄλληλα λόγον ἐχέτω, ὃν ἀριθμὸς ὁ Δ πρὸς ἀριθμὸν τὸν Ε· λέγω, ὅτι σύμμετρά ἐστι τὰ Α, Β μεγέθη.

ὅσαι γάρ εἰσιν ἐν τῷ Δ μονάδες, εἰς τοσαῦτα ἴσα διῃρήσθω τὸ Α, καὶ ἑνὶ αὐτῶν ἴσον ἔστω τὸ Γ· ὅσαι δέ εἰσιν ἐν τῷ Ε μονάδες, ἐκ τοσούτων μεγεθῶν ἴσων τῷ Γ συγκείσθω τὸ Ζ.

ἐπεὶ οὖν, ὅσαι εἰσὶν ἐν τῷ Δ μονάδες, τοσαῦτά εἰσι καὶ ἐν τῷ Α μεγέθη ἴσα τῷ Γ, ὃ ἄρα μέρος ἐστὶν ἡ μονὰς τοῦ Δ, τὸ αὐτὸ μέρος ἐστὶ καὶ τὸ Γ τοῦ Α· ἔστιν ἄρα ὡς τὸ Γ πρὸς τὸ Α, οὕτως ἡ μονὰς πρὸς τὸν Δ. μετρεῖ δὲ ἡ μονὰς τὸν Δ ἀριθμόν· μετρεῖ ἄρα καὶ τὸ Γ τὸ Α. καὶ ἐπεί ἐστιν ὡς τὸ Γ πρὸς τὸ Α, οὕτως ἡ μονὰς πρὸς τὸν Δ ἀριθμόν, ἀνάπαλιν ἄρα ὡς τὸ Α πρὸς τὸ Γ, οὕτως ὁ Δ ἀριθμὸς πρὸς τὴν μονάδα. πάλιν ἐπεί, ὅσαι εἰσὶν ἐν τῷ Ε μονάδες, τοσαῦτά εἰσι καὶ ἐν τῷ Ζ ἴσα τῷ Γ, ἔστιν ἄρα ὡς τὸ Γ πρὸς τὸ Ζ, οὕτως ἡ μονὰς πρὸς τὸν Ε ἀριθμόν. ἐδείχθη δὲ καὶ ὡς τὸ Α πρὸς τὸ Γ, οὕτως ὁ Δ πρὸς τὴν μονάδα· διʼ ἴσου ἄρα ἐστὶν ὡς τὸ Α πρὸς τὸ Ζ, οὕτως ὁ Δ πρὸς τὸν Ε. ἀλλʼ ὡς ὁ Δ πρὸς τὸν Ε, οὕτως ἐστὶ τὸ Α πρὸς τὸ Β· καὶ ὡς ἄρα τὸ Α πρὸς τὸ Β, οὕτως καὶ πρὸς τὸ Ζ. τὸ Α ἄρα πρὸς ἑκάτερον τῶν Β, Ζ τὸν αὐτὸν ἔχει λόγον· ἴσον ἄρα ἐστὶ τὸ Β τῷ Ζ. μετρεῖ δὲ τὸ Γ τὸ Ζ· μετρεῖ ἄρα καὶ τὸ Β. ἀλλὰ μὴν καὶ τὸ Α· τὸ Γ ἄρα τὰ Α, Β μετρεῖ. σύμμετρον ἄρα ἐστὶ τὸ Α τῷ Β.

ἐὰν ἄρα δύο μεγέθη πρὸς ἄλληλα, καὶ τὰ ἑξῆς.

Πόρισμα

ἐκ δὴ τούτου φανερόν, ὅτι, ἐὰν ὦσι δύο ἀριθμοί, ὡς οἱ Δ, Ε, καὶ εὐθεῖα, ὡς ἡ Α, δύνατόν ἐστι ποιῆσαι ὡς ὁ Δ ἀριθμὸς πρὸς τὸν Ε ἀριθμόν, οὕτως τὴν εὐθεῖαν πρὸς εὐθεῖαν. ἐὰν δὲ καὶ τῶν Α, Ζ μέση ἀνάλογον ληφθῇ, ὡς ἡ Β, ἔσται ὡς ἡ Α πρὸς τὴν Ζ, οὕτως τὸ ἀπὸ τῆς Α πρὸς τὸ ἀπὸ τῆς Β, τουτέστιν ὡς ἡ πρώτη πρὸς τὴν τρίτην, οὕτως τὸ ἀπὸ τῆς πρώτης πρὸς τὸ ἀπὸ τῆς δευτέρας τὸ ὅμοιον καὶ ὁμοίως ἀναγραφόμενον. ἀλλʼ ὡς ἡ Α πρὸς τὴν Ζ, οὕτως ἐστὶν ὁ Δ ἀριθμὸς πρὸς τὸν Ε ἀριθμόν· γέγονεν ἄρα καὶ ὡς ὁ Δ ἀριθμὸς πρὸς τὸν Ε ἀριθμόν, οὕτως τὸ ἀπὸ τῆς Α εὐθείας πρὸς τὸ ἀπὸ τῆς Β εὐθείας· ὅπερ ἔδει δεῖξαι.

τὰ ἀσύμμετρα μεγέθη πρὸς ἄλληλα λόγον οὐκ ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν.

ἔστω ἀσύμμετρα μεγέθη τὰ Α, Β· λέγω, ὅτι τὸ Α πρὸς τὸ Β λόγον οὐκ ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν.

εἰ γὰρ ἔχει τὸ Α πρὸς τὸ Β λόγον, ὃν ἀριθμὸς πρὸς ἀριθμόν, σύμμετρον ἔσται τὸ Α τῷ Β. οὐκ ἔστι δέ· οὐκ ἄρα τὸ Α πρὸς τὸ Β λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν.

τὰ ἄρα ἀσύμμετρα μεγέθη πρὸς ἄλληλα λόγον οὐκ ἔχει, καὶ τὰ ἑξῆς.

ἐὰν δύο μεγέθη πρὸς ἄλληλα λόγον μὴ ἔχῃ, ὃν ἀριθμὸς πρὸς ἀριθμόν, ἀσύμμετρα ἔσται τὰ μεγέθη.

δύο γὰρ μεγέθη τὰ Α, Β πρὸς ἄλληλα λόγον μὴ ἐχέτω, ὃν ἀριθμὸς πρὸς ἀριθμόν· λέγω, ὅτι ἀσύμμετρά ἐστι τὰ Α, Β μεγέθη.

εἰ γὰρ ἔσται σύμμετρα, τὸ Α πρὸς τὸ Β λόγον ἕξει, ὃν ἀριθμὸς πρὸς ἀριθμόν. οὐκ ἔχει δέ. ἀσύμμετρα ἄρα ἐστὶ τὰ Α, Β μεγέθη.

ἐὰν ἄρα δύο μεγέθη πρὸς ἄλληλα, καὶ τὰ ἑξῆς.

