De conoidibus et sphaeroidibus

Archimedes

Archimedes. Archimède, Volume 1. Mugler, Charles, editor. Paris: Les Belles Lettres, 1970.

Ὀξυγωνίου κώνου τομᾶς δοθείσας καὶ γραμμᾶς μὴ ὀρθᾶς ἀνεστακούσας ἀπὸ τοῦ κέντρου τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς ἐν ἐπιπέδῳ, ὅ ἐστιν ὀρθὸν ἀνεστακὸς διὰ τᾶς ἑτέρας διαμέτρου ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐστιν ἁ τοῦ ὀξυγωνίου κώνου τομὰ, δυνατόν ἐστι κῶνον εὑρεῖν κορυφὰν ἔχοντα τὸ πέρας τᾶς ἀνεστακούσας εὐθείας, οὗ ἐν τᾷ ἐπιφανείᾳ ἐσσεῖται ἁ δοθεῖσα τοῦ ὀξυγωνίου κώνου τομά.

175

Ἔστω δὴ διάμετρος μὲν τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς ἁ ΒΑ, κέντρον δὲ τὸ △, καὶ ἁ △Γ ἀπὸ τοῦ κέντρου ἀνεστάκουσα, ὡς εἴρηται, ἁ δὲ τοῦ ὀξυγωνίου κώνου τομὰ νοείσθω περὶ διάμετρον τὰν ΑΒ ἐν ἐπιπέδῳ ὀρθῷ ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐντι αἱ ΑΒ, Γ△· δεῖ δὴ κῶνον εὑρεῖν κορυφὰν ἔχοντα τὸ Γ σαμεῖον, οὗ ἐν τῇ ἐπιφανείᾳ ἐσσεῖται ἁ τοῦ ὀξυγωνίου κώνου τομά.

Οὐ δή ἐντι ἴσαι αἱ ΑΓ, ΓΒ, ἐπεὶ ἁ Γ△ οὐκ ἔστιν ὀρθὰ ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐστιν ἁ τοῦ ὀξυγωνίου κώνου τομά. Ἔστω οὖν ἴσα ἁ ΕΓ τᾷ ΓΒ, ἁ δὲ Ν εὐθεῖα ἴσα ἔστῳ τᾷ ἡμισείᾳ τᾶς ἑτέρας διαμέτρου, ᾇ ἐστι συζυγὴς ἁ ΑΒ, καὶ διὰ τοῦ △ ἄχθω ἁ ΖΗ παρὰ τὰν ΕΒ, ἀπὸ δὲ τᾶς ΕΒ ἐπίπεδον ἀνεστακέτω ὀρθὸν ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐντι αἱ ΑΓ, ΓΒ, καὶ ἐν τῷ ἐπιπέδῳ τούτῳ γεγράφθω περὶ διάμετρον τὰν ΕΒ, εἰ μὲν ἴσον ἐστὶ τὸ τετράγωνον τὸ ἀπὸ τᾶς Ν τῷ περιεχομένῳ ὑπὸ τᾶν Ζ△, △Η, κύκλος, εἰ δὲ μή ἐστιν ἴσον, ὀξυγωνίου κώνου τομὰ τοιαύτα, ὥστε τὸ τετράγωνον τὸ ἀπὸ τᾶς ἑτέρας διαμέτρου ποτὶ τὸ ἀπὸ τᾶς ΕΒ τὸν αὐτὸν ἔχειν λόγον, ὃν ἔχει τὸ ἀπὸ τᾶς Ν τετράγωνον ποτὶ τὸ ὑπὸ τᾶν Ζ△, △Η· κῶνος δὲ λελάφθω κορυφὰν ἔχων τὸ Γ σαμεῖον, οὗ ἐν τᾷ ἐπιφανείᾳ ἐσσεῖται ὁ κύκλος ἢ ἁ τοῦ ὀξυγωνίου κώνου τομὰ ἁ περὶ διάμετρον τὰν ΕΒ δυνατὸν δέ ἐστι τοῦτο, ἐπεὶ ἁ ἀπὸ τοῦ Γ ἐπὶ μέσαν τὰν ΕΒ ἀχθεῖσα ὀρθά ἐντι ποτὶ τὸ ἐπίπεδον τὸ κατὰ τὰν ΕΒ· ἐν ταύτᾳ δὴ τᾷ ἐπιφανείᾳ ἐστὶ καὶ ἁ τοῦ ὀξυγωνίου κώνου τομὰ ἁ περὶ διάμετρον τὰν ΑΒ.

Εἰ γὰρ μή ἐστιν, ἐσσεῖταί τι σαμεῖον ἐπὶ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς, ὃ οὐκ ἐσσεῖται ἐν τᾷ ἐπιφανείᾳ τοῦ κώνου. Νοείσθω τι σαμεῖον λελαμμένον τὸ Θ, ὃ οὐκ ἔστιν ἐν τᾷ

176
ἐπιφανείᾳ τοῦ κώνου, καὶ ἀπὸ τοῦ Θ κάθετος ἄχθω ἁ ΘΚ ἐπὶ τὰν ΑΒ, ἁ δὲ ΓΚ ἐπιζευχθεῖσα ἐκβεβλήσθω καὶ συμπιπτέτω τᾷ ΕΒ κατὰ τὸ Λ, διὰ δὲ τοῦ Λ ἄχθω τις ἐν τῷ ὀρθῷ ἐπιπέδῳ τῷ κατὰ τὰν ΕΒ ποτʼ ὀρθὰς τᾷ ΕΒ ἁ ΛΜ, τὸ δὲ Μ νοείσθω μετέωρον ἐν τᾷ ἐπιφανείᾳ τοῦ κώνου, ἄχθω δὲ καὶ διὰ τοῦ Λ παρὰ τὰν ΑΒ ὁ ΠΡ ἔστιν δή, ὡς μὲν τὸ ἀπὸ τᾶς Ν τετράγωνον ποτὶ τὸ ὑπὸ τᾶν Ζ△, △Η, οὕτως τὸ ἀπὸ τᾶς ΛΜ ποτὶ τὸ ὑπὸ τᾶν ΕΛ, ΛΒ, ὡς δὲ τὸ ὑπὸ τᾶν Ζ△, △Η ποτὶ τὸ ὑπὸ τᾶν Α△, △Β, οὕτως τὸ ὑπὸ ΕΛ, ΛΒ ποτὶ τὸ ὑπὸ τᾶν ΠΛ, ΛΡ ἐσσεῖται οὖν, ὡς τὸ ἀπὸ τᾶς Ν τετράγωνον ποτὶ τὸ ὑπὸ Α△, △Β περιεχόμενον, οὕτως τὸ ἀπὸ τᾶς ΛΜ τετράγωνον ποτὶ τὸ ὑπὸ τᾶν ΠΛ, ΛΡ. Ἔχει δέ, ὡς τὸ ἀπὸ τᾶς Ν τετράγωνον ποτὶ τὸ ὑπὸ τᾶν Α△, △Β, οὕτως τὸ ἀπὸ τᾶς ΘΚ τετράγωνον ποτὶ τὸ ὑπὸ τᾶν ΑΚ, ΚΒ, ἐπεὶ ἐν τᾷ αὐτᾷ ὀξυγωνίου κώνου τομᾷ κάθετοί ἐντι ἀγμέναι ἐπὶ διάμετρον τὰν ΑΒ τὸν αὐτὸν ἄρα ἔχει λόγον τὸ ἀπὸ τᾶς ΛΜ τετράγωνον ποτὶ τὸ ὑπὸ τᾶν ΠΛ, ΛΡ, ὃν τὸ ἀπὸ τᾶς ΘΚ ποτὶ τὸ ὑπὸ τᾶν ΑΚ, ΚΒ. Ἔχει δὲ καὶ τὸ ὑπὸ τᾶν ΠΛ, ΛΡ ποτὶ τὸ ἀπὸ τᾶς Γ△ τετράγωνον τὸν αὐτὸν λόγον, ὃν τὸ ὑπὸ τᾶν ΑΚ, ΚΒ ποτὶ τὸ ἀπὸ τᾶς ΚΓ· τὸν αὐτὸν οὖν λόγον ἔχει τὸ ἀπὸ τᾶς ΛΜ τετράγωνον ποτὶ τὸ ἀπὸ τᾶς ΛΓ τετράγωνον, ὃν τὸ ἀπὸ τᾶς ΘΚ ποτὶ τὸ ἀπὸ τᾶς ΚΓ· ὥστε ἐπʼ εὐθείας ἐντὶ τὰ Γ, Θ, Μ σαμεῖα. Ἁ δὲ ΓΜ ἐν τᾷ ἐπιφανείᾳ τοῦ κώνου δῆλον οὖν ὅτι καὶ τὸ Θ σαμεῖον ἐν τᾷ ἐπιφανείᾳ ἐστὶ τοῦ κώνου. Ὑπέκειτο δὲ μὴ εἶμεν· φανερὸν οὖν ἐστιν ὃ ἔδει δεῖξαι.

Ὀξυγωνίου κώνου τομᾶς δοθείσας καὶ γραμμᾶς ἀπὸ τοῦ κέντρου τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς μὴ ὀρθᾶς

177
ἀνεστακούσας ἐν ἐπιπέδῳ, ὅ ἐστιν ἀπὸ τᾶς ἑτέρας διαμέτρου ὀρθὸν ἀνεστακὸς ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐστιν ἁ τοῦ ὀξυγωνίου κώνου τομά, δυνατόν ἐντι κύλινδρον εὑρεῖν τὸν ἄξονα ἔχοντα ἐπʼ εὐθείας τᾷ ἀνεστακούσᾳ γραμμᾷ, οὗ ἐν τᾷ ἐπιφανείᾳ ἐσσεῖται ἁ δοθεῖσα τοῦ ὀξυγωνίου κώνου τομά.

