In Aristotelis Analyticorum Priorum Librum I Commentarium
Alexander of Aphrodisias
Alexander of Aphrodisias. In Aristotelis analyticorum priorum librum I commentarium (Commentaria in Aristotelem Graeca 2.1). Wallies, Maximilian, editor. Berlin: Reimer, 1883.
Ὅταν μὲν οὖν ἀντικείμενον ᾖ τὸ καθόλου τῷ κατὰ μέρος. Ἐδειξεν ἀνομοιοσχημόνων οὐσῶν τῶν προτάσεων καὶ κατὰ τὸ ποιὸν καὶ κατὰ τὸ ποσόν (τὴν γὰρ κατὰ τὸ ποιὸν διαφορὰν ἐσήμανεν εἰπὼν ὅταν μὲν οὖν ἀντικείμενον ᾖ τὸ καθόλου τῷ κατὰ μέρος), τίνες μὲν συλλογιστικαὶ συζυγίαι, τίνες δὲ ἀσυλλόγιστοι. ἡ μὲν γὰρ ἔχουσα τὴν μείζονα πρότασιν καθόλου ἀποφατικὴν τὴν δὲ ἐλάττονα ἐπὶ μέρους καταφατικὴν καὶ ἡ τὴν μὲν μείζονα ἔχουσα καθόλου καταφατικὴν τὴν ἐπὶ μέρους δὲ τὴν ἐλάττονα ἀποφατικὴν αὗται συλλογιστικαί, αἱ δὲ παρὰ ταύτας ἀσυλλόγιστοι. ἐφεξῆς δὲ δείκνυσιν, ὅτι, ὥσπερ ἐπὶ τῶν καθόλου αἱ ὁμοιοσχήμονες ἦσαν ἀσυλλόγιστοι, οὕτως δὲ καὶ ἐπὶ τῶν τὴν μὲν ἑτέραν ἐχουσῶν καθόλου τὴν δὲ ἑτέραν ἐπὶ μέρους, αἵτινες οὐκέτι ἀντικείμενον τὸ καθόλου τῷ κτὰ μέρος ἔχουσι. πᾶσαι γὰρ αἱ ἐν δευτέρῳ σχήματι ὁμοιοσχήμονες συζυγίαι, ὅπως ἄν ἔχωσι καὶ κατὰ τὸ ποσόν, ἀσυλλόγιστοι. τίνες δ’ εἰσὶν ὁμοιοσχήμονες, ὅτι αἱ κατὰ τὸ ποιὸν ὅμοιαι, ἐδήλωσε καὶ αὐτὸς εἰπὼν οἷον 25 ἀμφότεραι στερητικαὶ ἢ καταφατικαί. λαμβάνει δὲ πρώτην συζυγίαν ἐξ ὁμοιοσχημόνων τὴν ἔχουσαν τὴν μείζονα καθόλου ἀποφατικὴν τὴν δὲ ἐλάττονα ἐπὶ μέρους ἀποφατικήν.
Οἷον τὸ Μ τῷ μὲν Ν μηδενὶ τῷ δὲ Ξ τινὶ μὴ ἐνδέχεται δὴ καὶ παντὶ καὶ μηδενὶ τὸ N τῷ Ξ Ὑπισχνεῖται μὲν τῇ τῶν ὅρων παραθέσει, δεῖξαι ἐπ’ αὐτῶν τὸ ἀσυλ- [*](1 textus verba in LM 3 τὸ ν(??) τῷ ξ Κ 4 ἡ om. LM 5 πάσῃ aLM: πάλιν Κ 6 πρὸ ὀλίγου] cf. p. 81,14 sq. ἀριθμῷ om. L 7 ζῷον] hinc iterum Β 9 καὶ ἐν ταύτῃ τῇ συζυγίᾳ τοῦ αὐτὴν aB: τοῦ καὶ ταύτην τὴν συζυγίαν LM 11 τῷ καθόλου τὸ a 12 καὶ (post προτάσεων) om. LM τὸ om. Β 13 τὸ priiLS om. Β κατὰ (ante ποσὸν) om. M ante ποιὸν addendum videtur <ποσὸν καὶ κατὰ τὸ> 14 τῷ καθόλου τὸ a 17 ἡ om. Β μὲν om. aLM 17. 18 δ’ M) ἐλάττονα ἐπὶ μέρους aLM 19 αἱ om. Β 20 ἑτέραν μὲν a 21 τῷ καθόλου τὸ aL 23 ὅπως ἄν ἔχωσι καὶ καὶ om. L) κατὰ τὸ τὸ om. L) ποσόν om. a τίνες . . . ὅμοιαι (24) om. a MM. 24 ante ἐδήλωσε add. ὅπερ a 26 δ’ M 28. 29 iterum textus verba in L 28 ὑπάρχειν L τῷ ξ τὸ ν(??) a et Ar. 30 αὐτῷ M)
Τῇ αὐτῇ δείξει χρῆται καὶ ἀμφοτέρων οὐσῶν καταφατικῶν, τῆς μὲν μείζονος καθόλου τῆς Μ Ν τῆς δὲ ἐλάττονος ἐπὶ μέρους τῆς Μ Ξ. μὲν γὰρ μηδενὶ ὑπάρχειν ὅρων εὐπορεῖ· λευκὸν γὰρ ἐπὶ τοῦ Μ τίθησι, κύκνον ἐπὶ τοῦ Ν, λίθον ἐπὶ τοῦ Ξ· τὸ γὰρ λευκὸν κύκνῳ μὲν παντὶ λίθῳ δὲ τινί, καὶ κύκνος οὐδενὶ λίθῳ. τοῦ δὲ παντὶ οὐκέτι, ἄν ᾖ ἡ ἐπὶ μέρους καταφατικὴ οὕτως εἰλημμένη ὡς συναληθευομένη τῇ ἐπὶ μέρους ἀποφατικῇ. ἀποφατικῆς γὰρ οὕσης πάλιν τῆς ἐλάττονος ἐπὶ μέρους καὶ καταφατικῆς καθόλου τῆς μείζονος ἐν τούτῳ τῷ σχήματι συνάγεται ἐπὶ μέρους ἀποφατικὸν συμπέρασμα συλλογιστικῶς, ὡς δέδεικται. ὄντος δὴ ἀληθοῦς τοῦ τινὶ μὴ ἐν τῇ τοιαύτῃ συζυγίᾳ ἀδύνατον εὐπορῆσαι ὅρων τοῦ παντί· ἀναιρεθήσεται γὰρ οὕτως καὶ διαβληθήσεται ἡ συλλογιστικὴ συζυγία· εἰ γὰρ παντὶ ὑπάρχοι, καὶ ᾧτινι συλλογιστικῶς ἐδείχθη μὴ ὑπάρχον, [*](28v) ὑπάρχοι ἄν. οὕτως μὲν οὖν ἀληθοῦς οὔσης τῆς ἐπὶ μέρους καταφατικῆς οὐχ οἷόν τ’ εὐπορῆσαι πάλιν ὅρων τοῦ παντὶ τὸ Ν τῷ Ξ ὑπάρχειν. γὰρ τὸ Ν παντὶ τῷ Ξ, εἴη δὲ καὶ τὸ Μ παντὶ τῷ Ν, τὸ Μ παντὶ τῷ ὑπάρξει· ἀλλ’ ἔκειτο τινὶ μὴ ὑπάρχειν· οὕτως γὰρ ἦν ἀληθὴς ἡ Μ Ξ ἐπὶ μέρους οὖσα καταφατική. ἀλλ’ ἐπεὶ ἀδιόριστον τὸ ἀληθὲς τῆς ἐπὶ μέρους καταφατικῆς (οὐ γὰρ μόνον τότε ἀληθής ἐστιν, ὅτε καὶ ἡ ὑπεναντία αὐτῇ ἀληθής, ἀλλὰ καὶ ὅτε ἡ καθόλου καταφατική, ὑφ’ ἥν ἐστιν), ὅταν οὕτως ληφθῇ ἀληθὴς εἶναι ὡς διὰ τὴν καθόλου, ὑφ’ ἥν ἐστι, καὶ ἐπὶ [*](1 κειμένου cm. L 4 μέρους] μέρ evan. Β τε LM 5 ὅτι LM 6 ἀλλὰ καὶ Β: ἀλλὰ M: ἀλλ᾿ aL 7 τῆς aB: τὸ L: τῷ M ὑπάρχειν aLM ἐπὶ BLM: ἐφ᾿ a τῷ ξ ὑπάρχει τὸ μ(??) ν(??) a) aLM 10 ἀποφατική] huc usque L καὶ om. M 11 post ὅτι add. ὁ aM 12. 13 τοῦ μ(??) . . . τοῦ v(??) . . . τοῦ ξ M 16 post μείζονος erasit τῆς Β μ(??) (ante v(??) ) evan. Β 17 τίθησι om. aM 18 post τὸ add. μὲν a 21 ἐπὶ μέρους τῆς ἐλάττονος a 22 τῆς om. a 23 δέδεικται] p. 83, 12sq. δὴ scripsi: δέ aBM 26 γὰρ (??) om. aM ὑπάρχῃ a: ὕπαρ M ὐπάρχον aB: ὕπαρ M 27 μὲν om. aM 28 τε M τοῦ παντὶ] τοῦ πὰν evan. Β 29 καὶ τὸ μ(??) evan. Β ξ evan. M 30 ὑπάρχει Β τινὶ a: τισὶ BM ὑπάρχειν a: ὑπάρξειν BM μ(??) ξ Β: μείζων aM 31 ἐπειδὴ M 32 ἀληθές M ἡ om. aB 33 αὐτῇ αὕτη ΒΜ 34 οὕτω aM ἀληθὲς M)
ἡ γὰρ οὐσία παντὶ ζῴῳ καὶ τινὶ ἀνθρώπῳ, ὅτι καὶ παντί.
