De conoidibus et sphaeroidibus
Archimedes
Archimedes. Archimède, Volume 1. Mugler, Charles, editor. Paris: Les Belles Lettres, 1970.
Ὀξυγωνίου κώνου τομᾶς δοθείσας καὶ γραμμᾶς μὴ ὀρθᾶς ἀνεστακούσας ἀπὸ τοῦ κέντρου τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς ἐν ἐπιπέδῳ, ὅ ἐστιν ὀρθὸν ἀνεστακὸς διὰ τᾶς ἑτέρας διαμέτρου ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐστιν ἁ τοῦ ὀξυγωνίου κώνου τομὰ, δυνατόν ἐστι κῶνον εὑρεῖν κορυφὰν ἔχοντα τὸ πέρας τᾶς ἀνεστακούσας εὐθείας, οὗ ἐν τᾷ ἐπιφανείᾳ ἐσσεῖται ἁ δοθεῖσα τοῦ ὀξυγωνίου κώνου τομά.
Ἔστω δὴ διάμετρος μὲν τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς ἁ ΒΑ, κέντρον δὲ τὸ △, καὶ ἁ △Γ ἀπὸ τοῦ κέντρου ἀνεστάκουσα, ὡς εἴρηται, ἁ δὲ τοῦ ὀξυγωνίου κώνου τομὰ νοείσθω περὶ διάμετρον τὰν ΑΒ ἐν ἐπιπέδῳ ὀρθῷ ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐντι αἱ ΑΒ, Γ△· δεῖ δὴ κῶνον εὑρεῖν κορυφὰν ἔχοντα τὸ Γ σαμεῖον, οὗ ἐν τῇ ἐπιφανείᾳ ἐσσεῖται ἁ τοῦ ὀξυγωνίου κώνου τομά.
Οὐ δή ἐντι ἴσαι αἱ ΑΓ, ΓΒ, ἐπεὶ ἁ Γ△ οὐκ ἔστιν ὀρθὰ ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐστιν ἁ τοῦ ὀξυγωνίου κώνου τομά. Ἔστω οὖν ἴσα ἁ ΕΓ τᾷ ΓΒ, ἁ δὲ Ν εὐθεῖα ἴσα ἔστῳ τᾷ ἡμισείᾳ τᾶς ἑτέρας διαμέτρου, ᾇ ἐστι συζυγὴς ἁ ΑΒ, καὶ διὰ τοῦ △ ἄχθω ἁ ΖΗ παρὰ τὰν ΕΒ, ἀπὸ δὲ τᾶς ΕΒ ἐπίπεδον ἀνεστακέτω ὀρθὸν ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐντι αἱ ΑΓ, ΓΒ, καὶ ἐν τῷ ἐπιπέδῳ τούτῳ γεγράφθω περὶ διάμετρον τὰν ΕΒ, εἰ μὲν ἴσον ἐστὶ τὸ τετράγωνον τὸ ἀπὸ τᾶς Ν τῷ περιεχομένῳ ὑπὸ τᾶν Ζ△, △Η, κύκλος, εἰ δὲ μή ἐστιν ἴσον, ὀξυγωνίου κώνου τομὰ τοιαύτα, ὥστε τὸ τετράγωνον τὸ ἀπὸ τᾶς ἑτέρας διαμέτρου ποτὶ τὸ ἀπὸ τᾶς ΕΒ τὸν αὐτὸν ἔχειν λόγον, ὃν ἔχει τὸ ἀπὸ τᾶς Ν τετράγωνον ποτὶ τὸ ὑπὸ τᾶν Ζ△, △Η· κῶνος δὲ λελάφθω κορυφὰν ἔχων τὸ Γ σαμεῖον, οὗ ἐν τᾷ ἐπιφανείᾳ ἐσσεῖται ὁ κύκλος ἢ ἁ τοῦ ὀξυγωνίου κώνου τομὰ ἁ περὶ διάμετρον τὰν ΕΒ δυνατὸν δέ ἐστι τοῦτο, ἐπεὶ ἁ ἀπὸ τοῦ Γ ἐπὶ μέσαν τὰν ΕΒ ἀχθεῖσα ὀρθά ἐντι ποτὶ τὸ ἐπίπεδον τὸ κατὰ τὰν ΕΒ· ἐν ταύτᾳ δὴ τᾷ ἐπιφανείᾳ ἐστὶ καὶ ἁ τοῦ ὀξυγωνίου κώνου τομὰ ἁ περὶ διάμετρον τὰν ΑΒ.
Εἰ γὰρ μή ἐστιν, ἐσσεῖταί τι σαμεῖον ἐπὶ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς, ὃ οὐκ ἐσσεῖται ἐν τᾷ ἐπιφανείᾳ τοῦ κώνου. Νοείσθω τι σαμεῖον λελαμμένον τὸ Θ, ὃ οὐκ ἔστιν ἐν τᾷ
Ὀξυγωνίου κώνου τομᾶς δοθείσας καὶ γραμμᾶς ἀπὸ τοῦ κέντρου τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς μὴ ὀρθᾶς
Ἔστω τᾶς δοθείσας τοῦ ὀξυγωνίου κώνου τομᾶς ἑτέρα διάμετρος ἁ ΒΑ, κέντρον δὲ τὸ △, ἁ δὲ Γ△ γραμμὰ ἔστω ἀνεστάκουσα ἀπὸ τοῦ κέντρου, ὡς εἴρηται, ἁ δὲ τοῦ ὀξυγωνίου κώνου τομὰ νοείσθω περὶ διάμετρον τὰν ΑΒ ἐν ἐπιπέδῳ ὀρθῷ ποτὶ τὸ ἐπίπεδον τὸ ἐν ᾧ ἐντι αἱ ΑΒ, Γ△· δεῖ δὴ κύλινδρον εὑρεῖν τὸν ἄξονα ἔχοντα ἐπʼ εὐθείας τᾷ Γ△, οὗ ἐν τᾷ ἐπιφανείᾳ ἐσσεῖται ἁ δοθεῖσα τοῦ ὀξυγωνίου κώνου τομὰ.