Ἔστω τᾶς δοθείσας τοῦ ὀξυγωνίου κώνου τομᾶς ἑτέρα διάμετρος ἁ ΒΑ, κέντρον δὲ τὸ △, ἁ δὲ Γ△ γραμμὰ ἔστω ἀνεστάκουσα ἀπὸ τοῦ κέντρου, ὡς εἴρηται, ἁ δὲ τοῦ ὀξυγωνίου κώνου τομὰ νοείσθω περὶ διάμετρον τὰν ΑΒ ἐν ἐπιπέδῳ ὀρθῷ ποτὶ τὸ ἐπίπεδον τὸ ἐν ᾧ ἐντι αἱ ΑΒ, Γ△· δεῖ δὴ κύλινδρον εὑρεῖν τὸν ἄξονα ἔχοντα ἐπʼ εὐθείας τᾷ Γ△, οὗ ἐν τᾷ ἐπιφανείᾳ ἐσσεῖται ἁ δοθεῖσα τοῦ ὀξυγωνίου κώνου τομὰ.

Ἀπὸ δὴ τῶν Α, Β σαμείων ἄχθων παρὰ τὰν Γ△ αἱ ΑΖ, ΒΗ· ἁ δὴ ἑτέρα διάμετρος τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς ἤτοι ἴσα ἐντὶ τῷ διαστήματι τᾶν ΑΖ, ΒΗ ἢ μείζων ἢ ἐλάσσων. Ἔστω δὴ πρότερον ἴσα τᾷ ΖΗ, ἁ δὲ ΖΗ ἔστω ποτʼ ὀρθὰς τᾷ Γ△, ἀπὸ δὲ τᾶς ΖΗ ἀνεστακέτω ἐπίπεδον ὀρθὸν ποτὶ τὰν Γ△, καὶ ἐν τῷ ἐπιπέδῳ τούτῳ κύκλος ἔστω περὶ διάμετρον

178
τὰν ΖΗ, καὶ ἀπὸ τοῦ κύκλου τούτου κύλινδρος ἔστω ἄξονα ἔχων τὰν Γ△· ἐν δὴ τᾷ ἐπιφανείᾳ τοῦ κυλίνδρου τούτου ἐστὶν ἁ τοῦ ὀξυγωνίου κώνου τομά.

Εἰ γὰρ μή ἐστιν, ἐσσεῖταί τι σαμεῖον ἐπὶ τᾶς τοῦ ὀξυγωμίου κώνου τομᾶς, ὃ οὐκ ἔστιν ἐν τᾷ ἐπιφανείᾳ τοῦ κυλίνδρου. Νοείσθω δή τι σαμεῖον λελαμμένον ἐπὶ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς τὸ Θ, ὃ οὐκ ἔστιν ἐν τᾷ ἐπιφανείᾳ τοῦ κυλίνδρου, καὶ ἀπὸ τοῦ Θ ἁ ΘΚ κάθετος ἄχθω ἐπὶ τὰν ΑΒ ἐσσεῖται δὲ αὕτα ὀρθὰ ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐντι αἱ ΒΑ, Γ△· ἀπὸ δὲ τοῦ Κ ἄχθω παρὰ τὰν Γ△ ἁ ΚΛ, καὶ ἀπὸ τοῦ Λ ἀνεστακέτω ἁ ΛΜ ποτʼ ὀρθὰς τᾷ ΖΗ ἐν τῷ κύκλῳ τῷ περὶ τὰν ΖΗ, τὸ δὲ Μ νοείσθω μετέωρον ἐν τᾷ περιφερείᾳ τοῦ ἡμικυκλίου τοῦ περὶ διάμετρον τὰν ΖΗ· τὸν αὐτὸν δὴ ἔχει λόγον τὸ τετράγωνον τὸ ἀπὸ τᾶς ΘΚ καθέτου ποτὶ τὸ ὑπὸ τᾶν ΑΚ, ΚΒ περιεχόμενον καὶ τὸ ἀπὸ ΖΓ ποτὶ τὸ ὑπὸ τᾶν Α△, △Β περιεχόμενον, ἐπεὶ ἴσα ἐστὶν ἁ ΖΗ τᾷ ἑτέρᾳ διαμέτρῳ. Ἔχει δὲ καὶ τὸ ὑπὸ τᾶν ΖΛ, ΛΗ περιεχόμενον ποτὶ τὸ ὑπὸ ΑΚ, ΚΒ περιεχόμενον, ὃν τὸ ἀπὸ τᾶς ΖΓ τετράγωνον ποτὶ τὸ ἀπὸ Α△ ἴσον οὖν ἐντι τὸ ὑπὸ τᾶν ΖΛ, ΛΗ περιεχόμενον τῷ ἀπὸ τᾶς ΘΚ τετραγώνῳ. Ἔστιν δὲ ἴσον καὶ τῷ ἀπὸ ΛΜ· ἴσαι ἄρα ἐντὶ αἱ ΘΚ, ΜΛ κάθετοι. Παράλληλοι οὖν ἐντι αἱ ΛΚ, ΜΘ· ὥστε καὶ αἱ △Γ, ΜΘ παράλληλοι ἐσσοῦνται. Καὶ ἐν τᾷ ἐπιφανείᾳ ἄρα ἐστὶ τοῦ κυλίνδρου ἁ ΘΜ, ἐπεὶ ἀπὸ τοῦ Μ ἐν τᾷ ἐπιφανείᾳ ἐόντος ἆκται παρὰ τὸν ἄξονα δῆλον οὖν ὅτι καὶ τὸ Θ ἐν τᾷ ἐπιφανείᾳ ἐστὶν αὐτοῦ. Ὑπέκειτο δὲ μὴ εἶμεν· φανερὸν οὖν ἐστιν, ὃ ἔδει δεῖξαι.

Δῆλον δὴ ὅτι καὶ ὁ κύλινδρος ὁ περιλαμβάνων ὀρθὸς

179
ἐσσεῖται, εἴ κα ᾖ ἁ ἑτέρα διάμετρος ἴσα τῷ διαστήματι τᾶν ἀπὸ τῶν περάτων τᾶς ἑτέρας διαμέτρου ἀγμενᾶν παρὰ τὰν ἀνεστάκουσαν εὐθεῖαν.

Ἔστω πάλιν ἁ ἑτέρα διάμετρος μείζων τᾶς ΖΗ, καὶ ἴσα ἔστω ἁ ΠΖ τᾷ ἑτέρᾳ διαμέτρῳ, ἀπὸ δὲ τᾶς ΠΖ ἐπίπεδον ἀνεστακέτω ὀρθὸν ποτὶ τὸ ἐπίπεδον τὸ ἐν ᾧ ἐντι αἱ ΒΑ, Γ△, καὶ ἐν τῷ ἐπιπέδῳ τούτῳ κύκλος ἔστω περὶ διάμετρον τὰν ΠΖ, ἀπὸ δὲ τοῦ κύκλου τούτου κύλινδρος ἔστω ἄξονα ἔχων τὰν △Ρ· ἐν δὴ τᾷ ἐπιφανείᾳ τοῦ κυλίνδρου τούτου διὰ τῶν αὐτῶν δειχθήσεται ἐοῦσα ἁ τοῦ ὀξυγωνίου κώνου τομά.

Ἀλλʼ ἔστω ἐλάσσων ἁ ἑτέρα διάμετρος τᾶς ΖΗ. Ὧι δὴ μεῖζον δύναται ἁ ΖΓ τᾶς ἡμισείας τᾶς ἑτέρας διαμέτρου ἔστω τὸ ἀπὸ τᾶς ΓΞ τετράγωνον, καὶ ἀπὸ τοῦ Ξ ἀνεστακέτω γραμμὰ ἴσα τᾷ ἡμισείᾳ τᾶς ἑτέρας διαμέτρου ὀρθὰ ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐντι αἱ ΑΒ, Γ△, ἁ ΞΝ, τὸ δὲ Ν νοείσθω μετέωρον ἁ οὖν ΓΝ ἴσα ἐντὶ τᾷ ΓΖ. Ἐν δὴ τῷ ἐπιπέδῳ, ἐν ᾧ ἐντι αἱ ΖΗ, ΓΝ, κύκλος γεγράφθω περὶ διάμετρον τὰν ΖΗ· ἥξει δὲ οὗτος διὰ τοῦ Ν· καὶ ἀπὸ τοῦ κύκλου κύλινδρος

180
ἔστω ἄξονα ἔχων τὰν Γ△· ἐν δὴ τᾷ ἐπιφανείᾳ τοῦ κυλίνδρου τούτου ἐστὶν ἁ τοῦ ὀξυγωνίου κώνου τομά.