Τῷ ἀδιορίστῳ τῆς ἐπὶ μέρους προτάσεως προσχρησάμενος ἤδη καὶ ἐπὶ τοῦ πρώτου σχήματος ἔδειξεν ἀσυλλόγιστον τὴν ἐκ καθόλου ἀποφατικῆς τῆς μείζονος καὶ ἐπὶ μέρους ἀποφατικῆς τῆς ἐλάττονος. ἀλλ’ ἐκεῖ μὲν καὶ τῇ ἐκθέσει προσχρησάμενος ἤλεγξε τὴν οὕτως ἔχουσαν συζυγίαν· ἐνταῦθα δὲ ἠρκέσθη τῷ ἀδιορίστῳ τῆς ἐπὶ μέρους. ἔνεστι μέντοι καὶ ἐπὶ τῶν προειρημένων συμπλοκῶν δεῖξαι ἐπὶ ὅρων καὶ διὰ τῆς ἐκθέσεως τὸ ἀσυλ- λόγιστον αὐτῶν, εἰ μὲν ἀμφότεραι εἶεν ἀποφατικαί, λαβόντας ὅρους ἐπιστήμην, κακίαν, ἕξιν. ἐπιστήμη γὰρ οὐδεμιᾷ μὲν κακίᾳ, τινὶ δὲ ἕξει οὐχ ὑπάρχει· καὶ οἷς οὐχ ὑπάρχει τῆς ἕξεως ἡ ἐπιστήμη, εἰλήφθωσαν ἀνδρεία καὶ δεία· οὐ γὰρ ἐπιστῆμαι αἱ ἀρεταί· κακία δὴ οὐδεμιᾷ μὲν ἀνδρείᾳ πάσῃ δὲ δειλίᾳ. ἀλλὰ κἂν ληφθῇ ἡ ἀρετὴ οὐδεμιᾷ κακίᾳ καὶ ἡ ἀρετὴ τινὶ ἕξει οὔ, καὶ οἷς τῆς ἕξεως ἡ ἀρετὴ οὐχ ὑπάρχει, [εἰ] ληφθῇ ἡ ἰατρικὴ καὶ ἡ δειλία, καὶ ἡ κακία πάσῃ μὲν δειλίᾳ οὐδεμιᾷ δὲ ἰατρικῇ‘ εἰ δὲ εἶεν ἀμφότεραι καταφατικαί, ἔστωσαν ὅροι ἕξις, ἐπιστήμη, ποιότης· ἡ γὰρ ἕξις πάσῃ μὲν ἐπιστήμῃ τινὶ δὲ ποιότητι· καὶ οἷς ἡ ἕξις τῆς ποιότητος ὑπάρχει, εἰλήφθω ἀκολασία καὶ γραμματική· ἐπιστήμη γὰρ πάσῃ μὲν γραμματικῇ οὐδεμιᾷ δὲ ἀκολασίᾳ. ὁ αὐτὸς λόγος, κἂν ληφθῇ οὐσία παντὶ μὲν ζῴῳ τινὶ δὲ λευκῷ· καὶ οἷς ὑπάρχει λευκοῖς ἡ οὐσία, ληφθεῖεν κύκνος καὶ χιών· ζῷον γὰρ παντὶ μὲν κύκνῳ χιόνι δὲ οὐδεμιᾷ.
Ἀριστοτέλης μὲν οὖν οὕτως διέβαλε τὰς προειρημένας συζυγίας, ὅτι ἀσυλλόγιστοι, τῷ εὐπορῆσαι ὕλης καὶ τοῦ παντὶ καὶ τοῦ μηδενί· ἱκανὴν γὰρ ταύτην ἡγεῖται διαβολὴν ἀσυλλογίστου συζυγίας. τὸ δὲ ἡγεῖσθαι δύνασθαι διαβάλλεσθαι τὰς προειρημένας συζυγίας, κἀν δείξῃ τις, ὅτι μηδενὶ καὶ τινὶ τὸ Ν τῷ Ξ, διότι ἀντιφάσεις ταῦτα, ὡς ἄλλοι τέ τινες τῶν ἀρχαίων Ἑρμῖονος δὲ λέγει, (“ἐφ᾿ ἧς γὰρ συζυγίας, φησί, τὴν ἀντίφασιν ἔνεστι [*](4 οὐδὲν a: οὐδὲ BM ἐπ’ om. Β 6 ταύτῃ BM: αὐτῇ a post ταύτῃ add. αὕτη Β 7. 8 καὶ παντὶ καὶ μηδενὶ δεικνυούσης aM 8 τοῦ bis Β 11 ἐπὶ τοῦ πρώτου σχήματος] c. 4 p. 26 a 39 sq. μὲν om. M 17 ct 18 ὑπάρξει aM 18 εἰλήφθω aM 19 ante κακία add. καὶ M δὴ a: δὲ BM 20 ἡ (post ληφθῇ) oin. Β καὶ (ante ἡ) om. aM 21 ὑπάρξει a εἰ delcvi 21. 22 ἡ (ante ἰατρικὴ et ante δειλία et ante κακία) om. aM 23 ante ὅροι add. οἱ aM 24 ante ὑπάρχει add. οὐχ BM ὑπάρξει a 25 γὰρ BAl: γοῦν a 27 ante ὑπάρχει add. οὐκ M καὶ (ante χιών) om. M 29 διέβαλλε M: M 29 30 εὐπορεῖν M τοῦ alterum om. aM 32 ὅτι om. M 33 ν(??) aB: μ(??) M 34 δὲ B: μὲν M: om. a φήσει Β)
Καὶ πῶς, φασίν, οὐκ ἀναιρεθήσεται ἡ δι’ ἀδυνάτου δεῖξις, εἰ ἐν συλλογιστικῇ συζυγίᾳ δύναιτο δείκνυσθαι τὰ ἀντικείμενα; οὐ γὰρ τοῦτο μόνον ἔσται συναγόμενον ἔτι, οὗ τὸ ἀντικείμενον ἀδύνατον, ἀλλὰ καὶ ἄλλο τι, οὗ οἷόν τε δείκνυσθαι καὶ τὸ ἀντικείμενον. οὗ ὄντος οὐκέτ’ ἄν ἡ δι’ ἀδυνάτου δεῖξις χώραν ἔχοι. εἰ γὰρ ἐν τῇ συζυγίᾳ τῇ συναγούσῃ ἐπὶ μέρους καταφατικὸν ἐν πρώτῳ σχήματι δύναται καὶ καθόλου καταφατικὸν καὶ ἐπὶ μέρους [*](1 ἔλαττον om. a: ἧττον iam Prantl addere voluit I p. 556,71 2 ἀσυνύπαρτα a 4 post ἐμψύχῳ add. μὲν a ἁπλῷ a post σώματι alterum add. τι a 5 ante τὸ add. καὶ a ante ὑπάρχει alterum add. οὐχ aM 6 δὴ aB: δὲ M 7 τούτῳ aM συνάγεσθαι] συνά evan. Β 8 ἀλλήλων om. aM 10 ἀναιρῆται aM 11 δεῖ αὐτὰ a 12 ἀναιρετικὰς a 13 δὴ aB: δ’ M 14 ante τοῦ add. καὶ a, post xoii M συζυγίαις συλλογιστικαῖς a συλλογιστικαῖς] λλογιστικαῖς evan. Β 15 συναγομένην Β: ὁμολογουμένην aM ἡ Β1 corr. omisso οὖν 16 οὐδ’ M αὐτὴ aM τοῦτο M 18 ἐπὶ μέρους alterum om. M 19 εὐπορῆσαι ὅρων M ante ἄνθρωπος add. καὶ a 24 ἐκκειμένην ex ἐγκειμένην, ut videtur, corr. Β1 25 τὸ ἁ τινὶ τῷ y aM 27 δ’ M 28 φησιν aM εἰ BM: ἡ a 29 δύναται Μ οὐ ΒΜ: εἴα 30 ἔτι] τι evan. Β οὐ Β corr.: οὐ aM, Β pr. 31 ὄντος om. aM 32 ἔχει a)
Ἠ δεῖξις οὖν, ᾗ χρῆται Ἐρμῖνος, οὐχ ἱκανὴ διαβάλλειν συζυγίαν καὶ ἀσυλλόγιστον ἀποφῆναι. διὸ εὐλόγως Ἀριστοτέλης ἐλέγχει τὰς ἀσυλλογίστους μόνῃ τῇ τοῦ παντὶ καὶ μηδενὶ παραθέσει· ἐν γὰρ τούτοις οὐδὲν οἷόν τε δείκνυσθαι συλλογιστικῶς τῷ παντὸς τοῦ λαμβανομένου συνάγεσθαι συλλογιστικῶς εὑρίσκεσθαι τὸ ἀναιρετι|κὸν καὶ ἀντικείμενον ἐφ’ ὕλης τινὸς γινόμενον 29v ἀληθές. καθόλου δέ, ἐν αἷς συζυγίαις συλλογιστικαῖς τοῦ ἐπὶ μέρους ἐστὶ συμπέρασμα, τῷ τὸ ἐπὶ μέρους ἀορίστως ἀληθὲς εἶναι (καὶ γὰρ μετὰ τῆς καθόλου, ὑφ’ ἥν ἐστιν, ἀληθὴς ἡ ἐπὶ μέρους καὶ μετὰ τῆς ἑαυτῇ ὑπεναντίας) καθ’ ἑκατέρους τοὺς τρόπους ἀληθῆ λαμβάνοντες αὐτὴν ποτὲ μὲν εὐπορήσομεν ὅρων δεικνύντων τὸ καθόλου, ὑφ’ ὅ ἐστιν ἡ λαμβανομένη ἐπὶ μέρους, ποτὲ δὲ τοῦ ὑπεναντίου τῷ εἰλημμένῳ καὶ συνηγμένῳ ἐπὶ μέρους, ὃ οὐδαμῶς ἀναιρετικόν ἐστι τοῦ ὑπεναντίου αὐτῷ ἐπὶ μέρους.