τὰ ἀπὸ τῶν μήκει συμμέτρων εὐθειῶν τετράγωνα πρὸς ἄλληλα λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν· καὶ τὰ τετράγωνα τὰ πρὸς ἄλληλα λόγον ἔχοντα, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, καὶ τὰς πλευρὰς ἕξει μήκει συμμέτρους. τὰ δὲ ἀπὸ τῶν μήκει ἀσυμμέτρων εὐθειῶν τετράγωνα πρὸς ἄλληλα λόγον οὐκ ἔχει, ὅνπερ τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν· καὶ τὰ τετράγωνα τὰ πρὸς ἄλληλα λόγον μὴ ἔχοντα, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, οὐδὲ τὰς πλευρὰς ἕξει μήκει συμμέτρους.

ἔστωσαν γὰρ αἱ Α, Β μήκει σύμμετροι· λέγω, ὅτι τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β τετράγωνον λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν.

ἐπεὶ γὰρ σύμμετρός ἐστιν ἡ Α τῇ Β μήκει, ἡ Α ἄρα πρὸς τὴν Β λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν. ἐχέτω, ὃν ὁ Γ πρὸς τὸν Δ. ἐπεὶ οὖν ἐστιν ὡς ἡ Α πρὸς τὴν Β, οὕτως ὁ Γ πρὸς τὸν Δ, ἀλλὰ τοῦ μὲν τῆς Α πρὸς τὴν Β λόγου διπλασίων ἐστὶν ὁ τοῦ ἀπὸ τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον· τὰ γὰρ ὅμοια σχήματα ἐν διπλασίονι λόγῳ ἐστὶ τῶν ὁμολόγων πλευρῶν· τοῦ δὲ τοῦ Γ ἀριθμοῦ πρὸς τὸν Δ ἀριθμὸν λόγου διπλασίων ἐστὶν ὁ τοῦ ἀπὸ τοῦ Γ τετραγώνου πρὸς τὸν ἀπὸ τοῦ Δ τετράγωνον· δύο γὰρ τετραγώνων ἀριθμῶν εἷς μέσος ἀνάλογόν ἐστιν ἀριθμός, καὶ ὁ τετράγωνος πρὸς τὸν τετράγωνον ἀριθμὸν διπλασίονα λόγον ἔχει, ἤπερ ἡ πλευρὰ πρὸς τὴν πλευράν· ἔστιν ἄρα καὶ ὡς τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β τετράγωνον, οὕτως ὁ ἀπὸ τοῦ Γ τετράγωνος ἀριθμὸς πρὸς τὸν ἀπὸ τοῦ Δ ἀριθμοῦ τετράγωνον ἀριθμόν.

ἀλλὰ δὴ ἔστω ὡς τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β, οὕτως ὁ ἀπὸ τοῦ Γ τετράγωνος πρὸς τὸν ἀπὸ τοῦ Δ τετράγωνον· λέγω, ὅτι σύμμετρός ἐστιν ἡ Α τῇ Β μήκει.

ἐπεὶ γάρ ἐστιν ὡς τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β τετράγωνον, οὕτως ὁ ἀπὸ τοῦ Γ τετράγωνος πρὸς τὸν ἀπὸ τοῦ Δ τετράγωνον, ἀλλʼ ὁ μὲν τοῦ ἀπὸ τῆς Α τετραγώνου πρὸς τὸ ἀπὸ τῆς Β τετράγωνον λόγος διπλασίων ἐστὶ τοῦ τῆς Α πρὸς τὴν Β λόγου, ὁ δὲ τοῦ ἀπὸ τοῦ Γ ἀριθμοῦ τετραγώνου ἀριθμοῦ πρὸς τὸν ἀπὸ τοῦ Δ ἀριθμοῦ τετράγωνον ἀριθμὸν λόγος διπλασίων ἐστὶ τοῦ τοῦ Γ ἀριθμοῦ πρὸς τὸν Δ ἀριθμὸν λόγου, ἔστιν ἄρα καὶ ὡς ἡ Α πρὸς τὴν Β, οὕτως ὁ Γ ἀριθμὸς πρὸς τὸν Δ ἀριθμόν. ἡ Α ἄρα πρὸς τὴν Β, λόγον ἔχει, ὃν ἀριθμὸς ὁ Γ πρὸς ἀριθμὸν τὸν Δ· σύμμετρος ἄρα ἐστὶν ἡ Α τῇ Β μήκει.

ἀλλὰ δὴ ἀσύμμετρος ἔστω ἡ Α τῇ Β μήκει· λέγω, ὅτι τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β τετράγωνον λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν.

εἰ γὰρ ἔχει τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β τετράγωνον λόγον, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, σύμμετρος ἔσται ἡ Α τῇ Β. οὐκ ἔστι δέ· οὐκ ἄρα τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β τετράγωνον λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν.

πάλιν δὴ τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Β τετράγωνον λόγον μὴ ἐχέτω, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν· λέγω, ὅτι ἀσύμμετρός ἐστιν ἡ Α τῇ Β μήκει.

εἰ γάρ ἐστι σύμμετρος ἡ Α τῇ Β, ἕξει τὸ ἀπὸ τῆς Α πρὸς τὸ ἀπὸ τῆς Β λόγον, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. οὐκ ἔχει δέ· οὐκ ἄρα σύμμετρός ἐστιν ἡ Α τῇ Β μήκει.

τὰ ἄρα ἀπὸ τῶν μήκει συμμέτρων, καὶ τὰ ἑξῆς.

Πόρισμα

καὶ φανερὸν ἐκ τῶν δεδειγμένων ἔσται, ὅτι αἱ μήκει σύμμετροι πάντως καὶ δυνάμει, αἱ δὲ δυνάμει οὐ πάντως καὶ μήκει [εἴπερ τὰ ἀπὸ τῶν μήκει συμμέτρων εὐθειῶν τετράγωνα λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, τὰ δὲ λόγον ἔχοντα, ὃν ἀριθμὸς πρὸς ἀριθμόν, σύμμετρά ἐστιν. ὥστε αἱ μήκει σύμμετροι εὐθεῖαι οὐ μόνον εἰσὶ μήκει σύμμετροι, ἀλλὰ καὶ δυνάμει.

πάλιν ἐπεί, ὅσα τετράγωνα πρὸς ἄλληλα λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, μήκει ἐδείχθη σύμμετρα καὶ δυνάμει ὄντα σύμμετρα τῷ τὰ τετράγωνα λόγον ἔχειν, ὃν ἀριθμὸς πρὸς ἀριθμόν, ὅσα ἄρα τετράγωνα λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, ἀλλὰ ἁπλῶς, ὃν ἀριθμὸς πρὸς ἀριθμόν, σύμμετρα μὲν ἔσται αὐτὰ τὰ τετράγωνα δυνάμει, οὐκέτι δὲ καὶ μήκει· ὥστε τὰ μὲν μήκει σύμμετρα πάντως καὶ δυνάμει, τὰ δὲ δυνάμει οὐ πάντως καὶ μήκει, εἰ μὴ καὶ λόγον ἔχοιεν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν.