Εἰ γὰρ μή ἐστιν, ἐσσεῖταί τι σαμεῖον ἐπʼ αὐτᾶς, ὃ οὐκ ἔστιν ἐν τᾷ ἐπιφανείᾳ τοῦ κυλίνδρου. Λελάφθω δή τι σαμεῖον ἐπʼ αὐτᾶς τὸ Θ, καὶ ἁ ΘΚ κάθετος ἄχθω ἐπὶ τὰν ΑΒ, καὶ ἀπὸ τοῦ Κ παρὰ τὰν Γ△ ἔστω ἁ ΚΛ, καὶ ἀπὸ τοῦ Λ ἄχθω ποτʼ ὀρθὰς τᾷ ΖΗ ἐν τῷ ἡμικυκλίῳ τῷ περὶ διάμετρον τὰν ΖΗ ἁ ΛΜ, νοείσθω δὲ τὸ Μ ἐπὶ τᾶς περιφερείας τᾶς τοῦ ἡμικυκλίου τοῦ περὶ τὰν ΖΗ, καὶ ἀπὸ τοῦ Μ κάθετος ἄχθω ἐπὶ τὰν ΚΛ ἐκβληθεῖσαν ἁ ΜΟ· ἐσσεῖται δὲ αὕτα ὀρθὰ ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐντι αἱ ΑΒ, Γ△, ἐπεὶ ποτʼ ὀρθάς ἐντι ἁ ΚΛ τᾷ ΖΗ· ἔστιν δή, ὡς μὲν τὸ ἀπὸ τᾶς ΜΟ ποτὶ τὸ ἀπὸ τᾶς ΜΛ, οὕτως τὸ ἀπὸ τᾶς ΞΝ ποτὶ τὸ ἀπὸ τᾶς ΝΓ, ὡς δὲ τὸ ἀπὸ τᾶς ΜΛ ποτὶ τὸ ὑπὸ τᾶν ΑΚ, ΚΒ, οὕτως τὸ ἀπὸ ΓΝ ποτὶ τὸ ἀπὸ τᾶς Α△, ἐπεὶ τὸ μὲν ἀπὸ τᾶς ΜΛ ἴσον ἐστὶ τῷ ὑπὸ τᾶν ΛΖ, ΛΗ περιεχομένῳ, τὸ δὲ ἀπὸ τᾶς ΓΝ τῷ ἀπὸ τᾶς ΓΖ ἔστιν ἄρα, ὡς τὸ ἀπὸ τᾶς ΜΟ τετράγωνον ποτὶ τὸ ὑπὸ τᾶν ΑΚ, ΚΒ,

181
οὕτως τὸ ἀπὸ τᾶς ΞΝ ποτὶ τὸ ἀπὸ τᾶς Α△. Ἐντὶ δὲ καὶ τὸ ἀπὸ τᾶς ΚΘ τετράγωνον ποτὶ τὸ ὑπὸ τᾶν ΑΚ, ΚΒ, ὡς τὸ ἀπὸ τᾶς ΞΝ ποτὶ τὸ ἀπὸ τᾶς Α△, ἐπεὶ ἴσα ἐστὶν ἁ ΞΝ τᾷ ἡμισέᾳ τᾶς ἑτέρας διαμέτρου δῆλον οὖν ὅτι ἴσαι ἐντὶ αἱ ΜΟ, ΘΚ κάθετοι· ὥστε παράλληλοι αἱ ΚΟ, ΘΜ. Ἐπεὶ δὲ ἁ ΜΘ παρὰ τὸν ἄξονά ἐντι τοῦ κυλίνδρου καὶ τὸ Μ σαμεῖον ἐν τᾷ ἐπιφανείᾳ αὐτοῦ, ἀναγκαῖον καὶ τὰν ΜΘ ἐν τᾷ ἐπιφανείᾳ εἶμεν τοῦ κυλίνδρου· φανερὸν οὖν ὅτι καὶ τὸ Θ ἐν τᾷ ἐπιφανείᾳ ἐντὶ αὐτοῦ. Οὐκ ἦν δέ· δῆλον οὖν ὅτι ἀναγκαῖόν ἐστι τὰν τοῦ ὀξυγωνίου κώνου τομὰν ἐν τᾷ ἐπιφανείᾳ εἶμεν τοῦ κυλίνδρου.

Ὅτι μὲν πᾶς κῶνος ποτὶ κῶνον τὸν συγκείμενον ἔχει λόγον ἔκ τε τοῦ τῶν βάσιων λόγου καὶ ἐκ τοῦ τῶν ὑψέων ἀποδείκνυται ὑπὸ τῶν πρότερον, ἁ αὐτὰ δὲ ἀπόδειξίς ἐντι καὶ διότι πᾶν ἀπότμαμα κώνου ποτὶ ἀπότμαμα κώνου τὸν συγκείμενον λόγον ἔχει ἔκ τε τοῦ τῶν βάσιων λόγου καὶ ἐκ τοῦ τῶν ὑψέων.

Καὶ ὅτι πᾶς τόμος κυλίνδρου τριπλασίων ἐστὶ τοῦ ἀποτμάματος τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τόμῳ καὶ ὕψος ἴσον, ἁ αὐτὰ ἀπόδειξις, ἅπερ καὶ ὅτι ὁ κύλινδρος τριπλάσιός ἐστι τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ κυλίνδρῳ καὶ ὕψος ἴσον.

Εἴ κα τὸ ὀρθογώνιον κωνοειδὲς ἐπιπέδῳ τμαθῇ διὰ τοῦ ἄξονος ἢ παρὰ τὸν ἄξονα, ἁ τομὰ ἐσσεῖται ὀρθογωνίου

182
κώνου τομὰ ἁ αὐτὰ τᾷ περιλαμβανούσᾳ τὸ σχῆμα, διάμετρος δὲ αὐτᾶς ἐσσεῖται ἁ κοινὰ τομὰ τῶν ἐπιπέδων τοῦ τέμνοντος τὸ σχῆμα καὶ τοῦ διὰ τοῦ ἄξονος ἀχθέντος ὀρθοῦ ποτὶ τὸ ἐπίπεδον τὸ τέμνον.

Εἰ δέ κα τμαθῇ τῷ ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα, ἁ τομὰ κύκλος ἐσσεῖται τὸ κέντρον ἔχων ἐπὶ τοῦ ἄξονος.

Εἴ κα τὸ ἀμβλυγώνιον κωνοειδὲς ἐπιπέδῳ τμαθῇ διὰ τοῦ ἄξονος ἢ παρὰ τὸν ἄξονα ἢ διὰ τᾶς κορυφᾶς τοῦ κώνου τοῦ περιέχοντος τὸ κωνοειδές, ἁ τομὰ ἐσσεῖται ἀμβλυγωνίου κώνου τομά, εἰ μέν κα διὰ τοῦ ἄξονος, ἁ αὐτὰ τᾷ περιλαμβανούσᾳ τὸ σχῆμα, εἰ δέ κα παρὰ τὸν ἄξονα, ὁμοία αὐτᾷ, εἰ δέ κα διὰ τᾶς κορυφᾶς τοῦ κώνου τοῦ περιέχοντος τὸ κωνοειδές, οὐχ ὁμοία, διάμετρος δὲ τᾶς τομᾶς ἐσσεῖται ἁ κοινὰ τομὰ τῶν ἐπιπέδων τοῦ τέμνοντος τὸ σχῆμα καὶ τοῦ ἀχθέντος διὰ τοῦ ἄξονος ὀρθοῦ ποτὶ τὸ τέμνον ἐπίπεδον.

Εἰ δέ κα τμαθῇ ὀρθῷ τῷ ἐπιπέδῳ ποτὶ τὸν ἄξονα, ἁ τομὰ κύκλος ἐσσεῖται τὸ κέντρον ἔχων ἐπὶ τοῦ ἄξονος.

Εἴ κα τῶν σφαιροειδέων σχημάτων ὁποτερονοῦν ἐπιπέδῳ τμαθῇ διὰ τοῦ ἄξονος ἢ παρὰ τὸν ἄξονα, ἁ τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, εἰ μέν κα διὰ τοῦ ἄξονος, αὐτὰ ἁ περιλαμβάνουσα τὸ σχῆμα, εἰ δέ κα παρὰ τὸν ἄξονα, ὁμοία αὐτᾷ, διάμετρος δὲ τᾶς τομᾶς ἐσσεῖται ἁ κοινὰ τομὰ τῶν ἐπιπέδων τοῦ τέμνοντος τὸ σχῆμα καὶ τοῦ ἀχθέντος διὰ τοῦ ἄξονος ὀρθοῦ ποτὶ τὸ τέμνον ἐπίπεδον.

Εἰ δέ κα τμαθῇ τῷ ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα, ἁ τομὰ κύκλος ἐσσεῖται τὸ κέντρον ἔχων ἐπὶ τοῦ ἄξονος.

Εἴ κα τῶν εἰρημένων σχημάτων ὁποιονοῦν ἐπιπέδῳ

183
τμαθῇ διὰ τοῦ ἄξονος, αἱ ἀπὸ τῶν σαμείων τῶν ἐν τᾷ ἐπιφανείᾳ τοῦ σχήματος μὴ ἐπὶ τᾶς τομᾶς ἐόντων κάθετοι ἀγόμεναι ἐπὶ τὸ τέμνον ἐπίπεδον ἐντὸς πεσοῦνται τᾶς τοῦ σχήματος τομᾶς.

Τούτων δὲ πάντων φανεραί ἐντι αἱ ἀποδείξιες.

Εἴ κα τὸ ὀρθογώνιον κωνοειδὲς ἐπιπέδῳ τμαθῇ μήτε διὰ τοῦ ἄξονος μήτε παρὰ τὸν ἄξονα μήτε ποτʼ ὀρθὰς τῷ ἄξονι, ἁ τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἁ μείζων ἐσσεῖται ἁ ἐναπολαφθεῖσα ἐν τῷ κωνοειδεῖ ἀπὸ τᾶς γενομένας τομᾶς τῶν ἐπιπέδων τοῦ τέμνοντος τὸ σχῆμα καὶ τοῦ ἀχθέντος διὰ τοῦ ἄξονος ὀρθοῦ ποτὶ τὸ τέμνον ἐπίπεδον, ἁ δὲ ἐλάσσων διάμετρος ἴσα ἐσσεῖται τῷ διαστήματι τᾶν ἀχθεισᾶν παρὰ τὸν ἄξονα ἀπὸ τῶν περάτων τᾶς μείζονος διαμέτρου.