Ἀπὸ δὴ τῶν Α, Β σαμείων ἄχθων παρὰ τὰν Γ△ αἱ ΑΖ, ΒΗ· ἁ δὴ ἑτέρα διάμετρος τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς ἤτοι ἴσα ἐντὶ τῷ διαστήματι τᾶν ΑΖ, ΒΗ ἢ μείζων ἢ ἐλάσσων. Ἔστω δὴ πρότερον ἴσα τᾷ ΖΗ, ἁ δὲ ΖΗ ἔστω ποτʼ ὀρθὰς τᾷ Γ△, ἀπὸ δὲ τᾶς ΖΗ ἀνεστακέτω ἐπίπεδον ὀρθὸν ποτὶ τὰν Γ△, καὶ ἐν τῷ ἐπιπέδῳ τούτῳ κύκλος ἔστω περὶ διάμετρον
Εἰ γὰρ μή ἐστιν, ἐσσεῖταί τι σαμεῖον ἐπὶ τᾶς τοῦ ὀξυγωμίου κώνου τομᾶς, ὃ οὐκ ἔστιν ἐν τᾷ ἐπιφανείᾳ τοῦ κυλίνδρου. Νοείσθω δή τι σαμεῖον λελαμμένον ἐπὶ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς τὸ Θ, ὃ οὐκ ἔστιν ἐν τᾷ ἐπιφανείᾳ τοῦ κυλίνδρου, καὶ ἀπὸ τοῦ Θ ἁ ΘΚ κάθετος ἄχθω ἐπὶ τὰν ΑΒ ἐσσεῖται δὲ αὕτα ὀρθὰ ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐντι αἱ ΒΑ, Γ△· ἀπὸ δὲ τοῦ Κ ἄχθω παρὰ τὰν Γ△ ἁ ΚΛ, καὶ ἀπὸ τοῦ Λ ἀνεστακέτω ἁ ΛΜ ποτʼ ὀρθὰς τᾷ ΖΗ ἐν τῷ κύκλῳ τῷ περὶ τὰν ΖΗ, τὸ δὲ Μ νοείσθω μετέωρον ἐν τᾷ περιφερείᾳ τοῦ ἡμικυκλίου τοῦ περὶ διάμετρον τὰν ΖΗ· τὸν αὐτὸν δὴ ἔχει λόγον τὸ τετράγωνον τὸ ἀπὸ τᾶς ΘΚ καθέτου ποτὶ τὸ ὑπὸ τᾶν ΑΚ, ΚΒ περιεχόμενον καὶ τὸ ἀπὸ ΖΓ ποτὶ τὸ ὑπὸ τᾶν Α△, △Β περιεχόμενον, ἐπεὶ ἴσα ἐστὶν ἁ ΖΗ τᾷ ἑτέρᾳ διαμέτρῳ. Ἔχει δὲ καὶ τὸ ὑπὸ τᾶν ΖΛ, ΛΗ περιεχόμενον ποτὶ τὸ ὑπὸ ΑΚ, ΚΒ περιεχόμενον, ὃν τὸ ἀπὸ τᾶς ΖΓ τετράγωνον ποτὶ τὸ ἀπὸ Α△ ἴσον οὖν ἐντι τὸ ὑπὸ τᾶν ΖΛ, ΛΗ περιεχόμενον τῷ ἀπὸ τᾶς ΘΚ τετραγώνῳ. Ἔστιν δὲ ἴσον καὶ τῷ ἀπὸ ΛΜ· ἴσαι ἄρα ἐντὶ αἱ ΘΚ, ΜΛ κάθετοι. Παράλληλοι οὖν ἐντι αἱ ΛΚ, ΜΘ· ὥστε καὶ αἱ △Γ, ΜΘ παράλληλοι ἐσσοῦνται. Καὶ ἐν τᾷ ἐπιφανείᾳ ἄρα ἐστὶ τοῦ κυλίνδρου ἁ ΘΜ, ἐπεὶ ἀπὸ τοῦ Μ ἐν τᾷ ἐπιφανείᾳ ἐόντος ἆκται παρὰ τὸν ἄξονα δῆλον οὖν ὅτι καὶ τὸ Θ ἐν τᾷ ἐπιφανείᾳ ἐστὶν αὐτοῦ. Ὑπέκειτο δὲ μὴ εἶμεν· φανερὸν οὖν ἐστιν, ὃ ἔδει δεῖξαι.
Δῆλον δὴ ὅτι καὶ ὁ κύλινδρος ὁ περιλαμβάνων ὀρθὸς
Ἔστω πάλιν ἁ ἑτέρα διάμετρος μείζων τᾶς ΖΗ, καὶ ἴσα ἔστω ἁ ΠΖ τᾷ ἑτέρᾳ διαμέτρῳ, ἀπὸ δὲ τᾶς ΠΖ ἐπίπεδον ἀνεστακέτω ὀρθὸν ποτὶ τὸ ἐπίπεδον τὸ ἐν ᾧ ἐντι αἱ ΒΑ, Γ△, καὶ ἐν τῷ ἐπιπέδῳ τούτῳ κύκλος ἔστω περὶ διάμετρον τὰν ΠΖ, ἀπὸ δὲ τοῦ κύκλου τούτου κύλινδρος ἔστω ἄξονα ἔχων τὰν △Ρ· ἐν δὴ τᾷ ἐπιφανείᾳ τοῦ κυλίνδρου τούτου διὰ τῶν αὐτῶν δειχθήσεται ἐοῦσα ἁ τοῦ ὀξυγωνίου κώνου τομά.