λέγω δή, ὅτι καὶ αἱ μήκει ἀσύμμετροι οὐ πάντως καὶ δυνάμει, ἐπειδήπερ αἱ δυνάμει σύμμετροι δύνανται λόγον μὴ ἔχειν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, καὶ διὰ τοῦτο δυνάμει οὖσαι σύμμετροι μήκει εἰσὶν ἀσύμμετροι. ὥστε οὐχ αἱ τῷ μήκει ἀσύμμετροι πάντως καὶ δυνάμει, ἀλλὰ δύνανται μήκει οὖσαι ἀσύμμετροι δυνάμει εἶναι καὶ ἀσύμμετροι καὶ σύμμετροι.

αἱ δὲ δυνάμει ἀσύμμετροι πάντως καὶ μήκει ἀσύμμετροι· εἰ γὰρ εἰσι μήκει σύμμετροι, ἔσονται καὶ δυνάμει σύμμετροι. ὑπόκεινται δὲ καὶ ἀσύμμετροι· ὅπερ ἄτοπον. αἱ ἄρα δυνάμει ἀσύμμετροι πάντως καὶ μήκει].

λῆμμα

δέδεικται ἐν τοῖς ἀριθμητικοῖς, ὅτι οἱ ὅμοιοι ἐπίπεδοι ἀριθμοὶ πρὸς ἀλλήλους λόγον ἔχουσιν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, καὶ ὅτι, ἐὰν δύο ἀριθμοὶ πρὸς ἀλλήλους λόγον ἔχωσιν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, ὅμοιοί εἰσιν ἐπίπεδοι. καὶ δῆλον ἐκ τούτων, ὅτι οἱ μὴ ὅμοιοι ἐπίπεδοι ἀριθμοί, τουτέστιν οἱ μὴ ἀνάλογον ἔχοντες τὰς πλευράς, πρὸς ἀλλήλους λόγον οὐκ ἔχουσιν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν. εἰ γὰρ ἕξουσιν, ὅμοιοι ἐπίπεδοι ἔσονται· ὅπερ οὐχ ὑπόκειται. οἱ ἄρα μὴ ὅμοιοι ἐπίπεδοι πρὸς ἀλλήλους λόγον οὐκ ἔχουσιν, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν.

τῇ προτεθείσῃ εὐθείᾳ προσευρεῖν δύο εὐθείας ἀσυμμέτρους, τὴν μὲν μήκει μόνον, τὴν δὲ καὶ δυνάμει.

ἔστω ἡ προτεθεῖσα εὐθεῖα ἡ Α· δεῖ δὴ τῇ Α προσευρεῖν δύο εὐθείας ἀσυμμέτρους, τὴν μὲν μήκει μόνον, τὴν δὲ καὶ δυνάμει.

Ἐκκείσθωσαν γὰρ δύο ἀριθμοὶ οἱ Β, Γ πρὸς ἀλλήλους λόγον μὴ ἔχοντες, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, τουτέστι μὴ ὅμοιοι ἐπίπεδοι, καὶ γεγονέτω ὡς ὁ Β πρὸς τὸν Γ, οὕτως τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Δ τετράγωνον· ἐμάθομεν γάρ· σύμμετρον ἄρα τὸ ἀπὸ τῆς Α τῷ ἀπὸ τῆς Δ. καὶ ἐπεὶ ὁ Β πρὸς τὸν Γ λόγον οὐκ ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν, οὐδʼ ἄρα τὸ ἀπὸ τῆς Α πρὸς τὸ ἀπὸ τῆς Δ λόγον ἔχει, ὃν τετράγωνος ἀριθμὸς πρὸς τετράγωνον ἀριθμόν· ἀσύμμετρος ἄρα ἐστὶν ἡ Α τῇ Δ μήκει. εἰλήφθω τῶν Α, Δ μέση ἀνάλογον ἡ Ε· ἔστιν ἄρα ὡς ἡ Α πρὸς τὴν Δ, οὕτως τὸ ἀπὸ τῆς Α τετράγωνον πρὸς τὸ ἀπὸ τῆς Ε. ἀσύμμετρος δέ ἐστιν ἡ Α τῇ Δ μήκει· ἀσύμμετρον ἄρα ἐστὶ καὶ τὸ ἀπὸ τῆς Α τετράγωνον τῷ ἀπὸ τῆς Ε τετραγώνῳ· ἀσύμμετρος ἄρα ἐστὶν ἡ Α τῇ Ε δυνάμει.

τῇ ἄρα προτεθείσῃ εὐθείᾳ τῇ Α προσεύρηνται δύο εὐθεῖαι ἀσύμμετροι αἱ Δ, Ε, μήκει μὲν μόνον ἡ Δ, δυνάμει δὲ καὶ μήκει δηλαδὴ ἡ Ε ὅπερ ἔδει δεῖξαι.

ἐὰν τέσσαρα μεγέθη ἀνάλογον ᾖ, τὸ δὲ πρῶτον τῷ δευτέρῳ σύμμετρον ᾖ, καὶ τὸ τρίτον τῷ τετάρτῳ σύμμετρον ἔσται· κἂν τὸ πρῶτον τῷ δευτέρῳ ἀσύμμετρον ᾖ, καὶ τὸ τρίτον τῷ τετάρτῳ ἀσύμμετρον ἔσται.

ἔστωσαν τέσσαρα μεγέθη ἀνάλογον τὰ Α, Β, Γ, Δ, ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Γ πρὸς τὸ Δ, τὸ Α δὲ τῷ Β σύμμετρον ἔστω· λέγω, ὅτι καὶ τὸ Γ τῷ Δ σύμμετρον ἔσται.

ἐπεὶ γὰρ σύμμετρόν ἐστι τὸ Α τῷ Β, τὸ Α ἄρα πρὸς τὸ Β λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν. καί ἐστιν ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Γ πρὸς τὸ Δ· καὶ τὸ Γ ἄρα πρὸς τὸ Δ λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν· σύμμετρον ἄρα ἐστὶ τὸ Γ τῷ Δ.

ἀλλὰ δὴ τὸ Α τῷ Β ἀσύμμετρον ἔστω· λέγω, ὅτι καὶ τὸ Γ τῷ Δ ἀσύμμετρον ἔσται. ἐπεὶ γὰρ ἀσύμμετρόν ἐστι τὸ Α τῷ Β, τὸ Α ἄρα πρὸς τὸ Β λόγον οὐκ ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν. καί ἐστιν ὡς τὸ Α πρὸς τὸ Β, οὕτως τὸ Γ πρὸς τὸ Δ· οὐδὲ τὸ Γ ἄρα πρὸς τὸ Δ λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν· ἀσύμμετρον ἄρα ἐστὶ τὸ Γ τῷ Δ.

ἐὰν ἄρα τέσσαρα μεγέθη, καὶ τὰ ἑξῆς.

τὰ τῷ αὐτῷ μεγέθει σύμμετρα καὶ ἀλλήλοις ἐστὶ σύμμετρα.

ἑκάτερον γὰρ τῶν Α, Β τῷ Γ ἔστω σύμμετρον. λέγω, ὅτι καὶ τὸ Α τῷ Β ἐστι σύμμετρον.