Τετμάσθω γὰρ τὸ ὀρθογώνιον κωνοειδὲς ἐπιπέδῳ, ὡς εἴρηται, τμαθέντος δὲ αὐτοῦ ἐπιπέδῳ ἄλλῳ διὰ τοῦ ἄξονος ὀρθῷ ποτὶ τὸ τέμνον ἐπίπεδον ἔστω τοῦ μὲν κωνοειδέος τομὰ ἁ ΑΒΓ, τοῦ δὲ ἐπιπέδου τοῦ τέμνοντος τὸ σχῆμα ἁ ΓΑ εὐθεῖα, ἄξων δὲ ἔστω τοῦ κωνοειδέος καὶ διάμετρος τᾶς τομᾶς ἁ Β△· δεικτέον ὅτι ἁ τομὰ τοῦ κωνοειδέος ἁ ὑπὸ τοῦ ἐπιπέδου τοῦ κατὰ τὰν ΑΓ ὀξυγωνίου ἐστὶ κώνου τομά, καὶ διάμετρος αὐτᾶς ἁ μείζων ἐστὶν ἁ ΑΓ, ἁ δὲ ἐλάσσων διάμετρος ἴσα ἐντὶ τᾷ ΛΑ τᾶς μὲν ΓΛ παρὰ τὰν Β△ ἐούσας, τᾶς δὲ ΑΛ καθέτου ἐπὶ τὰν ΓΛ.

Νοείσθω τι σαμεῖον ἐπὶ τᾶς τομᾶς λελαμμένον τὸ Κ, καὶ ἀπὸ τοῦ Κ κάθετος ἄχθω ἐπὶ τὰν ΓΑ ἁ ΚΘ· ἐσσεῖται

184
οὖν ἁ ΚΘ κάθετος ἐπὶ τὸ ἐπίπεδον τὸ ἐν ᾧ ἐστιν ἁ ΑΓΒ ὀρθογωνίου κώνου τομά, διότι καὶ τὸ τέμνον ἐπίπεδον ὀρθόν ἐστιν ποτὶ τὸ αὐτὸ ἐπίπεδον· διὰ δὲ τοῦ Θ ἄχθω ἁ ΕΖ ὀρθὰς ποιοῦσα γωνίας ποτὶ τὰν Β△, καὶ διὰ τᾶν ΕΖ, ΚΘ εὐθειᾶν ἐπίπεδον ἐκβεβλήσθω· ἐσσεῖται δὲ τοῦτο ὀρθὸν ποτὶ τὰν Β△· τετμήσεται δὴ τὸ κωνοειδὲς σχῆμα ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα· ὥστε ἁ τομὰ κύκλος ἐσσεῖται, κέντρον δὲ αὐτοῦ τὸ △· ἁ ἄρα ΚΘ ἴσον δυνασεῖται τῷ ὑπὸ ΖΘ, ΘΕ ἡμικύκλιον γάρ ἐστι τὸ ἐπὶ τῆς ΕΖ, καὶ ἁ ΚΘ κάθετος οὖσα μέση γίνεται ἀνάλογον τῷ ὑπὸ τᾶν ΕΘ, ΘΖ περιεχομένῳ. Ἄχθω δὲ ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς ἁ μὲν ΜΝ παρὰ τὰν ΑΓ, ἐπιψαυέτω δὲ κατὰ τὸ Ν, ἁ δὲ ΒΤ παρὰ τὰν ΕΖ· τὸ δὴ περιεχόμενον ὑπὸ τᾶν ΑΘ, ΘΓ ποτὶ τὸ περιεχόμενον ὑπὸ τᾶν ΕΘ, ΘΖ τὸν αὐτὸν ἔχει λόγον, ὃν τὸ τετράγωνον τὸ ἀπὸ τᾶς ΝΤ ποτὶ τὸ τετράγωνον τὸ ἀπὸ τᾶς ΒΤ· δέδεικται γὰρ τοῦτο. Τᾷ δὲ ΝΤ ἴσα ἐντὶ ἁ ΤΜ, διότι καὶ ἁ ΒΡ τᾷ ΒΜ· ἔχει οὖν καὶ τὸ περιεχόμενον ὑπὸ τᾶν ΑΘ, ΘΓ ποτὶ τὸ ἀπὸ τᾶς ΚΘ τὸν αὐτὸν λόγον, ὃν τὸ ἀπὸ τᾶς ΤΜ ποτὶ τὸ ἀπὸ τᾶς ΤΒ·
185
ὥστε καὶ τὸ ἀπὸ τᾶς ΘΚ καθέτου τετράγωνον ποτὶ τὸ ὑπὸ τᾶν ΑΘ, ΘΓ περιεχόμενον τὸν αὐτὸν ἔχει λόγον, ὃν τὸ ἀπὸ τᾶς ΒΤ τετράγωνον ποτὶ τὸ ἀπὸ τᾶς ΤΜ. Ἐπεὶ οὖν ὁμοῖά ἐντι τὰ ΓΑΛ, ΤΜΒ τρίγωνα, τὸ ἀπὸ τᾶς ΘΚ καθέτου τετράγωνον ποτὶ τὸ ὑπὸ τᾶν ΑΘ, ΘΓ περιεχόμενον τὸν αὐτὸν ἔχει λόγον, ὃν τὸ ἀπὸ τᾶς ΑΛ τετράγωνον ποτὶ τὸ ἀπὸ τᾶς ΑΓ τετράγωνον. Ὁμοίως δειχθήσονται καὶ τὰ ἀπὸ τᾶν ἀλλᾶν καθέτων τετράγωνα τᾶν ἀγομενᾶν ἀπὸ τᾶς τομᾶς ἐπὶ τὰν ΑΓ ποτὶ τὰ περιεχόμενα ὑπὸ τῶν τᾶς ΑΓ τμαμάτων τὸν αὐτὸν ἔχοντα λόγον, ὃν τὸ ἀπὸ τᾶς ΑΛ τετράγωνον ποτὶ τὸ ἀπὸ τᾶς ΑΓ· δῆλον οὖν ὅτι ἁ τομά ἐστιν ὀξυγωνίου κώνου τομά, διάμετροι δὲ αὐτᾶς ἐντι ἁ μὲν μείζων ἁ ΑΓ, ἁ δὲ ἐλάσσων ἴσα τᾷ ΑΛ.

Εἴ κα τὸ ἀμβλυγώνιον κωνοειδὲς ἐπιπέδῳ τμαθῇ συμπίπτοντι πάσαις ταῖς τοῦ κώνου πλευραῖς τοῦ περιέχοντος τὸ κωνοειδὲς μὴ ποτʼ ὀρθὰς τῷ ἄξονι, ἁ τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἁ μείζων ἐσσεῖται ἁ ἐναπολαφθεῖσα ἐν τῷ κωνοειδεῖ ἀπὸ τᾶς γενομένας τομᾶς τῶν ἐπιπέδων τοῦ τε τέμνοντος τὸ σχῆμα καὶ τοῦ ἀχθέντος διὰ τοῦ ἄξονος ὀρθοῦ ποτὶ τὸ τέμνον ἐπίπεδον.

Τεμνέσθω γὰρ τὸ ἀμβλυγώνιον κωνοειδὲς ἐπιπέδῳ, ὡς εἴρηται, καὶ ἄλλῳ ἐπιπέδῳ τμαθέντος αὐτοῦ διὰ τοῦ ἄξονος ὀρθῷ ποτὶ τὸ τέμνον ἐπίπεδον τοῦ μὲν κωνοειδέος τομὰ ἔστω ἁ ΑΒΓ ἀμβλυγωνίου κώνου τομά, τοῦ δὲ τέμνοντος τὸ σχῆμα ἐπιπέδου ἁ ΑΓ εὐθεῖα, ἄξων δὲ τοῦ

186
κωνοειδέος καὶ διάμετρος τᾶς τομᾶς ἁ Β△. Νοείσθω δή τι ἐπὶ τᾶς τομᾶς λελαμμένον σαμεῖον τὸ Κ, καὶ ἀπὸ τοῦ Κ κάθετος ἄχθω ἐπὶ τὰν ΑΓ ἁ ΚΘ· ἐσσεῖται δὴ οὕτα ὀρθὰ ποτὶ τὸ ἐπίπεδον τὸ ἐν ᾧ ἐντι ἁ ΑΒΓ κώνου τομά. Διὰ δὲ τοῦ Θ ἄχθω ἁ ΕΖ ποτʼ ὀρθὰς τᾷ Β△, καὶ διὰ τᾶν ΕΖ, ΚΘ εὐθειᾶν ἐπίπεδον ἄχθω τέμνον τὸ κωνοειδές· τετμήσεται δὴ ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα· ὥστε ἁ τομὰ κύκλος ἐσσεῖται, κέντρον δὲ αὐτοῦ τὸ △· ἁ ἄρα κάθετος ἁ ΚΘ ἴσον δυνασεῖται τῷ περιεχομένῳ ὑπὸ τᾶν ΕΘ, ΘΖ. Ἄχθω δὴ πάλιν ἁ μὲν ΜΝ παρὰ τὰν ΑΓ ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς κατὰ τὸ Ν, ἁ δὲ ΒΤ παρὰ τὰν ΕΖ τὸ δὴ περιεχόμενον ὑπὸ ΕΘ, ΘΖ ποτὶ τὸ περιεχόμενον ὑπὸ τᾶν ΑΘ, ΘΓ τὸν αὐτὸν ἔχει λόγον, ὃν τὸ τετράγωνον τὸ ἀπὸ τᾶς ΒΤ ποτὶ τὸ ἀπὸ τᾶς ΤΝ· ὥστε τὸ ἀπὸ τᾶς ΚΘ καθέτου τετράγωνον ποτὶ τὸ περιεχόμενον ὑπὸ τᾶν ΑΘ, ΘΓ τὸν αὐτὸν ἔχει λόγον, ὃν τὸ ἀπὸ τᾶς ΒΤ ποτὶ τὸ ἀπὸ τᾶς ΤΝ. Ὁμοίως οὖν δειχθησοῦνται καὶ τὰ ἀπὸ τᾶν ἀλλᾶν καθέτων τᾶν ἀπὸ τᾶς τομᾶς ἀγομενᾶν ἐπὶ τὰν ΑΓ ποτὶ τὰ περιεχόμενα ὑπὸ τῶν τμαμάτων τᾶς ΑΓ, ὧν αἱ κάθετοι ποιοῦντι, τὸν αὐτὸν ἔχοντα λόγον, ὃν τὸ ἀπὸ τᾶς ΒΤ τετράγωνον
187
ποτὶ τὸ ἀπὸ τᾶς ΤΝ. Καί ἐστιν ἐλάσσων ἁ ΒΤ τᾶς ΤΝ, διότι καὶ ἁ ΜΤ ἐλάσσων ἐστὶν τᾶς ΤΝ· καὶ γὰρ ἁ ΜΒ ἐλάσσων τᾶς ΒΡ· τοῦτο γάρ ἐστιν ἐν ταῖς τοῦ ἀμβλυγωνίου κώνου τομαῖς σύμπτωμα δῆλον οὖν ὅτι ἁ τομὰ ὀξυγωνίου κώνου τομὰ καὶ διάμετρος αὐτᾶς μείζων ἁ ΑΓ ὁμοίως καθέτου οὔσης τᾶς ΝΡ ἐν τᾷ τοῦ ἀμβλυγωνίου κώνου τομᾷ διάμετρος ταύτας μείζων ἐστὶν ἁ ΓΛ.

