De conoidibus et sphaeroidibus

Archimedes

Archimedes. Archimède, Volume 1. Mugler, Charles, editor. Paris: Les Belles Lettres, 1970.

200

Τμάματος δοθέντος ὁποτερουοῦν τῶν κωνοειδέων ἀποτετμαμένου ἐπιπέδῳ μὴ ὀρθῷ ποτὶ τὸν ἄξονα ἢ τῶν σφαιροειδέων ὁποτερουοῦν μὴ μείζονος ἡμίσεος τοῦ σφαιροειδέος ὁμοίως ἀποτετμαμένου δυνατόν ἐστιν εἰς τὸ τμᾶμα σχῆμα στερεὸν ἐγγράψαι καὶ ἄλλο περιγράψαι ἐκ κυλίνδρων τόμων ὕψος ἴσον ἐχόντων συγκείμενον, ὥστε τὸ περιγραφὲν σχῆμα τοῦ ἐγγραφομένου ὑπερέχειν ἐλάσσονι παντὸς τοῦ προτεθέντος στερεοῦ μεγέθεος.

Δεδόσθω τμᾶμα, οἷον εἴρηται, τμαθέντος δὲ τοῦ σχήματος ἐπιπέδῳ ἄλλῳ διὰ τοῦ ἄξονος ὀρθῷ ποτὶ τὸ ἐπίπεδον τὸ ἀποτετμακὸς τὸ δοθὲν τμᾶμα τοῦ μὲν σχήματος τομὰ ἔστω ἁ ΑΒΓ κώνου τομά, τοῦ δὲ ἐπιπέδου τοῦ ἀποτετμακότος τὸ τμᾶμα ἁ ΓΑ εὐθεῖα. Ἐπεὶ οὖν ὑπόκειται τὸ ἐπίπεδον τὸ ἀποτετμακὸς τὸ τμᾶμα μὴ εἶμεν ὀρθὸν ποτὶ τὸν