ἐπεὶ γὰρ σύμμετρόν ἐστι τὸ Α τῷ Γ, τὸ Α ἄρα πρὸς τὸ Γ λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν. ἐχέτω, ὃν ὁ Δ πρὸς τὸν Ε. πάλιν, ἐπεὶ σύμμετρόν ἐστι τὸ Γ τῷ Β, τὸ Γ ἄρα πρὸς τὸ Β λόγον ἔχει, ὃν ἀριθμὸς πρὸς ἀριθμόν. ἐχέτω, ὃν ὁ Ζ πρὸς τὸν Η. καὶ λόγων δοθέντων ὁποσωνοῦν τοῦ τε, ὃν ἔχει ὁ Δ πρὸς τὸν Ε, καὶ ὁ Ζ πρὸς τὸν Η εἰλήφθωσαν ἀριθμοὶ ἑξῆς ἐν τοῖς δοθεῖσι λόγοις οἱ Θ, Κ, Λ· ὥστε εἶναι ὡς μὲν τὸν Δ πρὸς τὸν Ε, οὕτως τὸν Θ πρὸς τὸν Κ, ὡς δὲ τὸν Ζ πρὸς τὸν Η, οὕτως τὸν Κ πρὸς τὸν Λ.

ἐπεὶ οὖν ἐστιν ὡς τὸ Α πρὸς τὸ Γ, οὕτως ὁ Δ πρὸς τὸν Ε, ἀλλʼ ὡς ὁ Δ πρὸς τὸν Ε, οὕτως ὁ Θ πρὸς τὸν Κ, ἔστιν ἄρα καὶ ὡς τὸ Α πρὸς τὸ Γ, οὕτως ὁ Θ πρὸς τὸν Κ. πάλιν, ἐπεί ἐστιν ὡς τὸ Γ πρὸς τὸ Β, οὕτως ὁ Ζ πρὸς τὸν Η, ἀλλʼ ὡς ὁ Ζ πρὸς τὸν Η, οὕτως ὁ Κ πρὸς τὸν Λ, καὶ ὡς ἄρα τὸ Γ πρὸς τὸ Β, οὕτως ὁ Κ πρὸς τὸν Λ. ἔστι δὲ καὶ ὡς τὸ Α πρὸς τὸ Γ, οὕτως ὁ Θ πρὸς τὸν Κ· διʼ ἴσου ἄρα ἐστὶν ὡς τὸ Α πρὸς τὸ Β, οὕτως ὁ Θ πρὸς τὸν Λ. τὸ Α ἄρα πρὸς τὸ Β λόγον ἔχει, ὃν ἀριθμὸς ὁ Θ πρὸς ἀριθμὸν τὸν Λ· σύμμετρον ἄρα ἐστὶ τὸ Α τῷ Β.

τὰ ἄρα τῷ αὐτῷ μεγέθει σύμμετρα καὶ ἀλλήλοις ἐστὶ σύμμετρα· ὅπερ ἔδει δεῖξαι.

ἐὰν ᾖ δύο μεγέθη σύμμετρα, τὸ δὲ ἕτερον αὐτῶν μεγέθει τινὶ ἀσύμμετρον ᾖ, καὶ τὸ λοιπὸν τῷ αὐτῷ ἀσύμμετρον ἔσται.

ἔστω δύο μεγέθη σύμμετρα τὰ Α, Β, τὸ δὲ ἕτερον αὐτῶν τὸ Α ἄλλῳ τινὶ τῷ Γ ἀσύμμετρον ἔστω· λέγω, ὅτι καὶ τὸ λοιπὸν τὸ Β τῷ Γ ἀσύμμετρόν ἐστιν.

εἰ γάρ ἐστι σύμμετρον τὸ Β τῷ Γ, ἀλλὰ καὶ τὸ Α τῷ Β σύμμετρόν ἐστιν, καὶ τὸ Α ἄρα τῷ Γ σύμμετρόν ἐστιν. ἀλλὰ καὶ ἀσύμμετρον· ὅπερ ἀδύνατον. οὐκ ἄρα σύμμετρόν ἐστι τὸ Β τῷ Γ· ἀσύμμετρον ἄρα.

ἐὰν ἄρα ᾖ δύο μεγέθη σύμμετρα, καὶ τὰ ἑξῆς.

λῆμμα

δύο δοθεισῶν εὐθειῶν ἀνίσων εὑρεῖν, τίνι μεῖζον δύναται ἡ μείζων τῆς ἐλάσσονος.

ἔστωσαν αἱ δοθεῖσαι δύο ἄνισοι εὐθεῖαι αἱ ΑΒ, Γ, ὧν μείζων ἔστω ἡ ΑΒ· δεῖ δὴ εὑρεῖν, τίνι μεῖζον δύναται ἡ ΑΒ τῆς Γ.

γεγράφθω ἐπὶ τῆς ΑΒ ἡμικύκλιον τὸ ΑΔΒ, καὶ εἰς αὐτὸ ἐνηρμόσθω τῇ Γ ἴση ἡ ΑΔ, καὶ ἐπεζεύχθω ἡ ΔΒ. φανερὸν δή, ὅτι ὀρθή ἐστιν ἡ ὑπὸ ΑΔΒ γωνία, καὶ ὅτι ἡ ΑΒ τῆς ΑΔ, τουτέστι τῆς Γ, μεῖζον δύναται τῇ ΔΒ.

ὁμοίως δὲ καὶ δύο δοθεισῶν εὐθειῶν ἡ δυναμένη αὐτὰς εὑρίσκεται οὕτως.

ἔστωσαν αἱ δοθεῖσαι δύο εὐθεῖαι αἱ ΑΔ, ΔΒ, καὶ δέον ἔστω εὑρεῖν τὴν δυναμένην αὐτάς. κείσθωσαν γάρ, ὥστε ὀρθὴν γωνίαν περιέχειν τὴν ὑπὸ ΑΔ, ΔΒ, καὶ ἐπεζεύχθω ἡ ΑΒ· φανερὸν πάλιν, ὅτι ἡ τὰς ΑΔ, ΔΒ δυναμένη ἐστὶν ἡ ΑΒ· ὅπερ ἔδει δεῖξαι.

ἐὰν τέσσαρες εὐθεῖαι ἀνάλογον ὦσιν, δύνηται δὲ ἡ πρώτη τῆς δευτέρας μεῖζον τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει, καὶ ἡ τρίτη τῆς τετάρτης μεῖζον δυνήσεται τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει. καὶ ἐὰν ἡ πρώτη τῆς δευτέρας μεῖζον δύνηται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει, καὶ ἡ τρίτη τῆς τετάρτης μεῖζον δυνήσεται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ μήκει.

ἔστωσαν τέσσαρες εὐθεῖαι ἀνάλογον αἱ Α, Β, Γ, Δ, ὡς ἡ Α πρὸς τὴν Β, οὕτως ἡ Γ πρὸς τὴν Δ, καὶ ἡ Α μὲν τῆς β μεῖζον δυνάσθω τῷ ἀπὸ τῆς Ε, ἡ δὲ Γ τῆς Δ μεῖζον δυνάσθω τῷ ἀπὸ τῆς Ζ· λέγω, ὅτι, εἴτε σύμμετρός ἐστιν ἡ Α τῇ Ε, σύμμετρός ἐστι καὶ ἡ Γ τῇ Ζ, εἴτε ἀσύμμετρός ἐστιν ἡ Α τῇ Ε, ἀσύμμετρός ἐστι καὶ ἡ Γ τῇ Ζ.