[*](3 ὡς BM: καὶ a 5 post ἀπαγωγῆς repetit δείκνυσθαι Β εἶναι om. a 7 ἢ (ante οὖν) B: καὶ aM γοῦν M συλλογιστικὴ συμπλοκὴ M οὐ scripsi: οὐ libri 8 οἶόν τε aB: δυνατῶ M δὲ τοῦτο evan. Β τὸ alteriun om. M 12 αὐτῇ a 13 ἀπαντᾷ ex ἅπαντα corr. Β1 συνάγεσθαι οὐδὲν ἀδύνατον απαντᾷ aM ἀποφατικὸν M 16 τῷ aB: τὸ M γὰρ addidi 18 μόνου a: οὐ μόνον Bil τῷ ἐπὶ μέρους bis M 19 ὑποτιθέντος Β 21 δεῖξις Β: χρῆσις aM διαλαβεῖν M 23 παντὸς καὶ μηδενὸς a 24 πάντως a 25 εὑρίσκεται a post καὶ ackl. τὸ M 26 τοῦ aB: τὸ M 27 ἐστὶ συμπέρασμα BM: ἡ συμπεράσματος a ἀόριστον M 29 ἑκατέρους Β corr.: ἑτέρους M, B pr.: ἑκάτερα a oU εὐπορῆσαι iiM 31 τὸ ὑπεναντίον a αὐτῇ M)Ἐὰν δὲ τὸ καθόλου πρὸς τὸ ἔλαττον ἄκρον ᾖ, καὶ τὸ M [*](29v) τῷ μὲν Ξ μηδενὶ τῷ δὲ N μὴ
Δείξας ἀσυλλογίστους συζυγίας ἐν δευτέρῳ σχήματι τὰς ὁμοιοσχήμονας τὰς ἐχούσας τὸ ἐπὶ μέρους πρὸς τῷ ἐλάττονι τὸ δὲ καθόλου πρὸς τῷ μείζονι νῦν λαμβάνει τὰς ὁμοιοσχήμονας τὰς ἀνάπαλιν ἐχούσας τὸ μὲν ἐπὶ μέρους πρὸς τῷ μείζονι τὸ δὲ καθόλου πρὸς τῷ ἐλάττονι, καὶ τῇ τῶν ὅρων παραθέσει τὸ ἀσυλλόγιστον δείκνυσιν αὐτῶν. αἱ δὲ συζυγίαι αὗται κατ’ ἄμφω ἀσυλλόγιστοι ἐν τῷ σχήματι τούτῳ, διά τε τὸ ὁμοιόσχημον τῶν προτάσεων καὶ διὰ τὸ τὴν μείζονα ἐπὶ μέρους λαμβάνεσθαι. ὅτι δὲ μηδενός εἰσι συλλογιστικαί, ἐλέγχει ἁπλῶς παραθέμενος τοὺς ὅρους οὐκέτι τῷ τῆς ἐπὶ μέρους ἀδιορίστῳ προσχρώμενος· ὡς γὰρ ἂν ᾖ ἡ μείζων οὖσα μέρους ἀληθής, ἄν τε διὰ τὴν καθόλου ἄν τε καὶ δι’ αὐτὴν τῷ τὴν ἐπὶ μέρους καταφατικὴν τὴν ὑπεναντίαν αὐτῇ ἀληθῆ εἶναι, ἀσυλλόγιστος γίνεται ἡ συζυγία τῷ ὁμοιοσχημόνων οὐσῶν τῶν προτάσεων ἐν τῷ σχήματι τούτῳ μηδένα γίνεσθαι συλλογισμόν. τοῦ μὲν οὖν παντὶ ὑπάρχειν ὅρους παρατίθεται λευκόν, ζῷον, κόρακα· τὸ γὰρ ζῷον παντὶ κόρακι· τοῦ δὲ μηδενὶ λευκόν, λίθον, κόρακα· ὁ γὰρ λίθος οὐδενὶ κόρακι. τὸ γὰρ λευκὸν καὶ ζῴῳ τινὶ καὶ λίθῳ τινί, κόρακι δὲ οὐδενί. ὁμοίως δὲ δείκνυσι, καὶ εἰ ἀμφότεραι ληφθεῖεν καταφατικαί, ἡ δὲ μείζων ἐπὶ μέρους. τοῦ μὲν γὰρ μὴ ὑπάρχειν ὅροι λευκόν, ζῷον, χιών· τὸ γὰρ ζῷον οὐδεμιᾷ χιόνι τοῦ λευκοῦ τινὶ μὲν ζῴῳ ὑπάρχοντος πάσῃ δὲ χιόνι· τοῦ δὲ ὑπάρχειν λευκόν, ζῷον, κύκνος· τὸ γὰρ ζῷον παντὶ κύκνῳ, ὁμοίως τοῦ λευκοῦ ζῴῳ μὲν τινὶ ὑπάρχοντος κύκνῳ δὲ παντί.
Ἀλλ’ οὐδ’ εἰ τινὶ ἑκατέρῳ ὑπάρχει ἢ μὴ ὑπάρχει.
Εἰπὼν περὶ πασῶν τῶν συζυγιῶν τῶν ἐχουσῶν τὴν ἑτέραν καθόλου τὴν δ’ ἑτέραν ἐπὶ μέρους καὶ δείξας δύο μόνας συλλογιστικὰς ἐν αὐταῖς (αἱ γὰρ τὴν μείζονα καθόλου ἔχουσαι καὶ ἀντικειμένην τὴν ἐπὶ μέρους κατὰ τὸ ποιὸν ἐδείχθησαν συλλογιστικαί, αἱ δ’ ἄλλαι πᾶσαι ἀσυλλόγιστοι, οὖσαι ἐξ) νῦν μέτεισιν ἐπὶ τὰς ἐξ ἀμφοτέρων ἐπὶ μέρους, καὶ περὶ πασῶν αὐτῶν ἅμα ποιεῖται τὸν λόγον, καὶ διὰ τῶν αὐτῶν παραδειγμάτων πασῶν ἐλέγχει τὸ ἀσυλλόγιστον, ὡς ἐποίησεν καὶ ἐπὶ τοῦ πρώτου σχήματος. συγκαταριθμεῖ δὲ καὶ τὰς ἀδιορίστους ταῖς ἐπὶ μέρους ὡς ὁμοίως ἐκείναις ἀσυλλογίστους καὶ ἴσον αὐταῖς δυναμένας καὶ διὰ τῶν αὐτῶν ἐλεγχομένας. εἰπὼν δὲ [*](1 εἰ Ar. τῷ ἐλάττονι ἄκρῳ a ἐστί a et Ar. 2 ὑπάρχει Ar. 4 πρὸς τῷ ἐλάττονι τὸ ἐπὶ μέρους aM 5 ἀνομοιοσχήμονας M μὲν om. a 10 μηδενός scripsi: μηδέ aB: μηδ’ M 11. 12 ἐπὶ μέρους οὖσα aM 12 καὶ om. a 16 δὲ ora. M 18 δὲ altenim om. aM 20 ὅροι om. a 21 δ’ (post τοῦ) M 23 ante παντί add. τῷ Β 25 post τὴν add. μὲν a 27 τῇ (ante ἐπὶ) aM 28 post οὖσαι add. πᾶσαι M 29 ἐξ ἀμφοτέρων Β: ἀμφοτέρας aM αὐτῶν ora. a 30 τὸν λόγον ποιεῖται M 31 καὶ om. a ἐπὶ τοῦ πρώτου σχήματος] c. 4 p. 26 b 25 32 ταῖς ἐπὶ μέρους om. M)
Δεῖ προσυπακούειν πάλιν τὸ ‘ἐν δευτέρῳ σχήματι’· οὐ γὰρ ἁπλῶς, ἄν ᾖ καθόλου ἀποφατικὸς συλλογισμὸς ἢ ἐπὶ μέρους ἀποφατικός, δεῖ τὰς προτάσεις οὕτως ἔχειν· καὶ γὰρ ἐν πρώτῳ σχήματι συλλογισμοὶ· τούτων, οὐκ ἐν δευτέρῳ μόνον.
Ἢ ἐνυπάρχει τοῖς ὅροις ἐξ ἀνάγκης ἢ τίθενται ὡς ὑποθέσεις.
Ἐξ ἀνάγκης μὲν ἐνυπάρχει τοῖς ὅροις καὶ ταῖς προτάσεσι ταῖς κειμέναις τὸ τῶν ἀντιστροφῶν, αἷς πρὸς τὴν τελείωσιν τῶν συλλογισμῶν προσεχρη- σάμεθα, ἐν οἷς ἡ δεῖξις δι’ ἀντιστροφῆς· αἱ γὰρ τῶν προτάσεων ἀντιστροφαὶ ἐνυπάρχουσι ταῖς εἰλημμέναις προτάσεσι. τίθενται δὲ ὡς ὑποθέσεις, αἷς χρώμεθα πρὸς τὴν τῶν ἀτελῶν συλλογισμῶν δεῖξιν ἐν ταῖς εἰς ἀδύνατον ἀπαγωγαῖς, ὡς καὶ αὐτὸς ἐδήλωσε. τὸ γὰρ ἀντικείμενον, οὗ δείκνυμεν, ὑπόθεσιν λαβόντες, οὕτως τοῦ ἀδυνάτου συλλογισμὸν ποιήσαντες καὶ συνα- γωγήν, διὰ τούτου τὴν ὑπόθεσιν ἀνελόντες κατασκευάζομεν αὐτῆς τὸ ἀντικείμενον, ὃ ἦν προκείμενον. δῆλον δὲ καὶ ὅτι πάντα τὰ ἐν τούτῳ τῷ σχήματι συμπεράσματα ἀποφατικά.
[*](1 Ti M τῷ B: τὸ M: om. a 2 post τινὶ add. ἢ μὴ τινὶ a τὸ aB: τῷ M 3 ἑκατέρῳ a: ἑκάτερον BM ὑπάρχειν a: ὑπάρχον BM 6 post ἀνθρώπῳ add. καὶ aM ἑτέρῳ a: ἑκατέρῳ BM 7 καὶ ἀδιορίστως . . . οὐχ ὑπάρχει (8) om. aM 8 ἐπὶ aM: περὶ B ἀδιορίστῳ M 11 δὲ a: om. BM 13 ἐλέχθη Β (corr. η): ἐλέχθησαν a 14 ἄν τε . . . ἔχειν (15) om. a 16 τὸ ἐν Β: ἐν τῷ aM 18 συλλο- γισμὸς a 19 μόνῳ M 20 ante ἢ add. ἃ ex Arist. a τίθεται B; at cf. vs. 25 22.23 ἀντικειμέναις M 24 οἶς a: αἷς BM 27 post ἀντικείμενον add. αὐτῶν M οὑ M 28 aute οὕτως add. καὶ aM 29 ἔκθεσιν M)Ὅταν δὲ τῷ αὐτῷ τὸ μὲν παντὶ τὸ δὲ μηδενὶ ὑπάρχῃ. [*](30r) ἐπὶ τὸ τρίτον μέτεισι σχῆμα. ὁποῖον δ’ ἐστὶ καὶ τίνα τὴν τοῦ μέσου θέσιν ἔχει, διὰ παραδείγματος πάλιν ἐδήλωσε λαβὼν τὰς ἐν τούτῳ τῷ σχήματι ἐκ τῶν καθόλου προτάσεων συζυγίας, ἐν ᾧ ὁ μέσος ἀμφοτέροις ὑπόκειται τοῖς ὅροις. τοιοῦτόν ἐστιν, ὡς ἔφαμεν, τὸ τρίτον σχῆμα. τρίτον δὲ ὂν καὶ τὴν ἐσχάτην τάξιν ἔχον οὕτω τέτακται, ὅτι τε ὁ μέσος αἴτιος τῆς τῶν ἄκρων κοινωνίας τὴν ἐσχάτην τάξιν ἔχων ἐν τούτῳ τέτακται, καὶ ὅτι οὐδὲν ἐν αὐτῷ καθόλου συνάγεται, καὶ ὅτι οἱ σοφιστικοὶ συλλογισμοὶ μάλιστα ἐν τούτῳ τῷ σχήματι γίνονται ἀδιόριστα καὶ ἐπὶ μέρους συμπεραινόμενοι, ἔσχατος δὲ τῶν συλλογισμῶν ὁ σοφιστικός, καὶ ὅτι ἑκατέρου σχήματος, τοῦ τε δευτέρου καὶ τοῦ τρίτου, τὴν γένεσιν ἐχόντων ἀπὸ τοῦ πρώτου ἐκ τῆς χείρονος προτάσεως ἡ γένεσις τούτῳ. ἑκατέρα γὰρ τῶν ἐν ἐκείνῳ προτάσεων ἀντιστραφεῖσα ποιεῖ τούτων τι τῶν σχημάτων, ὡς ἤδη προειρήκαμεν· τῆς μὲν γὰρ μείζονος ἀντιστραφείσης τὸ δεύτερον ἐγένετο, τῆς δ’ ἐλάττονος τὸ τρίτον, ὥστε, εἰ ἡ γένεσις αὐτοῦ παρὰ τῆς χείρονος τῶν ἐν τῷ πρώτῳ σχήματι προτάσεως (ἡ γὰρ ἐλάττων χείρων, καθ’ ὃ ἐλάττων), εἰκότως καὶ αὐτὸ ἔσχατον.