201
ἄξονα, ἁ τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἁ ΑΓ. Ἔστω δὴ παράλληλος τᾷ ΑΓ ἁ ΦΥ ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς, ἐπιψαυέτω δὲ κατὰ τὸ Β, καὶ ἀπὸ τᾶς ΦΥ ἀνεστακέτω ἐπίπεδον παράλληλον τῷ κατὰ τὰν ΑΓ· ἐπιψαύσει δὲ τοῦτο τοῦ σχήματος κατὰ τὸ Β· καὶ εἰ μέν ἐστι τὸ τμᾶμα ὀρθογωνίου κωνοειδέος, ἀπὸ τοῦ Β ἄχθω παρὰ τὸν ἄξονα ἁ Β△, εἰ δὲ ἀμβλυγωνίου, ἀπὸ τᾶς κορυφᾶς τοῦ κώνου τοῦ περιέχοντος τὸ κωνοειδὲς εὐθεῖα ἀχθεῖσα ἐπὶ τὸ Β ἐκβεβλήσθω ἁ Β△, εἰ δὲ σφαιροειδέος, ἐπὶ τὸ Β ἀχθεῖσα εὐθεῖα ἀπολελάφθω ἁ Β△· δῆλον δὲ ὅτι τέμνει ἁ Β△ δίχα τὰν ΑΓ· ἐσσεῖται οὖν τὸ μὲν Β κορυφὰ τοῦ τμάματος, ἁ δὲ Β△ ἄξων. Ἔστιν δή τις ὀξυγωνίου κώνου τομὰ περὶ διάμετρον τὰν ΑΓ, καὶ γραμμὰ ἁ Β△ ἀπὸ τοῦ κέντρου ἀνεστάκουσα ἐν ὀρθῷ ἐπιπέδῳ ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐστιν ἁ τοῦ ὀξυγωνίου κώνου τομά, διὰ τᾶς ἑτέρας διαμέτρου ἐόντος τοῦ ἐπιπέδου δυνατὸν οὖν ἐστιν κύλινδρον εὑρεῖν ἄξονα ἔχοντα τὰν Β△, οὗ ἐν τᾷ ἐπιφανείᾳ ἐσσεῖται ἁ τοῦ ὀξυγωνίου κώνου τομὰ περὶ διάμετρον τὰν ΑΓ· πεσεῖται δὲ ἁ ἐπιφάνεια αὐτοῦ ἐκτὸς τοῦ τμάματος, ἐπεί ἐστιν ἤτοι κωνοειδέος ἢ σφαιροειδέος τμᾶμα καὶ οὐ μεῖζόν ἐστιν ἡμίσεος τοῦ σφαιροειδέος. Ἐσσεῖται δή τις κυλίνδρου τόμος βάσιας μὲν ἔχων τὰν τοῦ ὀξυγωνίου κώνου τομὰν τὰν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν Β△ τοῦ οὖν τόμου δίχα τεμνομένου ἐπιπέδοις παραλλήλοις τῷ ἐπιπέδῳ τῷ κατὰ τὰν ΑΓ ἐσσεῖται τὸ καταλειπόμενον ἔλασσον τοῦ προτεθέντος στερεοῦ μεγέθεος. Ἔστω τόμος βάσιν μὲν ἔχων τὰν τοῦ ὀξυγωνίου κώνου τομὰν τὰν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν Ε△, ἐλάσσων τοῦ προτεθέντος στερεοῦ μεγέθεος. Διῃρήσθω δὴ ἁ △Β ἐς τὰς ἴσας τᾷ △Ε, καὶ ἀπὸ τᾶν διαιρέσιων ἄχθων
202
εὐθεῖαι παρὰ τὰν ΑΓ ἔστε ποτὶ τὰν τοῦ κώνου τομάν, ἀπὸ δὲ τᾶν ἀχθεισᾶν ἐπίπεδα ἀνεστακότων παράλληλα τῷ κατὰ τὰν ΑΓ ἐπιπέδῳ τέμνοντι δὴ ταῦτα τὰν ἐπιφάνειαν τοῦ τμάματος, καὶ ἐσσοῦνται ὀξυγωνίων κώνων τομαὶ ὁμοῖαι τᾷ περὶ τὰν ΑΓ διάμετρον, ἐπεὶ παράλληλά ἐντι τὰ ἐπίπεδα. Ἀφʼ ἑκάστας δὴ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς ἀναγεγράφθων κυλίνδρου τόμοι δύο, ὁ μὲν ἐπὶ τὰ αὐτὰ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς τῷ △, ὁ δὲ ἐπὶ τὰ αὐτὰ τῷ Β, ἄξονα ἔχοντες ἴσον τῷ △Ε· ἐσσοῦνται δή τινα σχήματα στερεά, τὸ μὲν ἐγγεγραμμένον ἐν τῷ τμάματι, τὸ δὲ περιγεγραμμένον, ἐκ κυλίνδρου τόμων ἴσον ὕψος ἐχόντων συγκείμενα. Λοιπὸν δέ ἐστι δεῖξαι ὅτι τὸ περιγεγραμμένον σχῆμα τοῦ ἐγγεγραμμένου ἐλάσσονι ὑπερέχει τοῦ προτεθέντος στερεοῦ μεγέθεος, Δειχθήσεται δὲ ὁμοίως τῷ προτέρῳ ὅτι τὸ περιγεγραμμένον σχῆμα τοῦ ἐγγεγραμμένου ὑπερέχει τῷ τόμῳ τῷ βάσιν μὲν ἔχοντι τὰν τοῦ ὀξυγωνίου κώνου τομὰν τὰν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν Ε△· οὗτος δέ ἐστιν ἐλάσσων τοῦ προτεθέντος στερεοῦ μεγέθεος.

Τούτων προγεγραμμένων ἀποδεικνύωμες τὰ προβεβλημένα τῶν σχημάτων.

Πᾶν τμᾶμα ὀρθογωνίου κωνοειδέος ἀποτετμαμένον ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα ἡμιόλιόν ἐστι τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν.

Ἔστω γὰρ τμᾶμα ὀρθογωνίου κωνοειδέος ἀποτετμαμένον ὀρθῷ ἐπιπέδῳ ποτὶ τὸν ἄξονα, καὶ τμαθέντος αὐτοῦ

203
ἐπιπέδῳ ἄλλῳ διὰ τοῦ ἄξονος τᾶς μὲν ἐπιφανείας τομὰ ἔστω ἁ ΑΒΓ ὀρθογωνίου κώνου τομά, τοῦ δὲ ἐπιπέδου τοῦ ἀποτέμνοντος τὸ τμᾶμα ἁ ΓΑ εὐθεῖα, ἄξων δὲ ἔστω τοῦ τμάματος ἁ Β△, ἔστω δὲ καὶ κῶνος τὰν αὐτὰν βάσιν ἔχων τῷ τμάματι καὶ ἄξονα τὸν αὐτόν, οὗ κορυφὰ τὸ Β. Δεικτέον ὅτι τὸ τμᾶμα τοῦ κωνοειδέος ἡμιόλιόν ἐστι τοῦ κώνου τούτου.