ἐπεὶ γάρ ἐστιν ὡς ἡ Α πρὸς τὴν Β, οὕτως ἡ Γ πρὸς τὴν Δ, ἔστιν ἄρα καὶ ὡς τὸ ἀπὸ τῆς Α πρὸς τὸ ἀπὸ τῆς Β, οὕτως τὸ ἀπὸ τῆς Γ πρὸς τὸ ἀπὸ τῆς Δ. ἀλλὰ τῷ μὲν ἀπὸ τῆς Α ἴσα ἐστὶ τὰ ἀπὸ τῶν Ε, Β, τῷ δὲ ἀπὸ τῆς Γ ἴσα ἐστὶ τὰ ἀπὸ τῶν Δ, Ζ. ἔστιν ἄρα ὡς τὰ ἀπὸ τῶν Ε, Β πρὸς τὸ ἀπὸ τῆς Β, οὕτως τὰ ἀπὸ τῶν Δ, Ζ πρὸς τὸ ἀπὸ τῆς Δ· διελόντι ἄρα ἐστὶν ὡς τὸ ἀπὸ τῆς Ε πρὸς τὸ ἀπὸ τῆς Β, οὕτως τὸ ἀπὸ τῆς Ζ πρὸς τὸ ἀπὸ τῆς Δ· ἔστιν ἄρα καὶ ὡς ἡ Ε πρὸς τὴν Β, οὕτως ἡ Ζ πρὸς τὴν Δ· ἀνάπαλιν ἄρα ἐστὶν ὡς ἡ Β πρὸς τὴν Ε, οὕτως ἡ Δ πρὸς τὴν Ζ. ἔστι δὲ καὶ ὡς ἡ Α πρὸς τὴν Β, οὕτως ἡ Γ πρὸς τὴν Δ· διʼ ἴσου ἄρα ἐστὶν ὡς ἡ Α πρὸς τὴν Ε, οὕτως ἡ Γ πρὸς τὴν Ζ. εἴτε οὖν σύμμετρός ἐστιν ἡ Α τῇ Ε, σύμμετρός ἐστι καὶ ἡ Γ τῇ Ζ, εἴτε ἀσύμμετρός ἐστιν ἡ Α τῇ Ε, ἀσύμμετρός ἐστι καὶ ἡ Γ τῇ Ζ.

ἐὰν ἄρα, καὶ τὰ ἑξῆς.

ἐὰν δύο μεγέθη σύμμετρα συντεθῇ, καὶ τὸ ὅλον ἑκατέρῳ αὐτῶν σύμμετρον ἔσται· κἂν τὸ ὅλον ἑνὶ αὐτῶν σύμμετρον ᾖ, καὶ τὰ ἐξ ἀρχῆς μεγέθη σύμμετρα ἔσται.

Συγκείσθω γὰρ δύο μεγέθη σύμμετρα τὰ ΑΒ, ΒΓ· λέγω, ὅτι καὶ ὅλον τὸ ΑΓ ἑκατέρῳ τῶν ΑΒ, ΒΓ ἐστι σύμμετρον.

ἐπεὶ γὰρ σύμμετρά ἐστι τὰ ΑΒ, ΒΓ, μετρήσει τι αὐτὰ μέγεθος. μετρείτω, καὶ ἔστω τὸ Δ. ἐπεὶ οὖν τὸ Δ τὰ ΑΒ, ΒΓ μετρεῖ, καὶ ὅλον τὸ ΑΓ μετρήσει. μετρεῖ δὲ καὶ τὰ ΑΒ, ΒΓ. τὸ Δ ἄρα τὰ ΑΒ, ΒΓ, ΑΓ μετρεῖ· σύμμετρον ἄρα ἐστὶ τὸ ΑΓ ἑκατέρῳ τῶν ΑΒ, ΒΓ.

ἀλλὰ δὴ τὸ ΑΓ ἔστω σύμμετρον τῷ ΑΒ· λέγω δή, ὅτι καὶ τὰ ΑΒ, ΒΓ σύμμετρά ἐστιν.

ἐπεὶ γὰρ σύμμετρά ἐστι τὰ ΑΓ, ΑΒ, μετρήσει τι αὐτὰ μέγεθος. μετρείτω, καὶ ἔστω τὸ Δ. ἐπεὶ οὖν τὸ Δ τὰ ΓΑ, ΑΒ μετρεῖ, καὶ λοιπὸν ἄρα τὸ ΒΓ μετρήσει. μετρεῖ δὲ καὶ τὸ ΑΒ· τὸ Δ ἄρα τὰ ΑΒ, ΒΓ μετρήσει· σύμμετρα ἄρα ἐστὶ τὰ ΑΒ, ΒΓ.

ἐὰν ἄρα δύο μεγέθη, καὶ τὰ ἑξῆς.

ἐὰν δύο μεγέθη ἀσύμμετρα συντεθῇ, καὶ τὸ ὅλον ἑκατέρῳ αὐτῶν ἀσύμμετρον ἔσται· κἂν τὸ ὅλον ἑνὶ αὐτῶν ἀσύμμετρον ᾖ, καὶ τὰ ἐξ ἀρχῆς μεγέθη ἀσύμμετρα ἔσται.

Συγκείσθω γὰρ δύο μεγέθη ἀσύμμετρα τὰ ΑΒ, ΒΓ· λέγω, ὅτι καὶ ὅλον τὸ ΑΓ ἑκατέρῳ τῶν ΑΒ, ΒΓ ἀσύμμετρόν ἐστιν.

εἰ γὰρ μή ἐστιν ἀσύμμετρα τὰ ΓΑ, ΑΒ, μετρήσει τι αὐτὰ μέγεθος. μετρείτω, εἰ δυνατόν, καὶ ἔστω τὸ Δ. ἐπεὶ οὖν τὸ Δ τὰ ΓΑ, ΑΒ μετρεῖ, καὶ λοιπὸν ἄρα τὸ ΒΓ μετρήσει. μετρεῖ δὲ καὶ τὸ ΑΒ· τὸ Δ ἄρα τὰ ΑΒ, ΒΓ μετρεῖ. σύμμετρα ἄρα ἐστὶ τὰ ΑΒ, ΒΓ· ὑπέκειντο δὲ καὶ ἀσύμμετρα· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα τὰ ΓΑ, ΑΒ μετρήσει τι μέγεθος· ἀσύμμετρα ἄρα ἐστὶ τὰ ΓΑ, ΑΒ. ὁμοίως δὴ δείξομεν, ὅτι καὶ τὰ ΑΓ, ΓΒ ἀσύμμετρά ἐστιν. τὸ ΑΓ ἄρα ἑκατέρῳ τῶν ΑΒ, ΒΓ ἀσύμμετρόν ἐστιν.