Εἰσὶ δὲ καὶ ἐν τούτῳ τῷ σχήματι, ὡσπεροῦν καὶ ἐν τῷ πρὸ τούτου, αἱ πᾶσαι συζυγίαι ις΄ ἄνευ τῶν ἐξ ἀδιορίστων προτάσεων· ταύτας γὰρ ἴσον ταῖς ἐπὶ μέρους δυναμένας παρῃτησάμεθα. συλλογιστικαὶ δ’ ἐν τούτῳ συζυγίαι πλείονες· ἓξ γάρ· τῶν δὲ πρὸ τούτου ἑκάτερον τέσσαρας εἶχε τὰς συλλογιστικάς. τὸ δ’ αἴτιον, ὅτι δεῖ μὲν πάλιν ἐν τούτῳ τῷ σχήματι, εἰ μέλλοι ἔσεσθαι συλλογισμός, τὴν ἐλάττονα πρότασιν καταφατικὴν ἐξ ἀνάγκης εἶναι· εἰ γὰρ ἀποφατικὴ εἴη αὕτη, οὐκ ὅν γένοιτο συλλογισμὸς ἐν τρίτῳ σχήματι· ἡ δὲ μείζων ὅπως ἄν ἔχουσα ληφθῇ, ταύτης οὔσης καταφατικῆς συλλογισμὸς γίνεται, μόνον τοῦτο φυλασσόντων ἡμῶν τὸ μὴ ἀμφοτέρας ἀποφατικὰς ἢ ἐπὶ μέρους εἶναι· ἐκ γὰρ δύο ἐπὶ μέρους οὐδεὶς γίνεται συλλογισμὸς ἐν οὐδενὶ σχήματι, ὥσπερ καὶ ἐξ ἀποφατικῶν δύο. ἡ δὲ μείζων καὶ ἐλάττων πρότασις ὁμοίως ἐν τούτῳ ληφθήσονται, ὡς καὶ ἐν τῷ δευτέρῳ. τούτων δὲ τηρουμένων ἓξ γίνονται συζυγίαι συλλογιστικαί· διὸ τοσαῦται αἱ ἐν τούτῳ τῷ | σχήματι συζυγίαι συλλογιστικαί. τῆς γὰρ ἐλάττονος καθόλου μὲν καταφατικῆς οὔσης τέσσαρες ἔσονται συλλογιστικαὶ συζυγίαι τῆς μεί- [*](1 Περὶ τοῦ τρίτου σχήματος in mg. Β, superscr. M: σχῆμα τρίτον superscr. a Ὅταν aB, in quo Ὅτ evanuit, (et d): ἐὰν Ar. seqiientia quoque Arist. verba add. a: ἡ ἄμφω παντὶ ἡ μηδενί, τὸ μέν σχῆμα τὸ τοιοῦτον καλῶ τρίτον, μέσον δὲ ἐν αὐτῷ λέγω, καθ’ οὗ ἄμφω κατηγορπῦμεν (τὰ κατηγορούμενα Ar.), ἄκρα δὲ τὰ κατηγορούμενα, μεῖζον δὲ ἄκρον τὸ ποῥῤώτερον Ar., sed ποῤῥωτέρω n) τοῦ μέσου, ἔλαττον δὲ ἐγγυτέρω (τὸ ἐγγύτερον ἐγγυτέρω n) 2 μέτεισι] μετ evan. Β 5 ἔφαμεν] p. 48,20 6 δὲ om.B οὕτως M ὅτι τε . . . τέτακται (7) om. a 10 ἑκάτερος a 12 τούτων a 14 εἰρήκαμεν a; cf. p. 48,5sq. 15 εἰ om.B 16 τῷ om. a προτάσεων M 18 ἐν τῷ] conicio ἐν τοῖς 19 ϊ ς(??) M: ς(??) aB 20 δυναμένας] μέν evan. Β 21 πλείους M 22 αἴτιον corr. Β 23 συλλογισμὸς ἔσεσθαι aM 24 εἴη om. a 25 ἄν om. a ληφθείη a 26. 27 ἀμφοτέρῳ a 29 post ὁμοίως add. καὶ a τῷ om. a 30 συλλογιστικαὶ συζυγίαι a αἱ BM: καὶ a 31 συλλογιστικαὶ ante συζυγίαι trans- ponit a: om. M 32 συζυγίαι συλλογιστικαί a)
Ἓξ δὲ ὄντων συλλογισμῶν ἐν τούτῳ τῷ σχήματι πρῶτος μὲν ἂν αὐτῶν εἴη τῇ τάξει ὁ ἐκ δύο καθόλου καταφατικῶν ἐπὶ μέρους καταφατικὸν συνάγων κατὰ ἀντιστροφὴν τῆς ἐλάττονος προτάσεως. δύναται δὲ καὶ τῆς 25 μείζονος ἀντιστραφείσης γενέσθαι, ἀλλὰ δεήσει καὶ τὸ συμπέρασμα ἀντιστρέφειν· διὸ καὶ τοῦτόν τινες τὸν συλλογισμὸν προστιθέντες ὡς ἄλλον τοῦ πρὸ αὐτοῦ ἑπτά φασιν τοὺς ἐν τούτῳ τῷ σχήματι συλλογισμούς. πρώτη δὲ αὕτη ἡ συμπλοκὴ διὰ τὸ καὶ ἐκ καθόλου ἀμφοτέρων εἶναι καὶ καταφατικῶν. δ’ ἄν τις, τί δήποτε ἐν τῷ δευτέρῳ σχήματι δύο ἦσαν συμπλοκαὶ συλλογιστικαὶ ἔχουσαι τὴν μὲν ἑτέραν καθόλου ἀποφατικὴν τὴν δ’ ἑτέραν καθόλου καταφατικὴν τῷ ποτὲ μὲν τὴν μείζονα ποτὲ δὲ τὴν [*](1 καθόλου καταφατικῆς a 2 ante ἢ add. οὔσης aM εἰ δ’ . . . ἀποφατικῆς (4) om. a 3 συλλογιστικαὶ συζυγίαι M 4 ἀποφατικῆς ἡ καταφατικῆς M γίνεσθαι om. a 6 συμπλοκὴ συλλογιστική aM 7 aute δευτέρῳ add. ἐν τῷ aM 11 συνάγεται a 13 post κοινὸν add. ὃν M 14 ἀπῄτησε a 16 et 17 ἣν oni. aM IG δ’ M 17 λέγω om. M 19 φυλάττει Μ γὰρ oui. a 20 ἐκείνης ΒΜ: ἐν ἐκείνῃ a 21 φυλάσσει M 22 συμπλοκαῖς a et in rasuraM: συζυγίαις supor- scripto γρ. συμπλοκαῖς Β 24 καταφατικὴ M: καταφατικῇ a 25 αὐτῶν ἄν M 27 κατ’ M 30 post φασιν add. εἶναι aM τἀς a 31 καὶ (post εἶναι) om. aM 31. 32 καταφατικὸν Β 32 ἐπιζητήσῃ aM post ἐν add. μὲν M 33 συλλογιστικαὶ συμπλοκαὶ M)
Μετὰ δὲ τοῦτον ὁ ἐκ καθόλου ἀποφατικῆς τῆς μείζονος καὶ καθόλου καταφατικῆς τῆς ἐλάττονος ἐπὶ μέρους ἀποφατικὸν συνάγων· καὶ γὰρ οὗτος ἀμφοτέρας μὲν ἔχει τὰς προτάσεις καθόλου, ἀλλ’ οὐκ ἀμφοτέρας καταφατικάς. καὶ οὗτος δὲ δείκνυται συνάγων κατ’ ἀντιστροφὴν τῆς ἐλάττονος. τρίτος ὁ ἐκ καθόλου καταφατικῆς τῆς μείζονος καὶ ἐπὶ μέρους καταφατικῆς τῆς ἐλάττονος ἐπὶ μέρους καταφατικὸν συνάγων, καὶ οὗτος κατ’ ἀντιστροφὴν τῆς ἐλάττονος, πρῶτος ὢν τῇ τάξει τοῦ μετ’ αὐτὸν διὰ ὁμοίων τούτων προτάσεων τὸ ἐπὶ μέρους καταφατικὸν συνάγοντος, ὅτι οὗτος μὲν διὰ μιᾶς ἀντιστροφῆς δείκνυται συνάγων τὸ προκείμενον, ὁ δὲ μετ’ αὐτὸν ὁ ἐξ ἐπὶ μέρους καταφατικῆς τῆς μείζονος καὶ καθόλου καταφατικῆς τῆς ἐλάττονος διὰ δύο ἀντιστροφῶν δείκνυται συνάγων τὸ προκείμενον· κατὰ γὰρ τὴν ἀντιστροφὴν τῆς τε μείζονος οὔσης ἐπὶ μέρους καταφατικῆς καὶ τοῦ συμπεράσματος. πέμπτος δ’ ἄν εἴη ὁ ἐκ καθόλου ἀποφατικῆς τῆς μείζονος [*](1 οὖσαν aM: οὐκ ἄν Β 2 ante ἐκ add. καὶ M 2. 