Ἐκκείσθω γὰρ κῶνος ὁ Ψ ἡμιόλιος ἐὼν τοῦ κώνου, οὗ βάσις ὁ περὶ διάμετρον τὰν ΑΓ, ἄξων δὲ ἁ Β△, ἔστω δὲ καὶ κύλινδρος βάσιν μὲν ἔχων τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν Β△· ἐσσεῖται οὖν ὁ Ψ κῶνος ἡμίσεος τοῦ κυλίνδρου ἐπείπερ ἡμιόλιός ἐστιν ὁ Ψ κῶνος τοῦ αὐτοῦ κώνου· λέγω ὅτι τὸ τμᾶμα τοῦ κωνοειδέος ἴσον ἐστὶ τῷ Ψ κώνῳ.

Εἰ γὰρ μή ἐστιν ἴσον, ἤτοι μεῖζόν ἐντι ἢ ἔλασσον. Ἔστω δὴ πρότερον, εἰ δυνατόν, μεῖζον. Ἐγγεγράφθω δὴ σχῆμα στερεὸν εἰς τὸ τμᾶμα, καὶ ἄλλο περιγεγράφθω ἐκ κυλίνδρων ὕψος ἴσον ἐχόντων συγκείμενον, ὥστε τὸ περιγραφὲν σχῆμα τοῦ ἐγγραφέντος ὑπερέχειν ἐλάσσονι