ἀλλὰ δὴ τὸ ΑΓ ἑνὶ τῶν ΑΒ, ΒΓ ἀσύμμετρον ἔστω. ἔστω δὴ πρότερον τῷ ΑΒ· λέγω, ὅτι καὶ τὰ ΑΒ, ΒΓ ἀσύμμετρά ἐστιν. εἰ γὰρ ἔσται σύμμετρα, μετρήσει τι αὐτὰ μέγεθος. μετρείτω, καὶ ἔστω τὸ Δ. ἐπεὶ οὖν τὸ Δ τὰ ΑΒ, ΒΓ μετρεῖ, καὶ ὅλον ἄρα τὸ ΑΓ μετρήσει. μετρεῖ δὲ καὶ τὸ ΑΒ· τὸ Δ ἄρα τὰ ΓΑ, ΑΒ μετρεῖ. σύμμετρα ἄρα ἐστὶ τὰ ΓΑ, ΑΒ· ὑπέκειτο δὲ καὶ ἀσύμμετρα· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα τὰ ΑΒ, ΒΓ μετρήσει τι μέγεθος· ἀσύμμετρα ἄρα ἐστὶ τὰ ΑΒ, ΒΓ.

ἐὰν ἄρα δύο μεγέθη, καὶ τὰ ἑξῆς.

λῆμμα

ἐὰν παρά τινα εὐθεῖαν παραβληθῇ παραλληλόγραμμον ἐλλεῖπον εἴδει τετραγώνῳ, τὸ παραβληθὲν ἴσον ἐστὶ τῷ ὑπὸ τῶν ἐκ τῆς παραβολῆς γενομένων τμημάτων τῆς εὐθείας.

παρὰ γὰρ εὐθεῖαν τὴν ΑΒ παραβεβλήσθω παραλληλόγραμμον τὸ ΑΔ ἐλλεῖπον εἴδει τετραγώνῳ τῷ ΔΒ· λέγω, ὅτι ἴσον ἐστὶ τὸ ΑΔ τῷ ὑπὸ τῶν ΑΓ, ΓΒ.

καί ἐστιν αὐτόθεν φανερόν· ἐπεὶ γὰρ τετράγωνόν ἐστι τὸ ΔΒ, ἴση ἐστὶν ἡ ΔΓ τῇ ΓΒ, καί ἐστι τὸ ΑΔ τὸ ὑπὸ τῶν ΑΓ, ΓΔ, τουτέστι τὸ ὑπὸ τῶν ΑΓ, ΓΒ.

ἐὰν ἄρα παρά τινα εὐθεῖαν, καὶ τὰ ἑξῆς.

ἐὰν ὦσι δύο εὐθεῖαι ἄνισοι, τῷ δὲ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ἐλάσσονος ἴσον παρὰ τὴν μείζονα παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ καὶ εἰς σύμμετρα αὐτὴν διαιρῇ μήκει, ἡ μείζων τῆς ἐλάσσονος μεῖζον δυνήσεται τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει. καὶ ἐὰν ἡ μείζων τῆς ἐλάσσονος μεῖζον δύνηται τῷ ἀπὸ συμμέτρου ἑαυτῇ μήκει, τῷ δὲ τετάρτῳ τοῦ ἀπὸ τῆς ἐλάσσονος ἴσον παρὰ τὴν μείζονα παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ, εἰς σύμμετρα αὐτὴν διαιρεῖ μήκει.

ἔστωσαν δύο εὐθεῖαι ἄνισοι αἱ Α, ΒΓ, ὧν μείζων ἡ ΒΓ, τῷ δὲ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ἐλάσσονος τῆς Α, τουτέστι τῷ ἀπὸ τῆς ἡμισείας τῆς Α, ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώνῳ, καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ, ΔΓ, σύμμετρος δὲ ἔστω ἡ ΒΔ τῇ ΔΓ μήκει· λέγω, ὅτι ἡ ΒΓ τῆς Α μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ.

τετμήσθω γὰρ ἡ ΒΓ δίχα κατὰ τὸ Ε σημεῖον, καὶ κείσθω τῇ ΔΕ ἴση ἡ ΕΖ. λοιπὴ ἄρα ἡ ΔΓ ἴση ἐστὶ τῇ ΒΖ. καὶ ἐπεὶ εὐθεῖα ἡ ΒΓ τέτμηται εἰς μὲν ἴσα κατὰ τὸ Ε, εἰς δὲ ἄνισα κατὰ τὸ Δ, τὸ ἄρα ὑπὸ ΒΔ, ΔΓ περιεχόμενον ὀρθογώνιον μετὰ τοῦ ἀπὸ τῆς ΕΔ τετραγώνου ἴσον ἐστὶ τῷ ἀπὸ τῆς ΕΓ τετραγώνῳ· καὶ τὰ τετραπλάσια· τὸ ἄρα τετράκις ὑπὸ τῶν ΒΔ, ΔΓ μετὰ τοῦ τετραπλασίου τοῦ ἀπὸ τῆς ΔΕ ἴσον ἐστὶ τῷ τετράκις ἀπὸ τῆς ΕΓ τετραγώνῳ. ἀλλὰ τῷ μέν τετραπλασίῳ τοῦ ὑπὸ τῶν ΒΔ, ΔΓ ἴσον ἐστὶ τὸ ἀπὸ τῆς Α τετράγωνον, τῷ δὲ τετραπλασίῳ τοῦ ἀπὸ τῆς ΔΕ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΔΖ τετράγωνον· διπλασίων γάρ ἐστιν ἡ ΔΖ τῆς ΔΕ. τῷ δὲ τετραπλασίῳ τοῦ ἀπὸ τῆς ΕΓ ἴσον ἐστὶ τὸ ἀπὸ τῆς ΒΓ τετράγωνον· διπλασίων γάρ ἐστι πάλιν ἡ ΒΓ τῆς ΓΕ. τὰ ἄρα ἀπὸ τῶν Α, ΔΖ τετράγωνα ἴσα ἐστὶ τῷ ἀπὸ τῆς ΒΓ τετραγώνῳ· ὥστε τὸ ἀπὸ τῆς ΒΓ τοῦ ἀπὸ τῆς Α μεῖζόν ἐστι τῷ ἀπὸ τῆς ΔΖ· ἡ ΒΓ ἄρα τῆς Α μεῖζον δύναται τῇ ΔΖ. δεικτέον, ὅτι καὶ σύμμετρός ἐστιν ἡ ΒΓ τῇ ΔΖ. ἐπεὶ γὰρ σύμμετρός ἐστιν ἡ ΒΔ τῇ ΔΓ μήκει, σύμμετρος ἄρα ἐστὶ καὶ ἡ ΒΓ τῇ ΓΔ μήκει. ἀλλὰ ἡ ΓΔ ταῖς ΓΔ, ΒΖ ἐστι σύμμετρος μήκει· ἴση γάρ ἐστιν ἡ ΓΔ τῇ ΒΖ. καὶ ἡ ΒΓ ἄρα σύμμετρός ἐστι ταῖς ΒΖ, ΓΔ μήκει· ὥστε καὶ λοιπῇ τῇ ΖΔ σύμμετρός ἐστιν ἡ ΒΓ μήκει· ἡ ΒΓ ἄρα τῆς Α μεῖζον δύναται τῷ ἀπὸ συμμέτρου ἑαυτῇ.

ἀλλὰ δὴ ἡ ΒΓ τῆς Α μεῖζον δυνάσθω τῷ ἀπὸ συμμέτρου ἑαυτῇ, τῷ δὲ τετάρτῳ τοῦ ἀπὸ τῆς Α ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώνῳ, καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ, ΔΓ. δεικτέον, ὅτι σύμμετρός ἐστιν ἡ ΒΔ τῇ ΔΓ μήκει.