Εἴ κα τὸ παράμακες σφαιροειδὲς ἐπιπέδῳ τμαθῇ μὴ ποτʼ ὀρθὰς τῷ ἄξονι, ἁ τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἁ μείζων ἐσσεῖται ἁ ἐναπολαφθεῖσα ἐν τῷ σφαιροειδεῖ ἀπὸ τᾶς γενομένας τομᾶς τῶν ἐπιπέδων τοῦ τέμνοντος τὸ σχῆμα καὶ τοῦ ἀχθέντος διὰ τοῦ ἄξονος ὀρθοῦ ποτὶ τὸ τέμνον ἐπίπεδον.

Εἰ μὲν οὖν κα τμαθῇ διὰ τοῦ ἄξονος ἢ παρὰ τὸν ἄξονα, δῆλον· τετμάσθω δὲ ἄλλῳ ἐπιπέδῳ, τμαθέντος δε αὐτοῦ διὰ τοῦ ἄξονος ὀρθῷ ποτὶ τὸ τέμνον τοῦ μὲν σφαιραειδέος τομὰ ἔστω ἁ ΑΒΓ△ ὀξυγωνίου κώνου τομά, τοῦ δὲ τέμνοντος αὐτὸ ἐπιπέδου ἁ ΓΑ εὐθεῖα, ἄξων δὲ ἔστω τοῦ σφαιροειδέος καὶ διάμετρος τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς ἁ Β△, κέντρον δὲ τὸ Χ, καὶ ἐλάσσων διάμετρος ἔστω ἁ ΠΡ.

188
Ἄχθω δὲ ἁ μὲν ΒΤ ποτʼ ὀρθὰς τᾷ Β△, ἁ δὲ ΗΝ παρὰ τὰν ΑΓ ἐπιψαύουσα τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς κατὰ τὸ Ν, ἄχθω δὲ καὶ ἁ ΜΛ διὰ τοῦ Χ παρὰ τὰν ΑΓ· ὁμοίως δὴ τοῖς πρότερον δειχθησοῦντι τὰ τετράγωνα τὰ ἀπὸ τᾶν καθέτων τᾶν ἀπὸ τᾶς τομᾶς ἐπὶ τὰν ΑΓ ἀγμενᾶν ποτὶ τὰ περιεχόμενα ὑπὸ τῶν τᾶς ΑΓ τμαμάτων τὸν αὐτὸν ἔχοντα λόγον, ὃν τὸ ἀπὸ τᾶς ΒΤ τετράγωνον ποτὶ τὸ ἀπὸ τᾶς ΤΝ. Ὅτι μὲν οὖν ἁ τομά ἐστιν ὀξυγωνίου κώνου τομὰ καὶ διάμετρος αὐτᾶς ἁ ΓΑ δῆλον· ὅτι δὲ μείζων δεικτέον. Τὸ γὰρ ὑπὸ τᾶν ΠΧ, ΧΡ περιεχόμενον ποτὶ τὸ ὑπὸ ΜΧ, ΧΛ τὸν αὐτὸν ἔχει λόγον, ὃν τὸ ἀπὸ τᾶς ΒΤ ποτὶ τὸ ἀπὸ τᾶς ΝΤ, ἐπεὶ παρὰ τὰς ἐπιψαυούσας ἐντὶ αἱ ΠΡ, ΜΛ. Ἔλασσον δέ ἐστι τὸ ὑπὸ τᾶν ΠΧ, ΧΡ περιεχόμενον τοῦ ὑπὸ τᾶν ΜΧ, ΧΛ, ἐπεὶ καὶ ἁ ΧΠ τᾶς ΧΛ ἔλασσον ἄρα ἐστὶν καὶ τὸ ἀπὸ τᾶς ΒΤ τετράγωνον τοῦ ἀπὸ τᾶς ΤΝ· ὥστε καὶ τὰ ἀπὸ τᾶν καθέτων τετράγωνα τᾶν ἀπὸ τᾶς τομᾶς ἐπὶ τὰν ΑΓ ἀγομενᾶν ἐλάσσονά ἐντι τῶν ὑπὸ τῶν τμαμάτων τᾶς ΑΓ περιεχομένων. Δῆλον οὖν ὅτι μείζων ἐντὶ διάμετρος ἁ ΓΑ.

Εἴ κα τὸ ἐπιπλατὺ σφαιροειδὲς ἐπιπέδῳ τμαθῇ, τὰ μὲν ἄλλα τὰ αὐτὰ ἐσσεῖται, τᾶν δὲ διαμέτρων ἐλάσσων ἐσσεῖται ἁ ἐναπολαφθεῖσα ἐν τῷ σφαιροειδεῖ.

Ἐξ αὐτῶν δὲ φανερὸν ἐν πάντεσσι τοῖς σχημάτεσσιν ὅτι, εἴ κα παραλλήλοις ἐπιπέδοις τμαθῇ, αἱ αὐτῶν τομαὶ ὁμοῖαι ἐσσοῦνται τὰ γὰρ τετράγωνα τὰ ἀπὸ τᾶν καθέτων ποτὶ τὰ περιεχόμενα ὑπὸ τῶν τμαμάτων τοὺς αὐτοὺς λόγους ἑξοῦντι.

189

Ἐν τῷ ὀρθογωνίῳ κωνοειδεῖ ἀπὸ παντὸς ὁτουοῦν σαμείου τῶν ἐν τᾷ ἐπιφανείᾳ τοῦ κωνοειδέος τᾶν ἀγομενᾶν εὐθειᾶν παρὰ τὸν ἄξονα αἱ μὲν ἐπὶ τὰ αὐτὰ ἀγόμεναι, ἐφʼ ἅ ἐντι τὰ κυρτὰ αὐτοῦ, ἐκτὸς πεσοῦνται τοῦ κωνοειδέος, αἱ δὲ ἐπὶ θάτερα ἐντός.

Ἀχθέντος γὰρ ἐπιπέδου διά τε τοῦ ἄξονος καὶ τοῦ σαμείου, ἀφʼ οὗ ἁ παράλληλος ἄγεται τῷ ἄξονι, ἁ τομὰ ἐσσεῖται ὀρθογωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ὁ ἄξων τοῦ κωνοειδέος ἐν δὲ τᾷ τοῦ ὀρθογωνίου κώνου τομᾷ ἀπὸ παντὸς σαμείου τοῦ ἐπὶ τᾶς τομᾶς ἀγομενᾶν παρὰ τὰν διάμετρον εὐθειᾶν αἱ μὲν ἐπὶ τὰ αὐτὰ ἀγόμεναι, ἐφʼ ἅ ἐντι τὰ κυρτὰ αὐτᾶς, ἐκτὸς πίπτοντι, αἱ δὲ ἐπὶ θάτερα ἐντός δῆλον οὖν τὸ προτεθέν.

Ἐν τῷ ἀμβλυγωνίῳ κωνοειδεῖ ἀπὸ παντὸς σαμείου τῶν ἐν τᾷ ἐπιφανείᾳ αὐτοῦ τᾶν ἀγομενᾶν εὐθειᾶν παρά τινα γραμμάν, ἅ ἐστιν ἐν τῷ κωνοειδεῖ ἀγομένα διὰ τᾶς κορυφᾶς τοῦ κώνου τοῦ περιέχοντος τὸ κωνοειδές, αἱ μὲν ἐπὶ τὰ αὐτὰ ἀγόμεναι, ἐφʼ ἅ ἐντι τὰ κυρτὰ αὐτοῦ, ἐκτὸς πεσοῦνται τοῦ κωνοειδέος, αἱ δὲ ἐπὶ θάτερα ἐντός.