Ἀλλʼ ἔστω ἐλάσσων ἁ ἑτέρα διάμετρος τᾶς ΖΗ. Ὧι δὴ μεῖζον δύναται ἁ ΖΓ τᾶς ἡμισείας τᾶς ἑτέρας διαμέτρου ἔστω τὸ ἀπὸ τᾶς ΓΞ τετράγωνον, καὶ ἀπὸ τοῦ Ξ ἀνεστακέτω γραμμὰ ἴσα τᾷ ἡμισείᾳ τᾶς ἑτέρας διαμέτρου ὀρθὰ ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐντι αἱ ΑΒ, Γ△, ἁ ΞΝ, τὸ δὲ Ν νοείσθω μετέωρον ἁ οὖν ΓΝ ἴσα ἐντὶ τᾷ ΓΖ. Ἐν δὴ τῷ ἐπιπέδῳ, ἐν ᾧ ἐντι αἱ ΖΗ, ΓΝ, κύκλος γεγράφθω περὶ διάμετρον τὰν ΖΗ· ἥξει δὲ οὗτος διὰ τοῦ Ν· καὶ ἀπὸ τοῦ κύκλου κύλινδρος
Εἰ γὰρ μή ἐστιν, ἐσσεῖταί τι σαμεῖον ἐπʼ αὐτᾶς, ὃ οὐκ ἔστιν ἐν τᾷ ἐπιφανείᾳ τοῦ κυλίνδρου. Λελάφθω δή τι σαμεῖον ἐπʼ αὐτᾶς τὸ Θ, καὶ ἁ ΘΚ κάθετος ἄχθω ἐπὶ τὰν ΑΒ, καὶ ἀπὸ τοῦ Κ παρὰ τὰν Γ△ ἔστω ἁ ΚΛ, καὶ ἀπὸ τοῦ Λ ἄχθω ποτʼ ὀρθὰς τᾷ ΖΗ ἐν τῷ ἡμικυκλίῳ τῷ περὶ διάμετρον τὰν ΖΗ ἁ ΛΜ, νοείσθω δὲ τὸ Μ ἐπὶ τᾶς περιφερείας τᾶς τοῦ ἡμικυκλίου τοῦ περὶ τὰν ΖΗ, καὶ ἀπὸ τοῦ Μ κάθετος ἄχθω ἐπὶ τὰν ΚΛ ἐκβληθεῖσαν ἁ ΜΟ· ἐσσεῖται δὲ αὕτα ὀρθὰ ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐντι αἱ ΑΒ, Γ△, ἐπεὶ ποτʼ ὀρθάς ἐντι ἁ ΚΛ τᾷ ΖΗ· ἔστιν δή, ὡς μὲν τὸ ἀπὸ τᾶς ΜΟ ποτὶ τὸ ἀπὸ τᾶς ΜΛ, οὕτως τὸ ἀπὸ τᾶς ΞΝ ποτὶ τὸ ἀπὸ τᾶς ΝΓ, ὡς δὲ τὸ ἀπὸ τᾶς ΜΛ ποτὶ τὸ ὑπὸ τᾶν ΑΚ, ΚΒ, οὕτως τὸ ἀπὸ ΓΝ ποτὶ τὸ ἀπὸ τᾶς Α△, ἐπεὶ τὸ μὲν ἀπὸ τᾶς ΜΛ ἴσον ἐστὶ τῷ ὑπὸ τᾶν ΛΖ, ΛΗ περιεχομένῳ, τὸ δὲ ἀπὸ τᾶς ΓΝ τῷ ἀπὸ τᾶς ΓΖ ἔστιν ἄρα, ὡς τὸ ἀπὸ τᾶς ΜΟ τετράγωνον ποτὶ τὸ ὑπὸ τᾶν ΑΚ, ΚΒ,
Ὅτι μὲν πᾶς κῶνος ποτὶ κῶνον τὸν συγκείμενον ἔχει λόγον ἔκ τε τοῦ τῶν βάσιων λόγου καὶ ἐκ τοῦ τῶν ὑψέων ἀποδείκνυται ὑπὸ τῶν πρότερον, ἁ αὐτὰ δὲ ἀπόδειξίς ἐντι καὶ διότι πᾶν ἀπότμαμα κώνου ποτὶ ἀπότμαμα κώνου τὸν συγκείμενον λόγον ἔχει ἔκ τε τοῦ τῶν βάσιων λόγου καὶ ἐκ τοῦ τῶν ὑψέων.
Καὶ ὅτι πᾶς τόμος κυλίνδρου τριπλασίων ἐστὶ τοῦ ἀποτμάματος τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τόμῳ καὶ ὕψος ἴσον, ἁ αὐτὰ ἀπόδειξις, ἅπερ καὶ ὅτι ὁ κύλινδρος τριπλάσιός ἐστι τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ κυλίνδρῳ καὶ ὕψος ἴσον.
Εἴ κα τὸ ὀρθογώνιον κωνοειδὲς ἐπιπέδῳ τμαθῇ διὰ τοῦ ἄξονος ἢ παρὰ τὸν ἄξονα, ἁ τομὰ ἐσσεῖται ὀρθογωνίου
Εἰ δέ κα τμαθῇ τῷ ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα, ἁ τομὰ κύκλος ἐσσεῖται τὸ κέντρον ἔχων ἐπὶ τοῦ ἄξονος.
Εἴ κα τὸ ἀμβλυγώνιον κωνοειδὲς ἐπιπέδῳ τμαθῇ διὰ τοῦ ἄξονος ἢ παρὰ τὸν ἄξονα ἢ διὰ τᾶς κορυφᾶς τοῦ κώνου τοῦ περιέχοντος τὸ κωνοειδές, ἁ τομὰ ἐσσεῖται ἀμβλυγωνίου κώνου τομά, εἰ μέν κα διὰ τοῦ ἄξονος, ἁ αὐτὰ τᾷ περιλαμβανούσᾳ τὸ σχῆμα, εἰ δέ κα παρὰ τὸν ἄξονα, ὁμοία αὐτᾷ, εἰ δέ κα διὰ τᾶς κορυφᾶς τοῦ κώνου τοῦ περιέχοντος τὸ κωνοειδές, οὐχ ὁμοία, διάμετρος δὲ τᾶς τομᾶς ἐσσεῖται ἁ κοινὰ τομὰ τῶν ἐπιπέδων τοῦ τέμνοντος τὸ σχῆμα καὶ τοῦ ἀχθέντος διὰ τοῦ ἄξονος ὀρθοῦ ποτὶ τὸ τέμνον ἐπίπεδον.