τῶν γὰρ αὐτῶν κατασκευασθέντων ὁμοίως δείξομεν, ὅτι ἡ ΒΓ τῆς Α μεῖζον δύναται τῷ ἀπὸ τῆς ΖΔ. δύναται δὲ ἡ ΒΓ τῆς Α μεῖζον τῷ ἀπὸ συμμέτρου ἑαυτῇ. σύμμετρος ἄρα ἐστὶν ἡ ΒΓ τῇ ΖΔ μήκει· ὥστε καὶ λοιπῇ συναμφοτέρῳ τῇ ΒΖ, ΔΓ σύμμετρός ἐστιν ἡ ΒΓ μήκει. ἀλλὰ συναμφότερος ἡ ΒΖ, ΔΓ σύμμετρός ἐστι τῇ ΔΓ μήκει. ὥστε καὶ ἡ ΒΓ τῇ ΓΔ σύμμετρός ἐστι μήκει· καὶ διελόντι ἄρα ἡ ΒΔ τῇ ΔΓ ἐστι σύμμετρος μήκει.

ἐὰν ἄρα ὦσι δύο εὐθεῖαι ἄνισοι, καὶ τὰ ἑξῆς.

ἐὰν ὦσι δύο εὐθεῖαι ἄνισοι, τῷ δὲ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ἐλάσσονος ἴσον παρὰ τὴν μείζονα παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ, καὶ εἰς ἀσύμμετρα αὐτὴν διαιρῇ μήκει, ἡ μείζων τῆς ἐλάσσονος μεῖζον δυνήσεται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ. καὶ ἐὰν ἡ μείζων τῆς ἐλάσσονος μεῖζον δύνηται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ, τῷ δὲ τετάρτῳ τοῦ ἀπὸ τῆς ἐλάσσονος ἴσον παρὰ τὴν μείζονα παραβληθῇ ἐλλεῖπον εἴδει τετραγώνῳ, εἰς ἀσύμμετρα αὐτὴν διαιρεῖ μήκει.

῎ἔστωσαν δύο εὐθεῖαι ἄνισοι αἱ Α, ΒΓ, ὧν μείζων ἡ ΒΓ, τῷ δὲ τετάρτῳ μέρει τοῦ ἀπὸ τῆς ἐλάσσονος τῆς Α ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώνῳ, καὶ ἔστω τὸ ὑπὸ τῶν ΒΔΓ, ἀσύμμετρος δὲ ἔστω ἡ ΒΔ τῇ ΔΓ μήκει· λέγω, ὅτι ἡ ΒΓ τῆς Α μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ.

τῶν γὰρ αὐτῶν κατασκευασθέντων τῷ πρότερον ὁμοίως δείξομεν, ὅτι ἡ ΒΓ τῆς Α μεῖζον δύναται τῷ ἀπὸ τῆς ΖΔ. δεικτέον οὖν, ὅτι ἀσύμμετρός ἐστιν ἡ ΒΓ τῇ ΔΖ μήκει. ἐπεὶ γὰρ ἀσύμμετρός ἐστιν ἡ ΒΔ τῇ ΔΓ μήκει, ἀσύμμετρος ἄρα ἐστὶ καὶ ἡ ΒΓ τῇ ΓΔ μήκει. ἀλλὰ ἡ ΔΓ σύμμετρός ἐστι συναμφοτέραις ταῖς ΒΖ, ΔΓ· καὶ ἡ ΒΓ ἄρα ἀσύμμετρός ἐστι συναμφοτέραις ταῖς ΒΖ, ΔΓ. ὥστε καὶ λοιπῇ τῇ ΖΔ ἀσύμμετρός ἐστιν ἡ ΒΓ μήκει. καὶ ἡ ΒΓ τῆς Α μεῖζον δύναται τῷ ἀπὸ τῆς ΖΔ· ἡ ΒΓ ἄρα τῆς Α μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ.

δυνάσθω δὴ πάλιν ἡ ΒΓ τῆς Α μεῖζον τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ, τῷ δὲ τετάρτῳ τοῦ ἀπὸ τῆς Α ἴσον παρὰ τὴν ΒΓ παραβεβλήσθω ἐλλεῖπον εἴδει τετραγώνῳ, καὶ ἔστω τὸ ὑπὸ τῶν ΒΔ, ΔΓ. δεικτέον, ὅτι ἀσύμμετρός ἐστιν ἡ ΒΔ τῇ ΔΓ μήκει.

τῶν γὰρ αὐτῶν κατασκευασθέντων ὁμοίως δείξομεν, ὅτι ἡ ΒΓ τῆς Α μεῖζον δύναται τῷ ἀπὸ τῆς ΖΔ. ἀλλὰ ἡ ΒΓ τῆς Α μεῖζον δύναται τῷ ἀπὸ ἀσυμμέτρου ἑαυτῇ. ἀσύμμετρος ἄρα ἐστὶν ἡ ΒΓ τῇ ΖΔ μήκει· ὥστε καὶ λοιπῇ συναμφοτέρῳ τῇ ΒΖ, ΔΓ ἀσύμμετρός ἐστιν ἡ ΒΓ. ἀλλὰ συναμφότερος ἡ ΒΖ, ΔΓ τῇ ΔΓ σύμμετρός ἐστι μήκει· καὶ ἡ ΒΓ ἄρα τῇ ΔΓ ἀσύμμετρός ἐστι μήκει· ὥστε καὶ διελόντι ἡ ΒΔ τῇ ΔΓ ἀσύμμετρός ἐστι μήκει.

ἐὰν ἄρα ὦσι δύο εὐθεῖαι, καὶ τὰ ἑξῆς.

λῆμμα

ἐπεὶ δέδεικται, ὅτι αἱ μήκει σύμμετροι πάντως καὶ δυνάμει εἰσὶ σύμμετροι, αἱ δὲ δυνάμει οὐ πάντως καὶ μήκει, ἀλλὰ δὴ δύνανται μήκει καὶ σύμμετροι εἶναι καὶ ἀσύμμετροι, φανερόν, ὅτι, ἐὰν τῇ ἐκκειμένῃ ῥητῇ σύμμετρός τις ᾖ μήκει, λέγεται ῥητὴ καὶ σύμμετρος αὐτῇ οὐ μόνον μήκει, ἀλλὰ καὶ δυνάμει, ἐπεὶ αἱ μήκει σύμμετροι πάντως καὶ δυνάμει. ἐὰν δὲ τῇ ἐκκειμένῃ ῥητῇ σύμμετρός τις ᾖ δυνάμει, εἰ μὲν καὶ μήκει, λέγεται καὶ οὕτως ῥητὴ καὶ σύμμετρος αὐτῇ μήκει καὶ δυνάμει· εἰ δὲ τῇ ἐκκειμένῃ πάλιν ῥητῇ σύμμετρός τις οὖσα δυνάμει μήκει αὐτῇ ᾖ ἀσύμμετρος, λέγεται καὶ οὕτως ῥητὴ δυνάμει μόνον σύμμετρος.