3 καταφατικῶν καθόλου a 5 τῷ aB: τὸ M 6 καὶ (ante ἀντιστρέφουσα) om. a ἀντιστρέφουσα scripsi: ἀντιστρεφούσας libri ἄλλον a 7 δ’ M ἢν Β S αἱ δύο ὦσι a καθόλου om. a 10 τε om. M θέσις delevi 12 τῶν προτάσεων εἶναι M 13 ἀπεριττοτέρα a: ἀπεριεργοτέρα BM 14 παρὰ corr. ex περὶ (π) Β1, item vs. sq. 16 οὑν 16 καὶ (ante δι’) om. a δι’ aB: διὰ τῆς M 17. 18 πλείους οἱ συλλογισμοὶ] είους οἱ σὺ evan. Β 18 ἧς M 19 καταφατικῶν καθόλου M 20 post καὶ prius add. ὁ M εἰ καὶ Β: ἂν (ἂν om. a) εἴη. κἂν aM τοῦτο M 27 οὖτος om. M ἐπὶ μέρους . . . τῆς ἐλάττονος (28) bis a 28 δι’ M τούτων] fort, τούτῳ 30 ὁ δὲ scripsi: ὅδε libri 33 τε om. M)
Εἰκότως δὲ ἐπὶ μὲν τοῦ δευτέρου σχήματος οἱ δι’ ἀντιστροφῆς δεικνύμενοι συλλογισμοὶ τῆς μείζονος προτάσεως ἀντιστρεφομένης δείκνυνται· καὶ γὰρ ὁ δεύτερος ὁ τὴν μείζονα ἔχων καθόλου καταφατικὴν τὴν δὲ ἐλάττονα καθόλου ἀποφατικὴν κατ’ ἀντιστροφὴν γινόμενος τῆς ἀποφατικῆς, ὅσον ἐπὶ τῇ δείξει, τὴν ἐλάττονα κειμένην μείζονα ποιεῖ· διὸ χρείαν ἔχομεν τοῦ καὶ τὸ συμπέρασμα ἐπ’ αὐτοῦ ἀντιστρέψαι, ἵνα σχῶμεν τὸν κείμενον ἐν ταῖς προτάσεσι μείζονα τοῦτον ἐν τῷ συμπεράσματι κατηγορούμενον. ἐν δὲ τῷ τρίτῳ σχήματι ἡ ἐλάττων ἐστὶν ἡ ἀντιστρεφομένη· καὶ γὰρ καὶ ἐν τούτῳ ἐν τῇ συζυγίᾳ τῇ ἐξ ἐπὶ μέρους καταφατικῆς τῆς μείζονος καὶ καθόλου καταφατικῆς τῆς ἐλάττονος ἀντιστρέφεται μὲν ἡ μείζων κειμένη ἐπὶ μέρους καταφατική, ἀλλ’, ὅσον ἐπὶ τῷ συλλογισμῷ, ἐλάττων γίνεται. διὸ πάλιν καὶ ἐπὶ ταύτης τῆς συζυγίας ἐδεήθημεν ἀντιστρέψαι καὶ τὸ συμπέρασμα ὑπὲρ τοῦ τηρῆσαι τὸν κείμενον μείζονα κατηγορούμενον ἐν τῷ συμπεράσματι· ὅσον γὰρ ἐπὶ τῷ συλλογισμῷ τῷ δι’ ἀντιστροφῆς, ἐλάττων ἐγένετο. εἰκότως δ’ ἦν τοῦτο, ὡς ἔφην· ἀφ’ ἧς γὰρ προτάσεως ἑκατέρῳ τῶν σχημάτων ἀντιστραφείσης ἐκ τοῦ πρώτου σχήματος ἡ γένεσις, ταύτης ἀντιστρεφομένης πάλιν καὶ ἡ ἀνάλυσις καὶ ἡ ἀναγωγὴ αὐτῶν εἰς τὸ πρῶτον γίνεται σχῆμα, δι’ ἧς ἀναλύσεως δείκνυνται τὸ συλλογιστικὸν ἔχοντες.
Μέσον δ’ ἐν αὐτῷ λέγω, καθ’ οὗ ἄμφω τὰ κατηγορουμενα.
Oὗτος ἄν εἴη λόγος τοῦ τρίτου σχήματος, ἐν ᾧ τὰ ἄκρα ἀμφότερα τοῦ μέσου κατηγορεῖται.
[*](1 καὶ . . . ἐλάττονος om. a ἐν μέρει M 2 τὸ Β: τῷ aM συνάγων Β et, ut vidctiir, M pr.: συνάγειν a, M corr. 3 πρότασιν ἐπὶ μέρους M ἕκτην B 4 ἐξ a: om. BM 4. 5 ἀποφατικὴν ἔχων τὴν μείζονα καὶ καθόλου καταφατικὴν τὴν ἐλάττονα καὶ M 7 τῷ om. a 9 δὴ aM: δὲ Β 12 post ἀλλὰ add. καὶ aM ἐνήλλαξεν a 13 δ’ M 14 δείκνυνται corr. ex δείκνυται B1 15 δ’ M 17 ὅσον BM: ὃς a 18 προκείμενον a 21 τῇ (ante ἐξ) aM: τῆς B 25 μείζονα κείμενον aM 26 τῶν συλλογισμῶν τῶν M 27. 28 ἐκατέρῳ τῶν σχημάτων post σχήματος (28) transponit a 20 ἡ (ante ἀνάλυσις ct ante ἀναγωγὴ) om. aM 30 σχῆμα γίνεται aM 31 καθ’ corr., ut videtur, ex δι’ Β1 33 οὗτος ἄν corr. ex ὅταν B1 (??))Μεῖζον δὲ ἄκρον τὸ ποῤῥώτερον τοῦ μέσου.
[*](31v)Ὡς τῆς μείζονος προτάσεως ἐν πρώτῳ σχήματι ἀντιστραφείσης ἐγίνετο πρὸ τοῦ μείζονος ἄκρου ὁ μέσος τιθέμενος ἐν τῷ δευτέρῳ σχήματι, οὕτως πάλιν ἐν τῷ τρίτῳ σχήματι κατ’ ἀντιστροφὴν τῆς ἐλάττονος ἐν πρώτῳ σχήματι προτάσεως τοῦ τρίτου σχήματος γεγονότος γίνεται ὁ μέσος μετὰ τὸν ἐλάττονα ἄκρον τὴν θέσιν ἔχων· τῇ γὰρ ἑκατέρας προτάσεως ἀντιστροφῇ ὁ μέσος τὴν θέσιν πλησίον πίπτει τοῦ ἄκρου, ᾧ συνέζευκται ἐν τῇ ἀντιστρεφομένῃ προτάσει. γινόμενος δὲ ἐν τῷ τρίτῳ σχήματι πλησίον τοῦ ἐλάττονος ἄκρου ὁ μέσος ἀμφοτέροις ὑποκείμενος γίνεται, τῷ μὲν ἐλάττονι διὰ τὴν ἀντιστροφὴν τῆς ἐλάττονος προτάσεως τῷ δὲ μείζονι, ὅτι καὶ ἔκειτο τὴν ἀρχὴν ἐν πρώτῳ σχήματι ὑποκείμενος τούτῳ. ὑποκείμενος δὲ ἀμφοτέροις εἰκότως τὴν ἐσχάτην ἔχει θέσιν.
Δυνατὸς δὲ ἔσται καὶ καθόλου καὶ μὴ καθόλου τῶν ὄρων ὄντων πρὸς τὸ μέσον.
Τὸ μὴ καθόλου οὐ τοῦ ‘μηδετέρας οὔσης καθόλου’ σημαντικόν ἐστιν ἀδύνατον γάρ, ὡς εἰρήκαμεν ἤδη, ἐκ δύο ἐπὶ μέρους προτάσεων συλλογισμὸν γενέσθαι), ἀλλ’ ὅτι ’μὴ ἀμφοτέρων καθόλου’.
Καθόλου μὲν οὖν ὄντων, ὅταν καὶ τὸ Π καὶ τὸ P παντὶ τῷ Σ ὑπάρχῃ.