Εἰ δέ κα τμαθῇ ὀρθῷ τῷ ἐπιπέδῳ ποτὶ τὸν ἄξονα, ἁ τομὰ κύκλος ἐσσεῖται τὸ κέντρον ἔχων ἐπὶ τοῦ ἄξονος.
Εἴ κα τῶν σφαιροειδέων σχημάτων ὁποτερονοῦν ἐπιπέδῳ τμαθῇ διὰ τοῦ ἄξονος ἢ παρὰ τὸν ἄξονα, ἁ τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, εἰ μέν κα διὰ τοῦ ἄξονος, αὐτὰ ἁ περιλαμβάνουσα τὸ σχῆμα, εἰ δέ κα παρὰ τὸν ἄξονα, ὁμοία αὐτᾷ, διάμετρος δὲ τᾶς τομᾶς ἐσσεῖται ἁ κοινὰ τομὰ τῶν ἐπιπέδων τοῦ τέμνοντος τὸ σχῆμα καὶ τοῦ ἀχθέντος διὰ τοῦ ἄξονος ὀρθοῦ ποτὶ τὸ τέμνον ἐπίπεδον.
Εἰ δέ κα τμαθῇ τῷ ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα, ἁ τομὰ κύκλος ἐσσεῖται τὸ κέντρον ἔχων ἐπὶ τοῦ ἄξονος.
Εἴ κα τῶν εἰρημένων σχημάτων ὁποιονοῦν ἐπιπέδῳ
Τούτων δὲ πάντων φανεραί ἐντι αἱ ἀποδείξιες.
Εἴ κα τὸ ὀρθογώνιον κωνοειδὲς ἐπιπέδῳ τμαθῇ μήτε διὰ τοῦ ἄξονος μήτε παρὰ τὸν ἄξονα μήτε ποτʼ ὀρθὰς τῷ ἄξονι, ἁ τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἁ μείζων ἐσσεῖται ἁ ἐναπολαφθεῖσα ἐν τῷ κωνοειδεῖ ἀπὸ τᾶς γενομένας τομᾶς τῶν ἐπιπέδων τοῦ τέμνοντος τὸ σχῆμα καὶ τοῦ ἀχθέντος διὰ τοῦ ἄξονος ὀρθοῦ ποτὶ τὸ τέμνον ἐπίπεδον, ἁ δὲ ἐλάσσων διάμετρος ἴσα ἐσσεῖται τῷ διαστήματι τᾶν ἀχθεισᾶν παρὰ τὸν ἄξονα ἀπὸ τῶν περάτων τᾶς μείζονος διαμέτρου.
Τετμάσθω γὰρ τὸ ὀρθογώνιον κωνοειδὲς ἐπιπέδῳ, ὡς εἴρηται, τμαθέντος δὲ αὐτοῦ ἐπιπέδῳ ἄλλῳ διὰ τοῦ ἄξονος ὀρθῷ ποτὶ τὸ τέμνον ἐπίπεδον ἔστω τοῦ μὲν κωνοειδέος τομὰ ἁ ΑΒΓ, τοῦ δὲ ἐπιπέδου τοῦ τέμνοντος τὸ σχῆμα ἁ ΓΑ εὐθεῖα, ἄξων δὲ ἔστω τοῦ κωνοειδέος καὶ διάμετρος τᾶς τομᾶς ἁ Β△· δεικτέον ὅτι ἁ τομὰ τοῦ κωνοειδέος ἁ ὑπὸ τοῦ ἐπιπέδου τοῦ κατὰ τὰν ΑΓ ὀξυγωνίου ἐστὶ κώνου τομά, καὶ διάμετρος αὐτᾶς ἁ μείζων ἐστὶν ἁ ΑΓ, ἁ δὲ ἐλάσσων διάμετρος ἴσα ἐντὶ τᾷ ΛΑ τᾶς μὲν ΓΛ παρὰ τὰν Β△ ἐούσας, τᾶς δὲ ΑΛ καθέτου ἐπὶ τὰν ΓΛ.
Νοείσθω τι σαμεῖον ἐπὶ τᾶς τομᾶς λελαμμένον τὸ Κ, καὶ ἀπὸ τοῦ Κ κάθετος ἄχθω ἐπὶ τὰν ΓΑ ἁ ΚΘ· ἐσσεῖται
Εἴ κα τὸ ἀμβλυγώνιον κωνοειδὲς ἐπιπέδῳ τμαθῇ συμπίπτοντι πάσαις ταῖς τοῦ κώνου πλευραῖς τοῦ περιέχοντος τὸ κωνοειδὲς μὴ ποτʼ ὀρθὰς τῷ ἄξονι, ἁ τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἁ μείζων ἐσσεῖται ἁ ἐναπολαφθεῖσα ἐν τῷ κωνοειδεῖ ἀπὸ τᾶς γενομένας τομᾶς τῶν ἐπιπέδων τοῦ τε τέμνοντος τὸ σχῆμα καὶ τοῦ ἀχθέντος διὰ τοῦ ἄξονος ὀρθοῦ ποτὶ τὸ τέμνον ἐπίπεδον.
Τεμνέσθω γὰρ τὸ ἀμβλυγώνιον κωνοειδὲς ἐπιπέδῳ, ὡς εἴρηται, καὶ ἄλλῳ ἐπιπέδῳ τμαθέντος αὐτοῦ διὰ τοῦ ἄξονος ὀρθῷ ποτὶ τὸ τέμνον ἐπίπεδον τοῦ μὲν κωνοειδέος τομὰ ἔστω ἁ ΑΒΓ ἀμβλυγωνίου κώνου τομά, τοῦ δὲ τέμνοντος τὸ σχῆμα ἐπιπέδου ἁ ΑΓ εὐθεῖα, ἄξων δὲ τοῦ
Εἴ κα τὸ παράμακες σφαιροειδὲς ἐπιπέδῳ τμαθῇ μὴ ποτʼ ὀρθὰς τῷ ἄξονι, ἁ τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἁ μείζων ἐσσεῖται ἁ ἐναπολαφθεῖσα ἐν τῷ σφαιροειδεῖ ἀπὸ τᾶς γενομένας τομᾶς τῶν ἐπιπέδων τοῦ τέμνοντος τὸ σχῆμα καὶ τοῦ ἀχθέντος διὰ τοῦ ἄξονος ὀρθοῦ ποτὶ τὸ τέμνον ἐπίπεδον.