τὸ ὑπὸ ῥητῶν μήκει συμμέτρων κατά τινα τῶν προειρημένων τρόπων εὐθειῶν περιεχόμενον ὀρθογώνιον ῥητόν ἐστιν.

ὑπὸ γὰρ ῥητῶν μήκει συμμέτρων εὐθειῶν τῶν ΑΒ, ΒΓ ὀρθογώνιον περιεχέσθω τὸ ΑΓ· λέγω, ὅτι ῥητόν ἐστι τὸ ΑΓ.

Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΑΒ τετράγωνον τὸ ΑΔ· ῥητὸν ἄρα ἐστὶ τὸ ΑΔ. καὶ ἐπεὶ σύμμετρός ἐστιν ἡ ΑΒ τῇ ΒΓ μήκει, ἴση δέ ἐστιν ἡ ΑΒ τῇ ΒΔ, σύμμετρος ἄρα ἐστὶν ἡ ΒΔ τῇ ΒΓ μήκει. καί ἐστιν ὡς ἡ ΒΔ πρὸς τὴν ΒΓ, οὕτως τὸ ΔΑ πρὸς τὸ ΑΓ. σύμμετρον ἄρα ἐστὶ τὸ ΔΑ τῷ ΑΓ. ῥητὸν δὲ τὸ ΔΑ· ῥητὸν ἄρα ἐστὶ καὶ τὸ ΑΓ.

τὸ ἄρα ὑπὸ ῥητῶν μήκει συμμέτρων, καὶ τὰ ἑξῆς.

ἐὰν ῥητὸν παρὰ ῥητὴν παραβληθῇ, πλάτος ποιεῖ ῥητὴν καὶ σύμμετρον τῇ, παρʼ ἣν παράκειται, μήκει.

ῥητὸν γὰρ τὸ ΑΓ παρὰ ῥητὴν κατά τινα πάλιν τῶν προειρημένων τρόπων τὴν ΑΒ παραβεβλήσθω πλάτος ποιοῦν τὴν ΒΓ· λέγω, ὅτι ῥητή ἐστιν ἡ ΒΓ καὶ σύμμετρος τῇ ΒΑ μήκει.

Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΑΒ τετράγωνον τὸ ΑΔ· ῥητὸν ἄρα ἐστὶ τὸ ΑΔ. ῥητὸν δὲ καὶ τὸ ΑΓ· σύμμετρον ἄρα ἐστὶ τὸ ΔΑ τῷ ΑΓ. καί ἐστιν ὡς τὸ ΔΑ πρὸς τὸ ΑΓ, οὕτως ἡ ΔΒ πρὸς τὴν ΒΓ. σύμμετρος ἄρα ἐστὶ καὶ ἡ ΔΒ τῇ ΒΓ· ἴση δὲ ἡ ΔΒ τῇ ΒΑ· σύμμετρος ἄρα καὶ ἡ ΑΒ τῇ ΒΓ. ῥητὴ δέ ἐστιν ἡ ΑΒ· ῥητὴ ἄρα ἐστὶ καὶ ἡ ΒΓ καὶ σύμμετρος τῇ ΑΒ μήκει.

ἐὰν ἄρα ῥητὸν παρὰ ῥητὴν παραβληθῇ, καὶ τὰ ἑξῆς.

τὸ ὑπὸ ῥητῶν δυνάμει μόνον συμμέτρων εὐθειῶν περιεχόμενον ὀρθογώνιον ἄλογόν ἐστιν, καὶ ἡ δυναμένη αὐτὸ ἄλογός ἐστιν, καλείσθω δὲ μέση.

ὑπὸ γὰρ ῥητῶν δυνάμει μόνον συμμέτρων εὐθειῶν τῶν ΑΒ, ΒΓ ὀρθογώνιον περιεχέσθω τὸ ΑΓ· λέγω, ὅτι ἄλογόν ἐστι τὸ ΑΓ, καὶ ἡ δυναμένη αὐτὸ ἄλογός ἐστιν, καλείσθω δὲ μέση.

Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΑΒ τετράγωνον τὸ ΑΔ· ῥητὸν ἄρα ἐστὶ τὸ ΑΔ. καὶ ἐπεὶ ἀσύμμετρός ἐστιν ἡ ΑΒ τῇ ΒΓ μήκει· δυνάμει γὰρ μόνον ὑπόκεινται σύμμετροι· ἴση δὲ ἡ ΑΒ τῇ ΒΔ, ἀσύμμετρος ἄρα ἐστὶ καὶ ἡ ΔΒ τῇ ΒΓ μήκει. καί ἐστιν ὡς ἡ ΔΒ πρὸς τὴν ΒΓ, οὕτως τὸ ΑΔ πρὸς τὸ ΑΓ· ἀσύμμετρον ἄρα ἐστὶ τὸ ΔΑ τῷ ΑΓ. ῥητὸν δὲ τὸ ΔΑ· ἄλογον ἄρα ἐστὶ τὸ ΑΓ· ὥστε καὶ ἡ δυναμένη τὸ ΑΓ τουτέστιν ἡ ἴσον αὐτῷ τετράγωνον δυναμένη ἄλογός ἐστιν, καλείσθω δὲ μέση· ὅπερ ἔδει δεῖξαι.

λῆμμα

ἐὰν ὦσι δύο εὐθεῖαι, ἔστιν ὡς ἡ πρώτη πρὸς τὴν δευτέραν, οὕτως τὸ ἀπὸ τῆς πρώτης πρὸς τὸ ὑπὸ τῶν δύο εὐθειῶν.

ἔστωσαν δύο εὐθεῖαι αἱ ΖΕ, ΕΗ. λέγω, ὅτι ἐστὶν ὡς ἡ ΖΕ πρὸς τὴν ΕΗ, οὕτως τὸ ἀπὸ τῆς ΖΕ πρὸς τὸ ὑπὸ τῶν ΖΕ, ΕΗ.

Ἀναγεγράφθω γὰρ ἀπὸ τῆς ΖΕ τετράγωνον τὸ ΔΖ, καὶ συμπεπληρώσθω τὸ ΗΔ. ἐπεὶ οὖν ἐστιν ὡς ἡ ΖΕ πρὸς τὴν ΕΗ, οὕτως τὸ ΖΔ πρὸς τὸ ΔΗ, καί ἐστι τὸ μὲν ΖΔ τὸ ἀπὸ τῆς ΖΕ, τὸ δὲ ΔΗ τὸ ὑπὸ τῶν ΔΕ, ΕΗ, τουτέστι τὸ ὑπὸ τῶν ΖΕ, ΕΗ, ἔστιν ἄρα ὡς ἡ ΖΕ τὴν ΕΗ, οὕτως τὸ ἀπὸ τῆς ΖΕ πρὸς τὸ ὑπὸ τῶν ΖΕ, ΕΗ. ὁμοίως δὲ καὶ ὡς τὸ ὑπὸ τῶν ΗΕ, ΕΖ πρὸς τὸ ἀπὸ τῆς ΕΖ, τουτέστιν ὡς τὸ ΗΔ πρὸς τὸ ΖΔ, οὕτως ἡ ΗΕ πρὸς τὴν ΕΖ· ὅπερ ἔδει δεῖξαι.