ἐπὶ τούτου τοῦ σχήματος πάλιν χρῆται στοιχείοις τοῖς Π, P, Σ, καὶ ἔστιν αὐτῷ τοῦ μὲν μείζονος ἄκρου σημαντικὸν τὸ Π τοῦ δὲ ἐλάττονος καὶ ὀφείλοντος ὑποκεῖσθαι ἐν τῷ γινομένῳ συμπεράσματι τὸ P τοῦ δὲ μέσου τὸ Σ. πρώτην δὲ ἐκτίθεται τὴν ἐκ δύο καθόλου καταφατικῶν συζυγίαν, ἣν δείκνυσι συλλογιστικὴν διά τε τοῦ ἀντιστρέψαι τὴν ἐλάττονα πρότασιν τὴν P Σ οὖσαν καθόλου καταφατικὴν καὶ λαβεῖν τὴν P Σ ἐπὶ μέρους κατα- φατικὴν καὶ ἀναγαγεῖν οὕτως εἰς τὸν τρίτον συλλογισμὸν τὸν ἐν τῷ πρώτῳ σχήματι τὸν ἐκ καθόλου καταφατικῆς τῆς μείζονος καὶ ἐπὶ μέρους καταφατικῆς τῆς ἐλάττονος ἐπὶ μέρους καταφατικὸν συνάγοντα. ἔνεστι μέντοι, ὡς εἶπον, καὶ τὴν μείζονα ἀντιστρέψαντας τὸ αὐτὸ τοῦτο δεῖξαι συναγόμενον, ἂν καὶ τὸ συμπέρασμα ἀντιστρέψωμεν. εἰ γὰρ τὸ Π παντὶ τῷ Σ, καὶ [*](1 Μεῖζον . . . μέσου textus verba in M ποῤῥωτέρω aM (n) 2 ante πρώτῳ add. τῷ a ἐγένετο M 3 τῷ cm. M οὕτω M 4. 5 προτάσεως ἐν πρώτῳ σχήματι a 6 ἑκατέρᾳ Β post ἀντιστροφῇ add. ἐλάττων a: evan. Β (an om. in lac?) 8 προτάσει om. M 14 τῷ μέσῳ a 16 εἰρήκαμεν] p. 68, IGsq. 17 ἀλλ’ ὅτι aB: ἀλλὰ M ante ἀμφοτέρων add. ἐπ’ M, ἐξ a 18 οὖν om. a post ὄντων add. τῶν ὅρων a (n) 20 τοῦτο τῷ σχήματι M ante στοιχείοι add. τοῖς M 21 αὐτὸ a δ’ M 24 τε om. aM 26. 27 τὸν ἐν τῷ πρώτῳ σχήματι B: τοῦ πρώτου σχήματος aM 29 εἶπον] p. 97,22 30 καὶ (post σ(??)) om. aM)
Εἰπὼν δὲ περὶ τῆς εἰς ἀδύνατον ἀπαγωγῆς, ὅτι καὶ οὕτως δεῖξαι οἷόν τέ ἐστιν ἐπὶ μέρους καταφατικὸν γινόμενον τὸ συμπέρασμα τὸ μὲν παρατίθεσθαι αὐτὴν τὴν δεῖξιν τὴν δι’ ἀδυνάτου ὡς γνώριμον παρέλιπεν· ἐποίησε γὰρ καὶ ἐπὶ τοῦ δευτέρου σχήματος. προσέθηκε δὲ καὶ τρίτην τινὰ δεῖξιν, ᾗ ἔνεστι καὶ αὐτῇ προσχρώμενον, ὅτι τὸ Π τινὶ τῷ P ὑπάρχει, ἐν τῇ ἐκκειμένῃ συζυγίᾳ δεικνύναι συναγόμενον. | λέγει δὲ αὐτὴν τῷ καὶ ὑπογράφει καὶ δείκνυσι, τίς ὁ τῆς ἐκθέσεως τρόπος. ἐπεὶ γὰρ κεῖται καὶ τὸ Π καὶ τὸ P παντὶ τῷ Σ ὑπάρχοντα, ἂν ἀντὶ τοῦ Σ λάβωμέν τι τῶν ὑπὸ τὸ Σ, τούτῳ ὑπάρχει δῆλον ὅτι καὶ τὸ Π καὶ τὸ P, εἴ γε καὶ παντὶ τῷ ὑπὸ τὸ Σ. οὕτως δὲ δειχθήσεται καὶ τὸ Π τινὶ τῷ P ὑπάρχον. καὶ λαμβάνει γε τὸ Ν· τούτου δ’ οὕτως ἔχοντος καὶ τὸ Π, φησί, τινὶ τῷ P ὑπάρξει. ἀλλὰ δοκεῖ γε οὕτως μηδὲν πλέον γεγονέναι πρὸς τὸ δειχθῆναι τὸ προκείμενον. τί γὰρ διαφέρει τῷ Σ ὑπάρχειν λαβεῖν παντὶ τό τε Π καὶ τὸ P καὶ μέρει τινὶ τοῦ Σ τῷ N; τὸ γὰρ αὐτὸ καὶ ἐπὶ τοῦ N ληφθέντος μένει· ἡ γὰρ αὐτὴ συζυγία ἐστίν, ἄν τε κατὰ τοῦ Ν παντὸς ἐκείνων ἑκάτερον, ἄν τε κατὰ τοῦ Σ κατηγορῆται. ἢ οὐ τοιαύτη ἡ δεῖξις, ᾗ χρῆται· ὁ γὰρ δι’ ἐκθέσεως τρόπος δι’ αἰσθήσεως γίνεται. οὐ γὰρ ἵνα τοιοῦτόν τι τοῦ Σ λάβωμεν, καθ’ οὗ ῥηθήσεται παντὸς καὶ τὸ Π καὶ τὸ P, λέγει (οὐδὲν γὰρ πλέον, εἰ οὕτως ληφθείη), ἀλλ’ ἵνα τι τῶν ὑπ’ [*](1 post γίνεται add. καὶ M 1. 2 σ(??) τινὶ τῷ ρ(??) M 4 δεομένη a: δεομένην BM ante ἐπὶ add. καὶ a 6 τοῦ BM: τῷ a 6. 7 ἔστι δὲ τοῦτο B: ὅ ἐστι all 7 τῇ evan. Β 10 συναγόμενον Β pr, 12 καὶ om. aM 13. 14 τῷ π(??) τὸ ρ(??) a 14 τινὶ ora. M 15 τιθεῖσα aB: τινι (νι superscr.) θεῖσα M 16 εἶπε a 16. 17 τί ἐστι δεῖξαι M 17 τὸ (ante συμπέρασμα) om. aM συμπέρασμα ante γινόμενον transponit M ante τὸ μὲν add. καὶ a 18 παραλέλοιπεν M 20 αὐτῷ Β ὑπάρχειν a 21 τὸ a 22 κεῖται post ρ(??) (23) transponit a 24 τούτῳ aM: τοῦτο ᾧ Β ὑπάρχειν M 25 ὑπὸ τὸ om. a 26 γε BM: μέρος a 27 ρ(??) aB: V M ὑπάρξαι aM 28 post διαφέρει add. τοῦ a 29 καὶ μέρει M: μέρει Β: τὸ μέρος a 31 ἑκάτερον (ἑκατέρου a) ἐκείνων aM 34 οὐδέν oorr. ex οὐδὲ B1)
Καὶ ἐὰν τὸ μὲν P παντὶ τῷ Σ, τὸ δὲ Π μηδενί.
Ἐπὶ δευτέραν συζυγίαν μετελήλυθε τὴν ἐκ καθόλου ἀποφατικῆς τῆς μείζονος καὶ καθόλου καταφατικῆς τῆς ἐλάττονος, καὶ δείκνυσι καὶ ταύτην συλλογιστικὴν διὰ τοῦ ἀντιστρέψαι τὴν ἐλάττονα τὴν P Σ οὖσαν καθόλου καταφατικὴν καὶ λαβεῖν ἐπὶ μέρους καταφατικὴν τὴν P Σ καὶ ἀναγαγεῖν εἰς τὸν ἐν πρώτῳ σχήματι τέταρτον συλλογισμόν, ὃς ἦν ἐκ καθόλου ἀποφατικῆς τῆς μείζονος καὶ ἐπὶ μέρους καταφατικῆς τῆς ἐλάττονος ἐπὶ μέρους ἀποφατικὸν συνάγων. δῆλον δ‘, ὅτι ἔνεστι καὶ διὰ τῆς εἰς ἀδύνατον ἀπ- [*](2 τὸ ζῷον post π(??) transponit a π(??) evan. Β 4 τὸ σ(??) Β 5 Σωκράτην aM 6 ἐναργὲς γίνεται om. Β π(??) Β1 corr. 7 αἰσθητικὴ aM 9 τὸ otn. M αὐτὸν M: αὐτὸ Β: αὐτῷ a τι om. M 10 τῷ ἐκκειμένῳ scripsi: τὸ ἐκκείμενον libri τῷ (ante παντὶ) M: τὸ aB 11 ὑπάρχον aM 12 post γὰρ add. τοῦ aM 14. 15 τῷ τρίτῳ σχήματι a 15 ἐπεὶ M: ἐπεὶ δ’ a καὶ addidi 16 ante ἓν add. καὶ οὐχ M ἐκ cm. aM 17 λαβόντας a τι om. M 18 τούτου a συνημμένου ἡ κεχωρισμένου a ante ἀλλήλων add. ἀπ’ a 19 δὲ M τῷ ἄλλο B: ἀλλ’ aM 20 post ἄν add. M κατηγορεῖται a 24 ἡ δεῖξις] cf. p. 31 et 32 27 ἐὰν aB (Cn): ἄν Ar.)
ἐὰν δὲ τὸ μὲν P μηδενὶ τῷ Σ, τὸ δὲ Π παντὶ τῷ Σ ὑπάρχῃ.
Ἐκθέμενος τὰς συλλογιστικὰς συζυγίας τὰς ἐκ καθόλου τῶν δύο προτάσεων οὔσας νῦν τῶν ἀσυλλογίστων ἐπ’ αὐταῖς μνημονεύει. καὶ πρῶτον μὲν παρατίθεται τὴν ἔχουσαν τὴν ἐλάττονα καθόλου ἀποφατικὴν τὴν δὲ μείζονα καθόλου καταφατικήν, ἥν, ὅτι ἐστὶν ἀσυλλόγιστος, ἐλέγχει τῇ τῶν ὅρων παραθέσει, δεικνύς, ὅτι καὶ παντὶ καὶ μηδενὶ δύναται τὸ Π τῷ P κειμένης ταύτης τῆς συζυγίας ὑπάρχειν. ζῷον γὰρ παντὶ ἀνθρώπῳ ὂν Π ὄντι τῷ Σ, ἵππος οὐδενὶ ἀνθρώπῳ ὢν P, καὶ ζῷον παντὶ ἵππῳ, τοῦτ’ ἔστι τὸ Π τῷ P. πάλιν καὶ ζῷον παντὶ ἀνθρώπῳ, καὶ τὸ ἄψυχον ὂν P οὐδενὶ ἀν- θρώπῳ, καὶ τὸ ζῷον οὐδενὶ ἀψύχῳ, τοῦτ’ ἔστι τὸ Π τῷ Ρ. αἴτιον δὲ τοῦ ἀσυλλόγιστον εἶναι τὴν συζυγίαν πάλιν τὸ αὐτό, ὃ καὶ ἐν τῷ πρώτῳ σχήματι ἦν τῆς μὲν μείζονος καθόλου καταφατικῆς οὕσης τῆς δ’ ἐλάττονος καθόλου ἀποφατικῆς.
Οὐδ᾿ ὅταν ἄμφω κατὰ μηδενὸς τοῦ Σ λέγηται.
Δείκνυσι καὶ ταύτην τὴν συζυγίαν ἀσυλλόγιστον ἔχουσαν ἀμφοτέρας τὰς προτάσεις καθόλου ἀποφατικάς, ἥτις κατελείπετο ἐν ταῖς καθόλου τῶν προτάσεων συζυγίαις. οἱ δὲ ὅροι τοῦ μὲν τὸ Π παντὶ τῷ P ὑπάρχειν ζῷον, ἵππος, ἄψυχον· οὐδενὶ γὰρ ἀψύχῳ ὄντι Σ οὕτε τὸ ζῷον οὔτε ὁ ἵππος, καὶ τὸ ζῷον παντὶ ἵππῳ, τοῦτ’ ἔστι τὸ Π τῷ Ρ. τοῦ δὲ μηδενὶ ἄνθρωπος, ἵππος, ἄψυχον· πάλιν γὰρ τῷ ἀψύχῳ ὄντι Σ οὔτε ὁ ἄνθρωπος οὔτε ὁ ἵππος, ἀλλ’ οὐδὲ ὁ ἄνθρωπος τῷ ἵππῳ.