Εἰ μὲν οὖν κα τμαθῇ διὰ τοῦ ἄξονος ἢ παρὰ τὸν ἄξονα, δῆλον· τετμάσθω δὲ ἄλλῳ ἐπιπέδῳ, τμαθέντος δε αὐτοῦ διὰ τοῦ ἄξονος ὀρθῷ ποτὶ τὸ τέμνον τοῦ μὲν σφαιραειδέος τομὰ ἔστω ἁ ΑΒΓ△ ὀξυγωνίου κώνου τομά, τοῦ δὲ τέμνοντος αὐτὸ ἐπιπέδου ἁ ΓΑ εὐθεῖα, ἄξων δὲ ἔστω τοῦ σφαιροειδέος καὶ διάμετρος τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς ἁ Β△, κέντρον δὲ τὸ Χ, καὶ ἐλάσσων διάμετρος ἔστω ἁ ΠΡ.
Εἴ κα τὸ ἐπιπλατὺ σφαιροειδὲς ἐπιπέδῳ τμαθῇ, τὰ μὲν ἄλλα τὰ αὐτὰ ἐσσεῖται, τᾶν δὲ διαμέτρων ἐλάσσων ἐσσεῖται ἁ ἐναπολαφθεῖσα ἐν τῷ σφαιροειδεῖ.
Ἐξ αὐτῶν δὲ φανερὸν ἐν πάντεσσι τοῖς σχημάτεσσιν ὅτι, εἴ κα παραλλήλοις ἐπιπέδοις τμαθῇ, αἱ αὐτῶν τομαὶ ὁμοῖαι ἐσσοῦνται τὰ γὰρ τετράγωνα τὰ ἀπὸ τᾶν καθέτων ποτὶ τὰ περιεχόμενα ὑπὸ τῶν τμαμάτων τοὺς αὐτοὺς λόγους ἑξοῦντι.
Ἐν τῷ ὀρθογωνίῳ κωνοειδεῖ ἀπὸ παντὸς ὁτουοῦν σαμείου τῶν ἐν τᾷ ἐπιφανείᾳ τοῦ κωνοειδέος τᾶν ἀγομενᾶν εὐθειᾶν παρὰ τὸν ἄξονα αἱ μὲν ἐπὶ τὰ αὐτὰ ἀγόμεναι, ἐφʼ ἅ ἐντι τὰ κυρτὰ αὐτοῦ, ἐκτὸς πεσοῦνται τοῦ κωνοειδέος, αἱ δὲ ἐπὶ θάτερα ἐντός.
Ἀχθέντος γὰρ ἐπιπέδου διά τε τοῦ ἄξονος καὶ τοῦ σαμείου, ἀφʼ οὗ ἁ παράλληλος ἄγεται τῷ ἄξονι, ἁ τομὰ ἐσσεῖται ὀρθογωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ὁ ἄξων τοῦ κωνοειδέος ἐν δὲ τᾷ τοῦ ὀρθογωνίου κώνου τομᾷ ἀπὸ παντὸς σαμείου τοῦ ἐπὶ τᾶς τομᾶς ἀγομενᾶν παρὰ τὰν διάμετρον εὐθειᾶν αἱ μὲν ἐπὶ τὰ αὐτὰ ἀγόμεναι, ἐφʼ ἅ ἐντι τὰ κυρτὰ αὐτᾶς, ἐκτὸς πίπτοντι, αἱ δὲ ἐπὶ θάτερα ἐντός δῆλον οὖν τὸ προτεθέν.
Ἐν τῷ ἀμβλυγωνίῳ κωνοειδεῖ ἀπὸ παντὸς σαμείου τῶν ἐν τᾷ ἐπιφανείᾳ αὐτοῦ τᾶν ἀγομενᾶν εὐθειᾶν παρά τινα γραμμάν, ἅ ἐστιν ἐν τῷ κωνοειδεῖ ἀγομένα διὰ τᾶς κορυφᾶς τοῦ κώνου τοῦ περιέχοντος τὸ κωνοειδές, αἱ μὲν ἐπὶ τὰ αὐτὰ ἀγόμεναι, ἐφʼ ἅ ἐντι τὰ κυρτὰ αὐτοῦ, ἐκτὸς πεσοῦνται τοῦ κωνοειδέος, αἱ δὲ ἐπὶ θάτερα ἐντός.
Ἀχθέντος γὰρ ἐπιπέδου διά τε τᾶς εὐθείας τᾶς ἐν τῷ κωνοειδεῖ ἀγομένας διὰ τᾶς κορυφᾶς τοῦ κώνου τοῦ περιέχοντος τὸ κωνοειδὲς καὶ διὰ τοῦ σαμείου, ἀφʼ οὗ ἄγεται ἁ ἐς αὐτό, ἁ τομὰ ἐσσεῖται ἀμβλυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἁ ἀπὸ τᾶς κορυφᾶς τοῦ κώνου ἐν τῷ κωνοειδεῖ ἀγομένα ἐν δὲ τᾷ τοῦ ἀμβλυγωνίου κώνου τομᾷ ἀπὸ παντὸς σαμείου τοῦ ἐπὶ τᾶς τομᾶς τᾶν ἀγομενᾶν εὐθειᾶν παρὰ τὰν οὕτως ἀγμέναν γραμμὰν αἱ
Ἐφαπτέσθω γάρ, εἰ δυνατόν, κατὰ πλείονα σαμεῖα. Λαφθέντων δὴ δύο σαμείων, καθʼ ἃ ἅπτεται τὸ ἐπιψαῦον ἐπίπεδον τοῦ κωνοειδέος, καὶ ἀφʼ ἑκατέρου παρὰ τὸν ἄξονα εὐθειᾶν ἀχθεισᾶν ἀπὸ τᾶν ἀχθεισᾶν παρὰ τὸν ἄξονα ἐπίπεδον ἐκβληθὲν ἤτοι διὰ τοῦ ἄξονος ἢ παρὰ τὸν ἄξονα ἐσσεῖται ἀγμένον ὥστε τὰν τομὰν ποιήσει κώνου τομάν, καὶ τὰ σημεῖα ἐσσοῦνται ἐν τᾷ τοῦ κώνου τομᾷ, ἐπεὶ ἔν τε τᾷ ἐπιφανείᾳ ἐντὶ καὶ ἐν τῷ ἐπιπέδῳ, Ἁ οὖν μεταξὺ τῶν σαμείων εὐθεῖα ἐντὸς ἐσσεῖται τᾶς τοῦ κώνου τομᾶς· ὥστε καὶ τᾶς τοῦ κωνοειδέος ἐπιφανείας ἐντὸς ἐσσεῖται. Ἔστιν δὲ ἁ εὐθεῖα οὕτα ἐν τῷ ἐπιψαύοντι ἐπιπέδῳ, διότι καὶ τὰ σαμεῖα τοῦ ἄρα ἐπιψαύοντος ἐπιπέδου ἐσσεῖταί τι ἐντὸς τοῦ κωνοειδέος· ὅπερ ἀδύνατον· ὑπέκειτο γὰρ μὴ τέμνειν, Καθʼ ἓν ἄρα μόνον ἅψεται σαμεῖον.