Ἀχθέντος γὰρ ἐπιπέδου διά τε τᾶς εὐθείας τᾶς ἐν τῷ κωνοειδεῖ ἀγομένας διὰ τᾶς κορυφᾶς τοῦ κώνου τοῦ περιέχοντος τὸ κωνοειδὲς καὶ διὰ τοῦ σαμείου, ἀφʼ οὗ ἄγεται ἁ ἐς αὐτό, ἁ τομὰ ἐσσεῖται ἀμβλυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἁ ἀπὸ τᾶς κορυφᾶς τοῦ κώνου ἐν τῷ κωνοειδεῖ ἀγομένα ἐν δὲ τᾷ τοῦ ἀμβλυγωνίου κώνου τομᾷ ἀπὸ παντὸς σαμείου τοῦ ἐπὶ τᾶς τομᾶς τᾶν ἀγομενᾶν εὐθειᾶν παρὰ τὰν οὕτως ἀγμέναν γραμμὰν αἱ

190
μὲν ἐπὶ τὰ αὐτὰ ἀγόμεναι, ἐφʼ ἅ ἐστιν αὐτᾶς τὰ κυρτά, ἐκτὸς πίπτοντι, αἱ δὲ ἐπὶ θάτερα ἐντός. Εἴ κα τῶν κωνοειδέων σχημάτων ἐπίπεδον ἐφάπτηται μὴ τέμνον τὸ κωνοειδές, καθʼ ἓν μόνον ἅψεται σαμεῖον, καὶ τὸ διὰ τᾶς ἁφᾶς καὶ τοῦ ἄξονος ἐπίπεδον ἀχθὲν ὀρθὸν ἐσσεῖται ποτὶ τὸ ἐπιψαῦον ἐπίπεδον.

Ἐφαπτέσθω γάρ, εἰ δυνατόν, κατὰ πλείονα σαμεῖα. Λαφθέντων δὴ δύο σαμείων, καθʼ ἃ ἅπτεται τὸ ἐπιψαῦον ἐπίπεδον τοῦ κωνοειδέος, καὶ ἀφʼ ἑκατέρου παρὰ τὸν ἄξονα εὐθειᾶν ἀχθεισᾶν ἀπὸ τᾶν ἀχθεισᾶν παρὰ τὸν ἄξονα ἐπίπεδον ἐκβληθὲν ἤτοι διὰ τοῦ ἄξονος ἢ παρὰ τὸν ἄξονα ἐσσεῖται ἀγμένον ὥστε τὰν τομὰν ποιήσει κώνου τομάν, καὶ τὰ σημεῖα ἐσσοῦνται ἐν τᾷ τοῦ κώνου τομᾷ, ἐπεὶ ἔν τε τᾷ ἐπιφανείᾳ ἐντὶ καὶ ἐν τῷ ἐπιπέδῳ, Ἁ οὖν μεταξὺ τῶν σαμείων εὐθεῖα ἐντὸς ἐσσεῖται τᾶς τοῦ κώνου τομᾶς· ὥστε καὶ τᾶς τοῦ κωνοειδέος ἐπιφανείας ἐντὸς ἐσσεῖται. Ἔστιν δὲ ἁ εὐθεῖα οὕτα ἐν τῷ ἐπιψαύοντι ἐπιπέδῳ, διότι καὶ τὰ σαμεῖα τοῦ ἄρα ἐπιψαύοντος ἐπιπέδου ἐσσεῖταί τι ἐντὸς τοῦ κωνοειδέος· ὅπερ ἀδύνατον· ὑπέκειτο γὰρ μὴ τέμνειν, Καθʼ ἓν ἄρα μόνον ἅψεται σαμεῖον.

191

Ὅτι δὲ καὶ τὸ διὰ τᾶς ἁφᾶς καὶ τοῦ ἄξονος ἐπίπεδον ἀχθὲν ὀρθὸν ἐσσεῖται ποτὶ τὸ ἐπιψαῦον, εἰ μὲν κατὰ τὰν κορυφὰν τοῦ κωνοειδέος ἐφάπτεται, δῆλον. Ἀχθέντων γὰρ διὰ τοῦ ἄξονος δύο ἐπιπέδων τοῦ κωνοειδέος αἱ τομαὶ ἐσσοῦνται κώνων τομαὶ διάμετρον ἔχουσαι τὸν ἄξονα, τοῦ δὲ ἐπιψαύοντος ἐπιπέδου εὐθεῖαι ἐπιψαύουσαι τᾶν τῶν κώνων τομᾶν κατὰ τὸ πέρας τᾶς διαμέτρου. Αἱ δὲ εὐθεῖαι αἱ ἐπιψαύουσαι τᾶν τῶν κώνων τομᾶν κατὰ τὸ πέρας τᾶς διαμέτρου ὀρθὰς ποιοῦντι γωνίας ποτὶ τὰν διάμετρον ἐσσοῦνται οὖν ἐν τῷ ἐπιψαύοντι ἐπιπέδῳ δύο εὐθεῖαι ποτʼ ὀρθὰς τῷ ἄξονι. Ὀρθὸν οὖν ἐσσεῖται ποτὶ τὸν ἄξονα τὸ ἐπίπεδον· ὥστε καὶ ποτὶ τὸ διὰ τοῦ ἄξονος. Ἀλλὰ ἔστω μὴ κατὰ τὰν κορυφὰν τοῦ κωνοειδέος ἐπιψαῦον τὸ ἐπίπεδον. Ἄχθω δὴ ἐπίπεδον διὰ τᾶς ἁφᾶς καὶ τοῦ ἄξονος, καὶ τοῦ μὲν κωνοειδέος τομὰ ἔστω ἁ ΑΒΓ κώνου τομά, ἄξων δὲ ἔστω καὶ διάμετρος τᾶς τομᾶς ἁ Β△, τοῦ δὲ ἐπιψαύοντος ἐπιπέδου τομὰ ἔστω ἁ ΕΘΖ εὐθεῖα τᾶς τοῦ κώνου τομᾶς ἁπτομένα κατὰ τὸ Θ, ἀπὸ δὲ τοῦ Θ κάθετος ἄχθω ἐπὶ τὰν Β△ ἁ ΘΚ, καὶ ἐπίπεδον ἀνεστακέτω ὀρθὸν ποτὶ τὸν ἄξονα ποιήσει δὴ τοῦτο τὰν τομὰν κύκλον, οὗ κέντρον τὸ Κ. Ἁ δὲ τομὰ τούτου τοῦ ἐπιπέδου καὶ τοῦ ἐπιψαύοντος ἐσσεῖται ἐπιψαύουσα τοῦ κύκλου· ὀρθὰς ἄρα ποιήσει γωνίας ποτὶ τὰν ΘΚ· ὥστʼ ὀρθὰ ἐσσεῖται ποτὶ τὸ ἐπίπεδον τὸ ἐν ᾧ ἐντι αἱ ΚΘ, Β△. Δῆλον οὖν ὅτι τὸ ἐπιψαῦον ἐπίπεδον ὀρθόν ἐστι ποτὶ τὸ αὐτὸ ἐπίπεδον, ἐπεὶ καὶ αἱ ἐν αὐτῷ εὐθεῖαι.

192

Εἴ κα τῶν σφαιροειδέων σχημάτων ὁποτερουοῦν ἐπίπεδον ἅπτηται μὴ τέμνον τὸ σχῆμα, καθʼ ἓν μόνον ἅψεται σαμεῖον, καὶ τὸ διὰ τᾶς ἁφᾶς καὶ τοῦ ἄξονος ἐπίπεδον ἀχθὲν ὀρθὸν ἐσσεῖται ποτὶ τὸ ἐπιψαῦον ἐπίπεδον.

Ἁπτέσθω γὰρ κατὰ πλείονα σαμεῖα. Λαφθέντων δὴ τῶν σαμείων, καθʼ ἃ ἅπτεται τὸ ἐπίπεδον τοῦ σφαιροειδέος, καὶ ἀφʼ ἑκατέρου αὐτῶν παρὰ τὸν ἄξονα εὐθειᾶν ἀχθεισᾶν καὶ διὰ τᾶν ἀχθεισᾶν ἐπιπέδου ἐκβληθέντος ἁ τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, καὶ τὰ σαμεῖα ἐσσοῦνται ἐν τᾷ τοῦ κώνου τομᾷ. Ἁ οὖν μεταξὺ τῶν σαμείων εὐθεῖα ἐντὸς ἐσσεῖται τᾶς τοῦ κώνου τομᾶς ὥστε καὶ τᾶς τοῦ σφαιροειδέος ἐπιφανείας ἐντὸς ἐσσεῖται. Ἔστιν δὲ ἁ εὐθεῖα ἐν τῷ ἐπιψαύοντι ἐπιπέδῳ, διότι καὶ τὰ σαμεῖα τοῦ οὖν ἐπιψαύοντος ἐπιπέδου ἐσσεῖταί τι ἐντὸς τοῦ σφαιροειδέος. Οὐκ ἔστιν δὲ ὑπέκειτο γὰρ μὴ τέμνειν. Δῆλον οὖν, ὅτι καθʼ ἓν σαμεῖον μόνον ἅψεται. Ὅτι δὲ τὸ διὰ τᾶς ἁφᾶς καὶ τοῦ ἄξονος ἐπίπεδον ἀχθὲν ὀρθὸν ἐσσεῖται ποτὶ τὸ ἐπίπεδον τὸ ἐπιψαῦον, ὁμοίως τοῖς περὶ τῶν κωνοειδέων σχημάτων.

Εἴ κα τῶν κωνοειδέων ἢ τῶν σφαιροειδέων σχημάτων ὁποιονοῦν ἐπιπέδῳ τμαθῇ διὰ τοῦ ἄξονος, καὶ τᾶς γενομένας τομᾶς ἐπιψαύουσά τις ἀχθῇ εὐθεῖα, καὶ διὰ τᾶς ἐπιψαυούσας ἐπίπεδον ἀνασταθῇ ὀρθὸν ποτὶ τὸ τέμνον, ἐπιψαύει τοῦ σχήματος κατὰ τὸ αὐτὸ σαμεῖον, καθʼ ὃ καὶ ἁ εὐθεῖα ἐπιψαύει τᾶς τοῦ κώνου τομᾶς.