[*](1 καὶ (ante τοῦτον) om. a 2 ὑποτιθῇ B τῷ ρ(??) BM: τῷ σ(??) a 3 ἔκειτο, ἔκειτο a 4 post δεῖξαι add. καὶ τοῦτον aM μὴ καὶ a 5 τοῦτον M 7 ἐγκειμένῳ Β pr. 8 ὑπάρχει Β pr. 9 τῷ σ(??) (post μηδενὶ) aB (i; τὸ σ(??) C): om. Ar. τῷ σ(??) alterum om. a: post ὑπάρχῃ (10) transponit Ar. 12 ἐπ’ aB: ἐν M 13. 14 τὴν δὲ μείζονα καθόλου καταφατικήν om. aM 16 π(??) ὂν a ὄντι om. a 17 ὢν aM: ὂν Β πάλιν . . . τῷ ρ(??) (19) om. a ὂν om. M ἔστι δ᾿ (δὲ a) αἴτιον aM 21 μὲν om. a δ᾿ M: δὲ a: om. B 24 τὴν om. B 27 σ(??) om. M τὸ om. a ὁ om. aM 28 δὲ om. M 29 σ(??) om. M ὁ om. M 30 ὁ (post οὗτε) om. M)Φανερὸν οὖν καὶ ἐν τῷ τούτῳ τῷ σχήματι.
[*](32v)Ὑπομιμνήσκει ἡμᾶς τῶν εἰρημένων, ὅτι δύο μὲν ἔσονται συλλογιστικαὶ συζυγίαι ἐκ καθόλου προτάσεων ἐν τούτῳ τῷ σχήματι, καὶ τίνες, δύο δὲ
ἐὰν δ’ ὁ μενῇ καθόλου πρὸς τὸ μέσον ὁ δ’ ἐν μέρει.
Eἰπὼν περὶ τῶν συζυγιῶν τῶν ἐκ καθόλου προτάσεων ἐν τῷ τρίτῳ σχήματι μετελήλυθεν ἐπὶ τὰς τὴν ἑτέραν ἐχούσας καθόλου μόνην, καὶ δείκνυσι πάλιν καὶ ἐν ταῖς οὕτως ἐχούσαις συζυγίαις τίνες μὲν αὐτῶν εἰσι συλλογιστικαί, τίνες ὅ ἀσυλλόγιστοι. καὶ λέγει πρῶτον μέν, ὅτι, ἄν ἀμφότεραι ὦσι καταφατικαί, συλλογισμὸς ἔσται, ἄν ὁποτεραοῦν ᾖ καθόλου, ἄν τε ἡ μείζων ἄν τε ἡ ἐλάττων· ὥστε δύο συζυγίαι πάλιν αὗται συλλογιστικαὶ οὐσῶν ἀμφοτέρων μὲν καταφατικῶν τῆς ἑτέρας δὲ καθόλου. καὶ πρώτην μὲν ἐκτίθεται τὴν ἔχουσαν τὴν μὲν ἐλάττονα τὴν P Σ καθόλου καταφατικὴν τὴν δὲ μείζονα τὴν Π Σ ἐπὶ μέρους καταφατικήν, ἣν ἡμεῖς συζυγίαν ἐτάξαμεν τετάρτην τῷ δεῖσθαι δύο ἀντιστροφῶν. ἀντιστραφείσης γὰρ τῆς ἐπὶ μέρους καταφατικῆς τῆς Π Σ, ἥτις ἦν ἡ μείζων, γίνεται τὸ Σ τῷ Π τινὶ ὑπάρχον· κεῖται δὲ καὶ τὸ Ρ παντὶ τῶ Σ· συνάγεται τὸ P τινὶ τῶ Π κατὰ τὸν τρίτον τὸν ἐν πρώτῳ σχήματι. ἀλλ’ ἐπεὶ κεῖται μείζων ὁ Π καὶ δεῖ αὐτὸν ἐν τῷ συμπεράσματι κατηγορεῖσθαι, ἀντιστραφήσεται καὶ τὸ συμπέρασμα· ἦν δὲ τὸ P τινὶ τῷ Π συνηγμένον· καὶ τὸ Π ἄρα τινὶ τῷ P ὑπάρξει. ἐδέησε δὴ καὶ τῆς τοῦ συμπεράσματος ἀντιστροφῆς, οὐ μόνον τῆς Π Σ προτάσεως, ὃ ἐδήλωσε καὶ αὐτὸς ἐπενεγκὼν μετὰ τὸ δεῖξαι συμπέρασμα γινόμενον διὰ τοῦ συλλογισμοῦ, ὅτι τὸ P τινὶ τῷ Π, τὸ ὥστε καὶ τὸ Π τινὶ τῶ P.
Πάλιν εἰ τὸ μὲν P τινὶ τῷ Σ, τὸ δὲ Π παντὶ τῶ Σ.
Ἀνάπαλιν νῦν ἔλαβε τὰς προτάσεις· ἀμφοτέρας μὲν γὰρ καταφατικὰς ἐτήρησεν, ἀλλὰ τὴν μείζονα καθόλου ἐποίησε· καὶ δείκνυσι καὶ ταύτην τὴν συζυγίαν συλλογιστικὴν οὖσαν ἀντιστρέψας τὴν ἐλάττονα πρότασιν οὖσαν ἐπὶ μέρους | καταφατικὴν καὶ ἀναγαγὼν τὴν συζυγίαν εἰς τὸν τρίτον ἀναπόδεικτον ἐν πρώτῳ σχήματι τὸν ἐκ καθόλου καταφατικῆς τῆς μείζονος καὶ ἐπὶ μέρους καταφατικῆς τῆς ἐλάττονος. ταύτην ἡμεῖς τρίτην ἐτάξαμεν τὴν [*](5 τῷ μέσῳ a δὲ M ὅτι om. a 10 ὁποτεραοῦν ᾖ κ.] ῦν ᾖ κ evan. 11 ὡς a 12 μὲν ἀμφοτέρων μὲν Β: μὲν ἀμφοτέρων a 16 ἡ om. M τινὶ τῷ π a ὑπάρχειν aM 17 καὶ om. aM post συνάγεται add. οὖν M 18 τὸν ἐν πρώτῳ σχήματι aB: τρόπον τοῦ πρώτου σχήματος M ἐπειδὴ a post μείζων add. ὅρος M 22 μετενεγκὼν M ante συμπέρασμα add. τὸ a 23 τὸ (ante ὥστε) om. a καὶ aB (Cim, corn Β): om. Ar. 25 ὑπάρχειν B 26 τῷ a om. Ar.)
ἐὰν δ’ ὁ μὲν ᾖ κατηγορικὸς ὁ δὲ στερητικός.
Ἀπὸ τῶν ὁμοιοσχημόνων προτάσεων μεταβαίνει ἐπὶ τὰς ἀνομοιοσχήμονας προτάσεις καὶ τὰς ἐκ τούτων συζυγίας φυλάσσων πρῶτον τὸ τὴν ἑτέραν αὐτῶν τὴν καταφατικὴν εἶναι καθόλου, καὶ δείκνυσι, τίνες ἐν ταῖς τοιαύταις συμπλοκαῖς γίνονται συζυγίαι συλλογιστικαί. τῆς δὴ ἐλάττονος οὔσης καθόλου τε καὶ καταφατικῆς ἔσται μὲν ἡ μείζων δῆλον ὅτι ἐπὶ μέρους τε καὶ ἀποφατική, ἡ δὲ συζυγία συλλογιστική· εἰ γὰρ εἴη τὸ μὲν P παντὶ τῷ Σ ὑπάρχον τὸ δὲ Π τινὶ τῷ Σ μὴ ὑπάρχον, συνάγεται τὸ Π τινὶ τῷ P μὴ ὑπάρχειν. ἡ δὲ δεῖξις οὐκέτι δύναται γενέσθαι δι’ ἀντιστροφῆς· οὔτε γὰρ ἡ ἐπὶ μέρους ἀποφατικὴ ἀντιστρέφει, ἄν τε τὴν καθόλου καταφατικὴν ἀντιστρέψωμεν, τὰς δύο ἐπὶ μέρους ποιήσομεν· ἐκ δὲ δύο ἐπὶ μέρους οὐδὲν ἀναγκαῖον ἐν οὐδενὶ σχήματι συνάγεται. διὰ δὲ τῆς εἰς ἀδύνατον ἀπαγωγῆς δείκνυσι γινόμενον ἐπὶ τῆς συζυγίας ταύτης τὸ συμπέρασμα ἐπὶ μέρους ἀποφατικόν. εἰ γὰρ τὸ Π τινὶ μὴ ὑπάρχειν τῷ P μὴ συγχωροῖ τις κειμένων τῶν προτάσεων, ὡς εἰρήκαμεν, ὑποκείσθω τὸ ἀντικείμενον, καὶ παντὶ ὑπαρχέτω· ἀλλὰ κεῖται καὶ τὸ P παντὶ ὑπάρχειν τῷ Σ· συναχθήσεται δὴ τὸ Π παντὶ τῷ Σ ὑπάρχειν, ὃ ἀδύνατον· ἔκειτο γὰρ τινὶ μὴ ὑπάρχειν αὐτῷ. λέγει δέ, ὅτι δείκνυται τὸ αὐτὸ τοῦτο συναγόμενον καὶ ἄνευ τῆς εἰς ἀδύνατον ἀπαγωγῆς, ἐάν, φησί, ληφθῇ τι τῶν Σ, ᾧ τὸ Π μὴ ὑπάρχει. λέγοι δ’ ἄν πάλιν τὸν δι’ ἐκθέσεως τρόπον. εἰκότως δὲ οὔχ, ᾧτινι ὑπάρχει τῶν Σ τὸ P, ἔλαβεν, ἀλλ’ ᾧτινι μὴ ὑπάρχει τὸ Π. ἐπεὶ γὰρ τὸ μὲν P παντὶ τῷ Σ, τὸ δὲ Π τινὶ οὐχ ὑπάρχει, ᾧ μὲν μὴ ὑπάρχει τὸ Π τοῦ Σ, πάντως τούτῳ τὸ P ὑπάρχει, ᾧ μέντοι τὸ P ὑπάρχει τῶν Σ, οὐκέτι τούτῳ ἀνάγκη τὸ Π μὴ ὑπάρχειν· ἐνδέχεται γὰρ τοιοῦτον ληφθῆναι τοῦ Σ τι, ᾧ καὶ τὸ Π ὑπάρξει· οὐ γὰρ ἔκειτο αὐτῷ μηδενὶ ὑπάρχειν ἀλλὰ τινὶ μὴ ὑπάρχειν· τὸ δὲ τινὶ μὴ ὑπάρχον ἐνδέχεται [*](2 δεικνύεται M κειμένης aM ἐπεσημήναντο M 5 πρότερον Β (u): προτέρων aM et Ar. (at cf. p. 28 a 30) 10 τὸ B: τε aM εἶναι B: τῆς aM 12 δὲ a: δ᾿ M 14 τε κ(??) καὶ om. M 15 ὕπαρ (post σ(??) et post μὴ) M, item vs. 16 21 μὴ (post ρ(??) BM: οὐ a 22 συγχωρείη a: συγχωροῖτο omisso τις M 23 καὶ alterum om. a 24 δὴ corr. ex δὲ B1 26 ἄν a φησί om. aM τι om. M τοῦ σ(??) a 27 ὑπάρχειν Β X λέγει aM 28 ὑπάρχει (ante τῶν) a: ὑπάρχειν Β: ὑπάρ M (etiam post μὴ et vs. sq.) τοῦ σ(??) a 30 ὑπάρχῃ (post μὴ) Β post τὸ π(??) verba ἐπεὶ (29) . . . τὸ π(??) repetit Β 31 τοῦ σ(??) aM 33 ὑπαρ (ante τὸ M) ὑπάρχειν (ante ἐνδ.) M)
Ὅταν δ’ ὁ μείζων ᾖ κατηγορικός, οὐκ ἔσται συλλογισμός.