Ὅτι δὲ καὶ τὸ διὰ τᾶς ἁφᾶς καὶ τοῦ ἄξονος ἐπίπεδον ἀχθὲν ὀρθὸν ἐσσεῖται ποτὶ τὸ ἐπιψαῦον, εἰ μὲν κατὰ τὰν κορυφὰν τοῦ κωνοειδέος ἐφάπτεται, δῆλον. Ἀχθέντων γὰρ διὰ τοῦ ἄξονος δύο ἐπιπέδων τοῦ κωνοειδέος αἱ τομαὶ ἐσσοῦνται κώνων τομαὶ διάμετρον ἔχουσαι τὸν ἄξονα, τοῦ δὲ ἐπιψαύοντος ἐπιπέδου εὐθεῖαι ἐπιψαύουσαι τᾶν τῶν κώνων τομᾶν κατὰ τὸ πέρας τᾶς διαμέτρου. Αἱ δὲ εὐθεῖαι αἱ ἐπιψαύουσαι τᾶν τῶν κώνων τομᾶν κατὰ τὸ πέρας τᾶς διαμέτρου ὀρθὰς ποιοῦντι γωνίας ποτὶ τὰν διάμετρον ἐσσοῦνται οὖν ἐν τῷ ἐπιψαύοντι ἐπιπέδῳ δύο εὐθεῖαι ποτʼ ὀρθὰς τῷ ἄξονι. Ὀρθὸν οὖν ἐσσεῖται ποτὶ τὸν ἄξονα τὸ ἐπίπεδον· ὥστε καὶ ποτὶ τὸ διὰ τοῦ ἄξονος. Ἀλλὰ ἔστω μὴ κατὰ τὰν κορυφὰν τοῦ κωνοειδέος ἐπιψαῦον τὸ ἐπίπεδον. Ἄχθω δὴ ἐπίπεδον διὰ τᾶς ἁφᾶς καὶ τοῦ ἄξονος, καὶ τοῦ μὲν κωνοειδέος τομὰ ἔστω ἁ ΑΒΓ κώνου τομά, ἄξων δὲ ἔστω καὶ διάμετρος τᾶς τομᾶς ἁ Β△, τοῦ δὲ ἐπιψαύοντος ἐπιπέδου τομὰ ἔστω ἁ ΕΘΖ εὐθεῖα τᾶς τοῦ κώνου τομᾶς ἁπτομένα κατὰ τὸ Θ, ἀπὸ δὲ τοῦ Θ κάθετος ἄχθω ἐπὶ τὰν Β△ ἁ ΘΚ, καὶ ἐπίπεδον ἀνεστακέτω ὀρθὸν ποτὶ τὸν ἄξονα ποιήσει δὴ τοῦτο τὰν τομὰν κύκλον, οὗ κέντρον τὸ Κ. Ἁ δὲ τομὰ τούτου τοῦ ἐπιπέδου καὶ τοῦ ἐπιψαύοντος ἐσσεῖται ἐπιψαύουσα τοῦ κύκλου· ὀρθὰς ἄρα ποιήσει γωνίας ποτὶ τὰν ΘΚ· ὥστʼ ὀρθὰ ἐσσεῖται ποτὶ τὸ ἐπίπεδον τὸ ἐν ᾧ ἐντι αἱ ΚΘ, Β△. Δῆλον οὖν ὅτι τὸ ἐπιψαῦον ἐπίπεδον ὀρθόν ἐστι ποτὶ τὸ αὐτὸ ἐπίπεδον, ἐπεὶ καὶ αἱ ἐν αὐτῷ εὐθεῖαι.
Εἴ κα τῶν σφαιροειδέων σχημάτων ὁποτερουοῦν ἐπίπεδον ἅπτηται μὴ τέμνον τὸ σχῆμα, καθʼ ἓν μόνον ἅψεται σαμεῖον, καὶ τὸ διὰ τᾶς ἁφᾶς καὶ τοῦ ἄξονος ἐπίπεδον ἀχθὲν ὀρθὸν ἐσσεῖται ποτὶ τὸ ἐπιψαῦον ἐπίπεδον.