Οὐ γὰρ ἅψεται κατʼ ἄλλο σαμεῖον τᾶς ἐπιφανείας αὐτοῦ. Εἰ δὲ μή, ἁ ἀπὸ τοῦ σαμείου κάθετος ἀγομένα ἐπὶ τὸ τέμνον ἐπίπεδον πεσεῖται ἐκτὸς τᾶς τοῦ κώνου τομᾶς·

193
ἐπὶ γὰρ τὰν ἐπιψαύουσαν πεσεῖται, ἐπεὶ ὀρθὰ ποτʼ ἄλλαλά ἐντι τὰ ἐπίπεδα· ὅπερ ἀδύνατον ἐδείχθη γάρ, ὅτι ἐντὸς πεσεῖται.

Εἴ κα τῶν σφαιροειδέων τινὸς σχημάτων δύο ἐπίπεδα παράλληλα ἐπιψαύωντι, ἁ τὰς ἁφὰς ἐπιζευγνύουσα εὐθεῖα διὰ τοῦ κέντρου τοῦ σφαιροειδέος πορεύσεται.

Εἰ μὲν οὖν κα ποτʼ ὀρθὰς τῷ ἄξονι τὰ ἐπίπεδα ἔωντι, δῆλον· ἄλλʼ ἔστω μὴ ποτʼ ὀρθάς. Τὸ δὴ ἐπίπεδον τὸ ἀχθὲν διὰ τοῦ ἄξονος καὶ τᾶς ἁφᾶς τᾶς ἑτέρας ὀρθὸν ἐσσεῖται ποτὶ τὸ ἐπιψαῦον ἐπίπεδον ὥστε καὶ ποτὶ τὸ παράλληλον αὐτῷ. Ἀναγκαῖον ἄρα τὸ αὐτὸ εἶμεν ἐπίπεδον τὸ διὰ τοῦ ἄξονος καὶ ἑκατερᾶν τᾶν ἁφᾶν ἀγμένον. Εἰ δὲ μή, ἐσσοῦνται δύο ἐπίπεδα ποτὶ τὸ αὐτὸ ἐπίπεδον ὀρθὰ διὰ τᾶς αὐτᾶς γραμμᾶς ἀγμένα οὐκ ἐούσας ὀρθᾶς ποτὶ τὸ ἐπίπεδον ὑπέκειτο γὰρ ὁ ἄξων μὴ εἶμεν ὀρθὸς ποτὶ τὰ παραλληλα ἐπίπεδα ἐν τῷ αὐτῷ ἄρα ἐσσοῦνται ἐπιπέδῳ ὅ τε ἄξων καὶ αἱ ἁφαί, καὶ τετμακὸς ἐσσεῖται τὸ σφαιροειδὲς διὰ τοῦ ἄξονος. Ἁ οὖν τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, αἱ δὲ τῶν ἐπιψαυόντων ἐπιπέδων τομαὶ

194
παράλληλοι ἐσσοῦνται καὶ ἐπιψαύουσαι τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς κατὰ τὰς ἁφὰς τῶν ἐπιπέδων· εἰ δὲ κα δύο εὐθεῖαι ὀξυγωνίου κώνου τομᾶς ἐπιψαύωντι παράλληλοι ἐοῦσαι, τό τε κέντρον τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς καὶ αἱ ἁφαὶ ἐπʼ εὐθείας ἐσσοῦνται.

Εἴ κα τῶν σφαιροειδέων σχημάτων ὁποτερουοῦν δύο παράλληλα ἐπίπεδα ἀχθῇ ἐπιψαύοντα, ἀχθῇ δὲ τι ἐπίπεδον διὰ τοῦ κέντρου τοῦ σφαιροειδέος παρὰ τὰ ἐπιψαύοντα, αἱ διὰ τᾶς γενομένας τομᾶς ἀγόμεναι εὐθεῖαι παρὰ τὰν τὰς ἁφὰς ἐπιζευγνύουσαν ἐκτὸς πεσοῦνται τοῦ σφαιροειδέος.

Ὑποκείσθω τὰ εἰρημένα, καὶ λελάφθω τι σαμεῖον ἐπὶ τᾶς γενομένας τομᾶς, διὰ δὲ τοῦ γενομένου σαμείου καὶ τᾶς εὐθείας τᾶς τὰς ἁφὰς ἐπιζευγνυούσας ἐπίπεδον ἄχθω· τεμεῖ δὴ τοῦτο τό τε σφαιροειδὲς καὶ τὰ παράλλαλα ἐπίπεδα. Ἔστω οὖν ἁ μὲν τοῦ σφαιροειδέος τομὰ ἁ ΑΒΓ△ ὀ ὀξυγωνίου κώνου τομά, αἱ δὲ τῶν ἐπιπέδων τῶν ψαυόντων τομαὶ αἱ ΕΖ, ΗΘ εὐθεῖαι, τὸ δὲ λαφθὲν σαμεῖον τὸ Α, ἁ δὲ

195
τὰς ἁφὰς ἐπιζευγνύουσα ἔστω ἁ Β△· πεσεῖται δὲ αὕτα διὰ τοῦ κέντρου· ἁ δὲ τοῦ παραλλήλου ἐπιπέδου τοῖς ἐπιψαυόντεσσιν ἐπιπέδοις τομὰ ἁ ΓΑ· ἐσσεῖται δὲ αὕτα διὰ τοῦ κέντρου ἀγμένα, ἐπεὶ καὶ τὸ ἐπίπεδον, Ἐπεὶ οὖν ἐστιν ἁ ΑΒΓ△ ἤτοι κύκλος ἢ ὀξυγωνίου κώνου τομά, καὶ ἐπιψαύοντι αὐτᾶς δύο εὐθεῖαι αἱ ΕΖ, ΗΘ, διὰ δὲ τοῦ κέν τρου ἆκται παράλληλος αὐταῖς ἁ ΑΓ, δῆλον ὡς αἱ ἀπὸ τῶν Α, Γ ἀγόμεναι σαμείων παρὰ τὰν Β△ ἐπιψαύοντι τᾶς τομᾶς καὶ ἐκτὸς πεσοῦνται τοῦ σφαιροειδέος. Εἰ δέ κα τὸ παράλληλον ἐπίπεδον τοῖς ἐπιψαυόντεσσι μὴ διὰ τοῦ κέντρου ἀγμένον ᾖ, ὡς τὸ ΚΛ, δῆλον ὡς τᾶν ἀπὸ τᾶς τομᾶς ἀγομενᾶν εὐθειᾶν αἱ μὲν ἐπὶ τὰ αὐτὰ γενόμενα τῷ ἐλάσσονι τμάματι ἐκτὸς πεσοῦνται τοῦ σφαιροειδέος, αἱ δὲ ἐπὶ θάτερα ἐντός.

Πᾶν σχῆμα σφαιροειδὲς ἐπιπέδῳ τμαθὲν διὰ τοῦ κέντρου δίχα τέμνεται ὑπὸ τοῦ ἐπιπέδου καὶ αὐτὸ καὶ ἁ ἐπιφάνεια αὐτοῦ.

Τετμάσθω γὰρ τὸ σφαιροειδὲς ἐπιπέδῳ διὰ τοῦ κέντρου ἤτοι δὴ καὶ διὰ τοῦ ἄξονος ἐσσεῖται τετμαμένον ἢ ποτʼ ὀρθὰς ἢ μὴ ποτʼ ὀρθὰς τῷ ἄξονι. Εἰ μὲν οὖν διὰ τοῦ ἄξονος τέμνεται ἢ ποτʼ ὀρθᾶς τῷ ἄξονι, δῆλον ὡς δίχα τέμνεταί τε αὐτὸ καὶ ἁ ἐπιφάνεια αὐτοῦ φανερὸν γὰρ ὅτι ἐφαρμόζει τὸ ἕτερον μέρος αὐτοῦ ἐπὶ τὸ ἕτερον καὶ ἁ ἐπιφάνεια τοῦ ἑτέρου μέρους ἐπὶ τὰν τοῦ ἑτέρου.