Λέγει μὲν ἔτι περὶ συζυγιῶν τῶν ἐξ ἀνομοιοσχημόνων προτάσεων τῆς καταφατικῆς τὸ καθόλου ἐχούσης. δείξας δέ, ὅτι, ἐὰν ᾖ τὸ καταφατικὸν καθόλου ὂν πρὸς τῇ ἐλάττονι προτάσει, γίνεται συλλογισμός, καὶ τοῦτο πιστωσάμενος διὰ | τῆς εἰς ἀδύνατον ἀπαγωγῆς, νῦν λαβὼν ἀνάπαλιν τὸ [*](33v) καταφατικὸν καθόλου πρὸς τῇ μείζονι προτάσει τὸ δὲ ἐπὶ μέρους ἀποφατικὸν πρὸς τῇ ἐλάττονι δείκνυσι τὴν συζυγίαν τὴν τοιαύτην ἀσυλλόγιστον τῇ τῶν ὅρων παραθέσει ἐλέγχων αὐτῆς τὸ ἀδόκιμον, ὡς ἔθος αὐτῷ τὰς ἀδοκίμους ἐλέγχειν· τὸν γὰρ μείζονα ¦ἄκρον τῷ ἐλάττονι καὶ παντὶ καὶ μηδενὶ ὑπάρχειν δυνάμενον δείκνυσι.
Τοῦ μὲν οὖν παντὶ τὸ Π τῷ P ὑπάρχειν οὔσης τῆς συζυγίας τοιαύτης ὅρους δεικτικοὺς παρέθετο τὸ ἔμψυχον ἐπὶ τοῦ Π, ἄνθρωπον ἐπὶ τοῦ P, ζῷον· ἐπὶ τοῦ Σ· τὸ γὰρ ἔμψυχον παντὶ ζῴῳ, ὁ ἄνθρωπος τινὶ ζῴῳ οὐχ ὑπάρχει, καὶ τὸ ἔμψυχον παντὶ ἀνθρώπῳ. τοῦ δὲ μηδενὶ ὑπάρχειν τὸ Π τῷ P οὔ φησιν οἷόν τε εἶναι ὅρους λαβεῖν, εἰ εἴη <ἡ> ἐπὶ μέρους ἀποφατικὴ ἡ λέγουσα τὸ P τινὶ τῷ Σ μὴ ὑπάρχειν οὕτως εἰλημμένη ἀληθὴς ὡς καὶ τινὶ ὑπάρχοντος τοῦ P τῷ Σ, ὥσπερ γε καὶ ἐφ’ ὧν ἐξέθετο ὅρων ἔχει· ὁ γὰρ ἄνθρωπος τινὶ ζῴῳ οὐχ ὑπάρχων καὶ τινὶ αὐτῷ ὑπάρχει. ὅταν δὴ οὕτως ἀληθὴς ἡ ἐπὶ μέρους ἀποφατικὴ ὡς ἔχειν συναληθευομένην αὑτῇ τὴν ἐπὶ μέρους καταφατικήν, οὐκ ἔσται λαβεῖν ὅρους τοῦ μηδενί. τὸ δ’ αἴτιον πάλιν, ὅτι κειμένης τῆς μείζονος καθόλου καταφατικῆς καὶ τῆς [*](1 post δὲ add. οὐ a τι τοιοῦτο τοῦ σ(??) a ὑπάρ M 2 τι om. a ἐν τῷ aB: ἓν τῶν M δὲ M ἔστι M αὐτῷ M 7 τὸ (ante τινὶ) om. a 9 ταύτην . . . ἐθήκαμεν om. M τῶν συλλογιστικῶν B: τῷ συλλογισμ·ῷ a 13 post περὶ add. τῶν M 14 ἄν aM 17 καθόλου καταφατικὸν a δ’ M 18 τὴν τοιαύτην συζυγίαν a 20 τὸ γὰρ μεῖζον aM 22 τὸ ρ(??) τῷ π(??) a 23 ἄνθρωπος Β ἐπὶ δὲ τοῦ ρ(??) ἄνθρωπον aM 24 post ζῷον add. δὲ a post παντὶ add. τῷ M 26 ante ὅρους add. τοὺς a ἡ a: om. BM 28 τοῦ ρ(??) corr. ex τοὺς Β post σ(??) expunxit μὴ ὑπάρχειν Β 29 δὴ aM, B pr.: δ’ ᾖ Β corr. 30 post οὕτως add. εἴη a αὐτῇ libri 31 ὄρους om. a μηδενός M)
Ἐὰν δ’ ὁ στερητικὸς ᾖ καθόλου τῶν ὅρων.
[*](34r)Λέγει μὲν ἔτι περὶ τῶν ἀνομοιοσχημόνων προτάσεων καὶ συζυγιῶν τῶν τὴν ἑτέραν ἐχουσῶν καθόλου μόνην· εἰρηκὼς δὲ περὶ τῶν, ἐν αἷς ἦν καταφατικὸν τὸ καθόλου, νῦν λέγει περὶ τῶν τὸ ἀποφατικὸν ἐχουσῶν καθόλου καὶ δῆλον ὅτι τὸ ἐπὶ μέρους καταφατικόν. ἐν δὴ ταῖς τοιαύτας ἐχούσαις προτάσεις συζυγίαις λέγει, ὅτι, ἂν μὲν ἡ μείζων ᾖ καθόλου ἀποφατική, συλλογισμὸς ἔσται, οὐκέτι δὲ ἀνάπαλιν. ὅτι δὲ τῆς μείζονος οὔσης καθόλου ἀποφατικῆς τῆς δὲ ἐλάττονος ἐπὶ μέρους καταφατικῆς γίνεται συλλογισμός, δείκνυσιν ἐκθέμενος ἐπὶ τῶν στοιχείων τὴν συζυγίαν. εἰ γὰρ εἴη τὸ Π μηδενὶ τῷ Σ, τὸ δὲ P τινὶ τῷ Σ, τὸ Π τινὶ τῷ P οὐχ ὑπάρξει· διὰ γὰρ τῆς ἐλάττονος προτάσεως ἀντιστραφείσης τῆς P Σ γίνεται τὸ πρῶτον σχῆμα καὶ ὁ τέταρτος ἐν αὐτῷ συλλογισμὸς ἐκ καθόλου ἀποφατικῆς τῆς μείζονος καὶ ἐπὶ μέρους καταφατικῆς τῆς ἐλάττονος ἐπὶ μέρους ἀποφατικὸν συνάγων. τοῦτον τὸν συλλογισμὸν ἔφαμεν ἡμεῖς πέμπτον εἶναι τῷ τοῦτον μὲν δείκνυσθαι δι’ ἀντιστροφῆς, ὃν δ’ αὐτὸς πέμπτον τέθεικε, μὴ δύνασθαι δειχθῆναι δι’ ἀντιστροφῆς· κυριωτέρα γὰρ καὶ οἰκειοτέρα ἡ δι’ ἀντιστροφῆς δεῖξις τῆς δι’ ἀδυνάτου, ὡς αὐτὸς ἐρεῖ. ὅτι δὲ ἔνεστι καὶ τῇ εἰς ἀδύνατον ἀπαγωγῇ καὶ τῷ τρόπῳ τῆς ἐκθέσεως καὶ ἐπὶ τούτου χρήσασθαι ὡς γνώριμον καὶ προειρημένον παρέλιπεν.
Ὅταν δὲ ὁ ἐλάττων ἡ στερητικός.
Μετέβη ἐπὶ τὴν συζυγίαν, ἐν ᾗ ἡ ἐλάττων πρότασίς ἐστι καθόλου ἀποφατικὴ ἡ δὲ μείζων ἐπὶ μέρους καταφατική, καὶ δείκνυσιν ἀσυλλόγιστον αὐτὴν τῇ τῶν ὅρων παραθέσει. τοῦ μὲν γὰρ παντὶ ὑπάρχειν ὅρους παρατίθεται ζῷον, ἄνθρωπον, ἄγριον· τὸ μὲν γὰρ ζῷον, ὅ ἐστι τὸ Π, τινὶ ἀγρίῳ ὑπάρχει, ὅ ἐστι τὸ Σ, ὁ δὲ ἄνθρωπος, ὅ ἐστι τὸ P, οὐδενὶ ἀγρίῳ, καὶ τὸ ζῷον παντὶ ἀνθρώπῳ· τοῦ δὲ μηδενὶ ζῷον, ἐπιστήμην, ἄγριον· πάλιν γὰρ τὸ μὲν ζῷον τινὶ ἀγρίῳ, ἡ δ’ ἐπιστήμη κειμένη ἐπὶ τοῦ P οὐδενὶ ἀγρίῳ, καὶ τὸ ζῷον οὐδεμιᾷ ἐπιστήμῃ. αἰτία δὲ ἡ ἐλάττων οὖσα ἀποφατική.
[*](1 εὐπορήσαντας] ας corr. Β1 τοῦ μηδενὶ om. M 3 δ’ ὁ στερητικὸς B et Ar.: δὴ στερητικὴ a 6 ante καθόλου add. μὴ M λέγει νῦν aM τὸ (post τῶν) om. a: ante καθόλου (7) transponit M 7 καταφατικὸν ἐπὶ μέρους a 10 δ’ M 11 ἐπὶ τῶν στοιχείων M: ἐπὶ τῶν συζυγιῶν Β: om. a τὰς συζυγίας M 13 post ἀντιστρα- φείσης add. γὰρ M 14 αὐτῷ a: αὐτῇ BM 15 post ἐλάττονος add. τὸ M 16 τοιοῦτον M 17 ὃν . . . ἀντιστροφῆς (18) om. aM 18 καὶ om. M 19 ἐρεῖ] Anal. post. I 26 26 ἄνθρωπος M 27 τῷ σ(??) aM δὲ om. M 28 ἐπιστήμη a 29 δὲ M 30 τὸ om. aM)