Ἁπτέσθω γὰρ κατὰ πλείονα σαμεῖα. Λαφθέντων δὴ τῶν σαμείων, καθʼ ἃ ἅπτεται τὸ ἐπίπεδον τοῦ σφαιροειδέος, καὶ ἀφʼ ἑκατέρου αὐτῶν παρὰ τὸν ἄξονα εὐθειᾶν ἀχθεισᾶν καὶ διὰ τᾶν ἀχθεισᾶν ἐπιπέδου ἐκβληθέντος ἁ τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, καὶ τὰ σαμεῖα ἐσσοῦνται ἐν τᾷ τοῦ κώνου τομᾷ. Ἁ οὖν μεταξὺ τῶν σαμείων εὐθεῖα ἐντὸς ἐσσεῖται τᾶς τοῦ κώνου τομᾶς ὥστε καὶ τᾶς τοῦ σφαιροειδέος ἐπιφανείας ἐντὸς ἐσσεῖται. Ἔστιν δὲ ἁ εὐθεῖα ἐν τῷ ἐπιψαύοντι ἐπιπέδῳ, διότι καὶ τὰ σαμεῖα τοῦ οὖν ἐπιψαύοντος ἐπιπέδου ἐσσεῖταί τι ἐντὸς τοῦ σφαιροειδέος. Οὐκ ἔστιν δὲ ὑπέκειτο γὰρ μὴ τέμνειν. Δῆλον οὖν, ὅτι καθʼ ἓν σαμεῖον μόνον ἅψεται. Ὅτι δὲ τὸ διὰ τᾶς ἁφᾶς καὶ τοῦ ἄξονος ἐπίπεδον ἀχθὲν ὀρθὸν ἐσσεῖται ποτὶ τὸ ἐπίπεδον τὸ ἐπιψαῦον, ὁμοίως τοῖς περὶ τῶν κωνοειδέων σχημάτων.
Εἴ κα τῶν κωνοειδέων ἢ τῶν σφαιροειδέων σχημάτων ὁποιονοῦν ἐπιπέδῳ τμαθῇ διὰ τοῦ ἄξονος, καὶ τᾶς γενομένας τομᾶς ἐπιψαύουσά τις ἀχθῇ εὐθεῖα, καὶ διὰ τᾶς ἐπιψαυούσας ἐπίπεδον ἀνασταθῇ ὀρθὸν ποτὶ τὸ τέμνον, ἐπιψαύει τοῦ σχήματος κατὰ τὸ αὐτὸ σαμεῖον, καθʼ ὃ καὶ ἁ εὐθεῖα ἐπιψαύει τᾶς τοῦ κώνου τομᾶς.
Οὐ γὰρ ἅψεται κατʼ ἄλλο σαμεῖον τᾶς ἐπιφανείας αὐτοῦ. Εἰ δὲ μή, ἁ ἀπὸ τοῦ σαμείου κάθετος ἀγομένα ἐπὶ τὸ τέμνον ἐπίπεδον πεσεῖται ἐκτὸς τᾶς τοῦ κώνου τομᾶς·
Εἴ κα τῶν σφαιροειδέων τινὸς σχημάτων δύο ἐπίπεδα παράλληλα ἐπιψαύωντι, ἁ τὰς ἁφὰς ἐπιζευγνύουσα εὐθεῖα διὰ τοῦ κέντρου τοῦ σφαιροειδέος πορεύσεται.
Εἰ μὲν οὖν κα ποτʼ ὀρθὰς τῷ ἄξονι τὰ ἐπίπεδα ἔωντι, δῆλον· ἄλλʼ ἔστω μὴ ποτʼ ὀρθάς. Τὸ δὴ ἐπίπεδον τὸ ἀχθὲν διὰ τοῦ ἄξονος καὶ τᾶς ἁφᾶς τᾶς ἑτέρας ὀρθὸν ἐσσεῖται ποτὶ τὸ ἐπιψαῦον ἐπίπεδον ὥστε καὶ ποτὶ τὸ παράλληλον αὐτῷ. Ἀναγκαῖον ἄρα τὸ αὐτὸ εἶμεν ἐπίπεδον τὸ διὰ τοῦ ἄξονος καὶ ἑκατερᾶν τᾶν ἁφᾶν ἀγμένον. Εἰ δὲ μή, ἐσσοῦνται δύο ἐπίπεδα ποτὶ τὸ αὐτὸ ἐπίπεδον ὀρθὰ διὰ τᾶς αὐτᾶς γραμμᾶς ἀγμένα οὐκ ἐούσας ὀρθᾶς ποτὶ τὸ ἐπίπεδον ὑπέκειτο γὰρ ὁ ἄξων μὴ εἶμεν ὀρθὸς ποτὶ τὰ παραλληλα ἐπίπεδα ἐν τῷ αὐτῷ ἄρα ἐσσοῦνται ἐπιπέδῳ ὅ τε ἄξων καὶ αἱ ἁφαί, καὶ τετμακὸς ἐσσεῖται τὸ σφαιροειδὲς διὰ τοῦ ἄξονος. Ἁ οὖν τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, αἱ δὲ τῶν ἐπιψαυόντων ἐπιπέδων τομαὶ
Εἴ κα τῶν σφαιροειδέων σχημάτων ὁποτερουοῦν δύο παράλληλα ἐπίπεδα ἀχθῇ ἐπιψαύοντα, ἀχθῇ δὲ τι ἐπίπεδον διὰ τοῦ κέντρου τοῦ σφαιροειδέος παρὰ τὰ ἐπιψαύοντα, αἱ διὰ τᾶς γενομένας τομᾶς ἀγόμεναι εὐθεῖαι παρὰ τὰν τὰς ἁφὰς ἐπιζευγνύουσαν ἐκτὸς πεσοῦνται τοῦ σφαιροειδέος.
Ὑποκείσθω τὰ εἰρημένα, καὶ λελάφθω τι σαμεῖον ἐπὶ τᾶς γενομένας τομᾶς, διὰ δὲ τοῦ γενομένου σαμείου καὶ τᾶς εὐθείας τᾶς τὰς ἁφὰς ἐπιζευγνυούσας ἐπίπεδον ἄχθω· τεμεῖ δὴ τοῦτο τό τε σφαιροειδὲς καὶ τὰ παράλλαλα ἐπίπεδα. Ἔστω οὖν ἁ μὲν τοῦ σφαιροειδέος τομὰ ἁ ΑΒΓ△ ὀ ὀξυγωνίου κώνου τομά, αἱ δὲ τῶν ἐπιπέδων τῶν ψαυόντων τομαὶ αἱ ΕΖ, ΗΘ εὐθεῖαι, τὸ δὲ λαφθὲν σαμεῖον τὸ Α, ἁ δὲ
Πᾶν σχῆμα σφαιροειδὲς ἐπιπέδῳ τμαθὲν διὰ τοῦ κέντρου δίχα τέμνεται ὑπὸ τοῦ ἐπιπέδου καὶ αὐτὸ καὶ ἁ ἐπιφάνεια αὐτοῦ.