196

Ἀλλʼ ἔστω μὴ διὰ τοῦ ἄξονος τετμαμένον μήτε ποτʼ ὀρθὰς τῷ ἄξονι. Τμαθέντος δὴ τοῦ σφαιροειδέος ἐπιπέδῳ ὀρθῷ ποτὶ τὸ τέμνον ἐπίπεδον διὰ τοῦ ἄξονος αὐτοῦ μὲν τοῦ σχήματος τομὰ ἔστω ἁ ΑΒΓ△ ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἔστω καὶ ἄξων τοῦ σφαιροειδέος ἁ Β△ καὶ κέντρον τὸ Θ, τοῦ δὲ ἐπιπέδου τοῦ τετμακότος διὰ τοῦ κέντρου τὸ σφαιροειδὲς ἔστω τομὰ ἁ ΑΓ εὐθεῖα. Λελάφθω δή τι καὶ ἄλλο σφαιροειδὲς ἴσον καὶ ὁμοῖον τούτῳ, καὶ τμαθέντος αὐτοῦ διὰ τοῦ ἄξονος ἐπιπέδῳ τομὰ ἔστω ἁ ΕΖΗΝ ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς καὶ ἄξων τοῦ σφαιροειδέος ἁ ΕΗ καὶ κέντρον τὸ Κ, καὶ διὰ τοῦ Κ ἄχθω ἁ ΖΝ γωνίαν ποιοῦσα τὰν Κ ἴσαν τᾷ Θ, ἀπὸ δὲ τᾶς ΖΝ ἐπίπεδον ἔστω ἀνεστακὸς ὀρθὸν ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐστιν ἁ ΕΖΗΝ τομά· ἐντὶ δὴ δύο ὀξυγωνίων κώνων τομαὶ αἱ ΑΒΓ△, ΕΖΗΝ ἴσαι καὶ ὁμοῖαι ἀλλάλαις ἐφαρμόζοντι οὖν ἐπʼ ἀλλάλας τεθείσας τᾶς ΕΗ ἐπὶ τὰν Β△ καὶ τᾶς ΖΝ ἐπὶ τὰν ΑΓ. Ἐφαρμόζει δὲ καὶ τὸ ἐπίπεδον τὸ κατὰ τὰν ΝΖ τῷ ἐπιπέδῳ τῷ κατὰ τὰν ΑΓ, ἐπεὶ ἀπὸ τᾶς αὐτᾶς γραμμᾶς ποτὶ τὸ

197
αὐτὸ ἐπίπεδον ἀμφότερα ὀρθά ἐντι· ἐφαρμόζει οὖν καὶ τὸ τμᾶμα τὸ ὑπὸ τοῦ ἐπιπέδου ἀποτεμνόμενον τοῦ κατὰ τὰν ΝΖ ἀπὸ τοῦ σφαιροειδέος τὸ ἐπὶ τὰ αὐτὰ τῷ Ε τῷ ἑτέρῳ τμάματι τῷ ἀποτεμνομένῳ ἀπὸ τοῦ ἑτέρου σφαιροειδέος ὑπὸ τοῦ ἐπιπέδου τοῦ κατὰ τὰν ΑΓ ἐπὶ τὰ αὐτὰ τῷ Β καὶ τὸ λοιπὸν τμᾶμα ἐπὶ τὸ λοιπὸν καὶ αἱ ἐπιφάνειαι τῶν τμαμάτων ἐπὶ τὰς ἐπιφανείας. Πάλιν δὲ καὶ τεθείσας τᾶς ΕΗ ἐπὶ τὰν Β△ οὕτως, ὥστε τὸ μὲν Ε κατὰ τὸ △ κεῖσθαι, τὸ δὲ Η κατὰ τὸ Β, τὰν δὲ μεταξὺ τῶν Ν, Ζ σαμείων γραμμὰν ἐπὶ τὰν μεταξὺ τῶν Α, Γ σαμείων, δῆλον ὡς αἵ τε τῶν ὀξυγωνίων κώνων τομαὶ ἐφαρμοξοῦντι ἐπʼ ἀλλάλας, καὶ τὸ μὲν Ζ ἐπὶ τὸ Γ πεσεῖται, τὸ δὲ Ν ἐπὶ τὸ Α. Ὁμοίως καὶ τὸ ἐπίπεδον τὸ κατὰ τὰν ΝΖ ἐφαρμόζει τῷ ἐπιπέδῳ τῷ κατὰ τὰν ΑΓ, καὶ τῶν τμαμάτων τῶν ἀποτεμνομένων ὑπὸ τοῦ ἐπιπέδου τοῦ κατὰ τὰν ΝΖ τὸ μὲν ἐπὶ τὰ αὐτὰ τῷ Η ἐφαρμόζει τῷ τμάματι τῷ ἀποτεμνομένῳ ὑπὸ τοῦ ἐπιπέδου τοῦ κατὰ τὰν ΑΓ ἐπὶ τὰ αὐτὰ τῷ Β, τὸ δὲ ἐπὶ τὰ αὐτὰ τῷ Ε τῷ ἐπὶ τὰ αὐτὰ τῷ △. Ἐπεὶ δὲ τὸ αὐτὸ τμᾶμα ἐφʼ ἑκάτερον τῶν τμαμάτων ἐφαρμόζει, δῆλον ὅτι ἴσα ἐντὶ τὰ τμάματα διὰ ταὐτὰ δὲ καὶ αἱ ἐπιφάνειαι.

Τμάματος δοθέντος ὁποτερουοῦν τῶν κωνοειδέων ἀποτετμαμένου ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα ἢ τῶν σφαιροειδέων ὁποτερουοῦν μὴ μείζονος ἡμίσους τοῦ σφαιροειδέος ὁμοίως ἀποτεμνομένου δυνατόν ἐστι σχῆμα στερεὸν ἐγγράψαι καὶ ἄλλο περιγράψαι ἐκ κυλίνδρων ἴσον ὕψος ἐχόντων συγκείμενον, ὥστε τὸ περιγραφόμενον σχῆμα τοῦ

198
ἐγγραφέντος ἐλάσσονι ὑπερέχειν παντὸς τοῦ προτεθέντος στερεοῦ μεγέθεος.

Δεδόσθω τμᾶμα, οἷόν τὸ ΑΒΓ, τμαθέντος δὲ αὐτοῦ ἐπιπέδῳ διὰ τοῦ ἄξονος τοῦ μὲν τμάματος τομὰ ἔστω ἁ ΑΒΓ κώνου τομά, τοῦ δὲ ἐπιπέδου τοῦ ἀποτετμακότος τὸ τμᾶμα ἁ ΑΓ εὐθεῖα, ἄξων δὲ ἔστω τοῦ τμάματος καὶ διάμετρος τᾶς τομᾶς ἁ Βτετμαμένου. Ἐπεὶ οὖν ὑπόκειται τὸ ἀποτέμνον ἐπίπεδον ὀρθὸν εἶμεν ποτὶ τὸν ἄξονα, ἁ τομὰ κύκλος ἐστί, διάμετρος δὲ αὐτοῦ ἁ ΓΑ. Ἀπὸ δὲ τοῦ κύκλου τούτου κύλινδρος ἔστω ἄξονα ἔχων τὰν Β△· πεσεῖται δὲ ἁ ἐπιφάνεια αὐτοῦ ἐκτὸς τοῦ τμάματος, ἐπεί ἐστιν ἤτοι κωνοειδὲς ἢ σφαιροειδὲς μὴ μεῖζον τοῦ ἡμίσεος τοῦ σφαιροειδέος. Τοῦ δὴ κυλίνδρου τούτου ἀεὶ δίχα τεμνομένου ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα ἐσσεῖταί ποτε τὸ καταλειπόμενον ἔλασσον τοῦ προτεθέντος στερεοῦ μεγέθεος ἔστω δὴ τὸ καταλελειμμένον

199
ἀπ᾿ αὐτοῦ κύλινδρος ὁ ἔχων βάσιν  τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν Ε△ ἐλάσσων τοῦ προτεθέντος στερεοῦ μεγέθεος. Διαιρήσθω δὴ ἁ Β△ ἐς τὰς ἴσας τᾷ Ε△ κατὰ τὰ Ρ, Ο, Π, Ξ, καὶ ἀπὸ τᾶν διαιρέσιων ἄχθων εὐθεῖαι παρὰ τὰν ΑΓ ἔστε ποτὶ τὰν τοῦ κώνου τομάν, ἀπὸ δὲ τᾶν ἀχθεισᾶν ἐπίπεδα ἀνεστακέτω ὀρθὰ ποτὶ τὰν Β△ ἐσσοῦνται δὴ αἱ τομαὶ κύκλοι τὰ κέντρα ἔχοντες ἐπὶ τᾶς Β△. Ἀφʼ ἑκάστου δὴ τῶν κύκλων δύο κύλινδροι ἀναγεγράφθων ἑκάτερος ἔχων ἄξονα ἴσον τῷ Ε△, ὁ μὲν ἐπὶ τὰ αὐτὰ τοῦ κύκλου, ἐφʼ ἅ ἐστι τὸ △, ὁ δὲ ἐπὶ τὰ αὐτά, ἐφʼ ἅ ἐστι τὸ Β· ἐσσεῖται δή τι ἐν τῷ τμάματι σχῆμα στερεὸν ἐγγεγραμμένον ἐκ τῶν κυλίνδρων συγκείμενον τῶν ἐπὶ τὰ αὐτὰ ἀναγραφέντων, ἐφʼ ἅ ἐστι τὸ △, καὶ ἀλλο περιγεγραμμένον συγκείμενον ἐκ τῶν κυλίνδρων τῶν ἐπὶ τὰ αὐτὰ ἀναγραφέντων, ἐφʼ ἃ τὸ Β ἐστίν. Λοιπὸν δέ ἐστι δεῖξαι ὅτι τὸ περιγεγραμμένον τοῦ ἐγγεγραμμένου ὑπερέχει ἐλάσσονι τοῦ προτεθέντος στερεοῦ μεγέθεος. Ἕκαστος δὴ τῶν κυλίνδων τῶν ἐν τῷ ἐγγεγραμμένῳ σχήματι ἴσος ἐστὶ τῷ κυλίνδρῳ τῷ ἀπὸ τοῦ αὐτοῦ κύκλου ἀναγραφομένῳ ἐπὶ τὰ αὐτὰ τῷ Β, ὡς ὁ μὲν ΘΗ τῷ Θl, ὁ δὲ ΚΛ τῷ ΚΜ, καὶ οἱ ἄλλοι ὡσαύτως καὶ πάντες δὴ οἱ κύλινδροι πάντεσσιν ἴσοι ἐντί. Δῆλον οὖν ὅτι τὸ περιγεγραμμένον σχῆμα τοῦ ἐγγεγραμμένου ὑπερέχει τῷ κυλίνδρῳ τῷ βάσιν ἔχοντι τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν Ε△ οὗτος δέ ἐστιν ἐλάσσων τοῦ προτεθέντος στερεοῦ μεγέθεος.