Τετμάσθω γὰρ τὸ σφαιροειδὲς ἐπιπέδῳ διὰ τοῦ κέντρου ἤτοι δὴ καὶ διὰ τοῦ ἄξονος ἐσσεῖται τετμαμένον ἢ ποτʼ ὀρθὰς ἢ μὴ ποτʼ ὀρθὰς τῷ ἄξονι. Εἰ μὲν οὖν διὰ τοῦ ἄξονος τέμνεται ἢ ποτʼ ὀρθᾶς τῷ ἄξονι, δῆλον ὡς δίχα τέμνεταί τε αὐτὸ καὶ ἁ ἐπιφάνεια αὐτοῦ φανερὸν γὰρ ὅτι ἐφαρμόζει τὸ ἕτερον μέρος αὐτοῦ ἐπὶ τὸ ἕτερον καὶ ἁ ἐπιφάνεια τοῦ ἑτέρου μέρους ἐπὶ τὰν τοῦ ἑτέρου.
Ἀλλʼ ἔστω μὴ διὰ τοῦ ἄξονος τετμαμένον μήτε ποτʼ ὀρθὰς τῷ ἄξονι. Τμαθέντος δὴ τοῦ σφαιροειδέος ἐπιπέδῳ ὀρθῷ ποτὶ τὸ τέμνον ἐπίπεδον διὰ τοῦ ἄξονος αὐτοῦ μὲν τοῦ σχήματος τομὰ ἔστω ἁ ΑΒΓ△ ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἔστω καὶ ἄξων τοῦ σφαιροειδέος ἁ Β△ καὶ κέντρον τὸ Θ, τοῦ δὲ ἐπιπέδου τοῦ τετμακότος διὰ τοῦ κέντρου τὸ σφαιροειδὲς ἔστω τομὰ ἁ ΑΓ εὐθεῖα. Λελάφθω δή τι καὶ ἄλλο σφαιροειδὲς ἴσον καὶ ὁμοῖον τούτῳ, καὶ τμαθέντος αὐτοῦ διὰ τοῦ ἄξονος ἐπιπέδῳ τομὰ ἔστω ἁ ΕΖΗΝ ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς καὶ ἄξων τοῦ σφαιροειδέος ἁ ΕΗ καὶ κέντρον τὸ Κ, καὶ διὰ τοῦ Κ ἄχθω ἁ ΖΝ γωνίαν ποιοῦσα τὰν Κ ἴσαν τᾷ Θ, ἀπὸ δὲ τᾶς ΖΝ ἐπίπεδον ἔστω ἀνεστακὸς ὀρθὸν ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐστιν ἁ ΕΖΗΝ τομά· ἐντὶ δὴ δύο ὀξυγωνίων κώνων τομαὶ αἱ ΑΒΓ△, ΕΖΗΝ ἴσαι καὶ ὁμοῖαι ἀλλάλαις ἐφαρμόζοντι οὖν ἐπʼ ἀλλάλας τεθείσας τᾶς ΕΗ ἐπὶ τὰν Β△ καὶ τᾶς ΖΝ ἐπὶ τὰν ΑΓ. Ἐφαρμόζει δὲ καὶ τὸ ἐπίπεδον τὸ κατὰ τὰν ΝΖ τῷ ἐπιπέδῳ τῷ κατὰ τὰν ΑΓ, ἐπεὶ ἀπὸ τᾶς αὐτᾶς γραμμᾶς ποτὶ τὸ
Τμάματος δοθέντος ὁποτερουοῦν τῶν κωνοειδέων ἀποτετμαμένου ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα ἢ τῶν σφαιροειδέων ὁποτερουοῦν μὴ μείζονος ἡμίσους τοῦ σφαιροειδέος ὁμοίως ἀποτεμνομένου δυνατόν ἐστι σχῆμα στερεὸν ἐγγράψαι καὶ ἄλλο περιγράψαι ἐκ κυλίνδρων ἴσον ὕψος ἐχόντων συγκείμενον, ὥστε τὸ περιγραφόμενον σχῆμα τοῦ
Δεδόσθω τμᾶμα, οἷόν τὸ ΑΒΓ, τμαθέντος δὲ αὐτοῦ ἐπιπέδῳ διὰ τοῦ ἄξονος τοῦ μὲν τμάματος τομὰ ἔστω ἁ ΑΒΓ κώνου τομά, τοῦ δὲ ἐπιπέδου τοῦ ἀποτετμακότος τὸ τμᾶμα ἁ ΑΓ εὐθεῖα, ἄξων δὲ ἔστω τοῦ τμάματος καὶ διάμετρος τᾶς τομᾶς ἁ Βτετμαμένου. Ἐπεὶ οὖν ὑπόκειται τὸ ἀποτέμνον ἐπίπεδον ὀρθὸν εἶμεν ποτὶ τὸν ἄξονα, ἁ τομὰ κύκλος ἐστί, διάμετρος δὲ αὐτοῦ ἁ ΓΑ. Ἀπὸ δὲ τοῦ κύκλου τούτου κύλινδρος ἔστω ἄξονα ἔχων τὰν Β△· πεσεῖται δὲ ἁ ἐπιφάνεια αὐτοῦ ἐκτὸς τοῦ τμάματος, ἐπεί ἐστιν ἤτοι κωνοειδὲς ἢ σφαιροειδὲς μὴ μεῖζον τοῦ ἡμίσεος τοῦ σφαιροειδέος. Τοῦ δὴ κυλίνδρου τούτου ἀεὶ δίχα τεμνομένου ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα ἐσσεῖταί ποτε τὸ καταλειπόμενον ἔλασσον τοῦ προτεθέντος στερεοῦ μεγέθεος ἔστω δὴ τὸ καταλελειμμένον