204
ἢ ἁλίκῳ ὑπερέχει τὸ τοῦ κωνοειδέος τμᾶμα τοῦ Ψ κώνου, καὶ ἔστω τῶν κυλίνδρων, ἐξ ὧν σύγκειται τὸ περιγραφὲν σχῆμα, μέγιστος μὲν ὁ βάσιν ἔχων τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν Ε△, ἐλάχιστος δὲ ὁ βάσιν μὲν ἔχων τὸν κύκλον τὸν περὶ διάμετρον τὰν ΣΤ, ἄξονα δὲ τὰν Βl, τῶν δὲ κυλίνδρων, ἐξ ὧν σύγκειται τὸ ἐγγραφὲν σχῆμα, μέγιστος μὲν ἔστω ὁ βάσιν ἔχων τὸν κύκλον τὸν περὶ διάμετρον τὰν ΚΛ, ἄξονα δὲ τὰν △Ε, ἐλάχιστος δὲ ὁ βάσιν μὲν ἔχων τὸν κύκλον τὸν περὶ διάμετρον τὰν ΣΤ, ἄξονα δὲ τὰν Θl, ἐκβεβλήσθω δὲ τὰ ἐπίπεδα πάντων τῶν κυλίνδρων ποτὶ τὰν ἐπιφάνειαν τοῦ κυλίνδρου τοῦ βάσιν ἔχοντος τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν Β△· ἐσσεῖται δὴ ὁ ὅλος κύλινδρος διῃρημένος εἰς κυλίνδρους τῷ μὲν πλήθει ἴσους τοῖς κυλίνδροις τοῖς ἐν τῷ περιγεγραμμένῳ σχήματι, τῷ δὲ μεγέθει ἴσους τῷ μεγίστῳ αὐτῶν. Καὶ ἐπεὶ τὸ περιγεγραμμένον σχῆμα περὶ τὸ τμᾶμα ἐλάσσονι ὑπερέχει τοῦ ἐγγεγραμμένου σχήματος ἢ τὸ τμᾶμα τοῦ κώνου, δῆλον ὅτι καὶ τὸ ἐγγεγραμμένον
205
σχῆμα ἐν τῶ τμάματι μεῖζόν ἐστι τοῦ Ψ κώνου. Ὁ δὴ πρῶτος κύλινδρος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ὁ ἔχων ἄξονα τὰν △Ε ποτὶ τὸν πρῶτον κύλινδρον τῶν ἐν τῷ ἐγγεγραμμένῳ σχήματι τὸν ἔχοντα ἄξονα τὰν △Ε τὸν αὐτὸν ἔχει λόγον, ὃν ἁ △Α ποτὶ τὰν ΚΕ δυνάμει· οὗτος δέ ἐστιν ὁ αὐτὸς τῷ ὃν ἔχει ἁ Β△ ποτὶ τὰν ΒΕ καὶ τῷ ὃν ἔχει ἁ △Α ποτὶ τὰν ΕΞ. Ὁμοίως δὲ δειχθήσεται καὶ ὁ δεύτερος κύλινδρος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ὁ ἔχων ἄξονα τὰν ΕΖ ποτὶ τὸν δεύτερον κύλινδρον τῶν ἐν τῷ ἐγγεγραμμέῳ σχήματι τὸν αὐτὸν ἔχειν λόγον, ὃν ἁ ΠΕ, τουτέστιν ἁ △Α, ποτὶ τὰν ΖΟ, καὶ τῶν ἄλλων κυλίνδρων ἕκαστος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ἄξονα ἐχόντων ἴσον τᾷ △Ε ποτὶ ἕκαστον τῶν κυλίνδρων τῶν ἐν τῷ ἐγγεγραμμένῳ σχήματι ἄξονα ἐχόντων τὸν αὐτὸν ἕξει τοῦτον τὸν λόγον, ὃν ἁ ἡμίσεια τᾶς διαμέτρου τᾶς βάσιος αὐτοῦ ποτὶ τὰν ἀπολελαμμέναν ἀπʼ αὐτᾶς μεταξὺ τᾶν ΑΒ, Β△ εὐθειᾶν · καὶ πάντες οὖν οἱ κύλινδροι οἱ ἐν τῷ κυλίνδρῳ, οὗ βάσις μέν ἐστιν ὁ κύκλος ὁ περὶ διάμετρον τὰν ΑΓ, ἄξων δὲ ἐστὶν ἁ △Β εὐθεῖα, ποτὶ πάντας τοὺς κυλίνδρους τοὺς ἐν τῷ ἐγγεγραμμένῳ σχήματι τὸν αὐτὸν ἑξοῦντι λόγον, ὃν πᾶσαι αἱ εὐθεῖαι αἱ ἐκ τῶν κέντρων τῶν κύκλων, οἵ ἐντι βάσιες τῶν εἰρημένων κυλίνδρων, ποτὶ πάσας τὰς εὐθείας τὰς ἀπολελαμμένας ἀπʼ αὐτᾶν μεταξὺ τᾶν ΑΒ, Β△. Αἰ δὲ εἰρημέναι εὐθεῖαι τῶν εἰρημένων χωρὶς τᾶς Α△ μείζονές ἐντι ἢ διπλάσιαι· ὥστε καὶ οἱ κύλινδροι πάντες οἱ ἐν τῷ
206
κυλίνδρῳ, οὗ ἄξων ἁ △Β, μείζονές ἐντι ἢ διπλάσιοι τοῦ ἐγγεγραμμένου σχήματος · πολλῷ ἄρα καὶ ὁ ὅλος κύλινδρος, οὗ ἄξων ἁ △Β, μείζων ἐντὶ ἢ διπλασίων τοῦ ἐγγεγραμμένου σχήματος. Τοῦ δὲ Ψ κώνου ἦν διπλασίων · ἔλασσον ἄρα τὸ ἐγγεγραμμένον σχῆμα τοῦ Ψ κώνου ὅπερ ἀδύνατον ἐδείχθη γὰρ μεῖζον. Οὐκ ἄρα ἐστὶν μεῖζον τὸ κωνοειδὲς τοῦ Ψ κώνου. Ὁμοίως δὲ οὐδὲ ἔλασσον· πάλιν γὰρ ἐγγεγράφθω τὸ σχῆμα καὶ περιγεγράφθω, ὥστε ὑπερέχειν ἕκαστον ἐλάσσονι ἢ ἁλίκῳ ὑπερέχει ὁ Ψ κῶνος τοῦ κωνοειδέος, καὶ τὰ ἄλλα τὰ αὐτὰ τοῖς πρότερον κατεσκευάσθω. Ἐπεὶ οὖν ἔλασσόν ἐστι τὸ ἐγγεγραμμένον σχῆμα τοῦ τμάματος, καὶ τὸ ἐγγραφὲν τοῦ περιγραφέντος ἐλάσσονι λείπεται ἢ τὸ τμᾶμα τοῦ Ψ κώνου, δῆλον ὡς ἔλασσόν ἐστι τὸ περιγραφὲν σχῆμα τοῦ Ψ κώνου. Πάλιν δὲ ὁ πρῶτος κύλινδρος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ὁ ἔχων ἄξονα τὰν △Ε ποτὶ τὸν πρῶτον κύλινδρον τῶν ἐν τῷ περιγεγραμμένῳ σχήματι τὸν τὸν αὐτὸν ἔχοντα ἄξονα τὰν Ε△ τὸν αὐτὸν ἔχει λόγον, ὃν τὸ ἀπὸ τᾶς Α△ τετράγωνον ποτὶ τὸ αὐτό, ὁ δὲ δεύτερος κύλινδρος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ὁ ἔχων ἄξονα τὰν ΕΖ ποτὶ τὸν δεύτερον κύλινδρον τῶν ἐν τῷ περιγεγραμμένῳ σχήματι τὸν ἔχοντα ἄξονα τὰν ΕΖ τὸν αὐτὸν ἔχει λόγον, ὃν ἁ △Α ποτὶ τὰν ΚΕ δυνάμει οὗτος δέ ἐστιν ὁ αὐτὸς τῷ ὃν ἔχει ἁ Β△ ποτὶ τὰν ΒΕ, καὶ τῷ ὃν ἔχει ἁ △Α ποτὶ τὰν ΕΞ καὶ τῶν ἄλλων κυλίνδρων ἕκαστος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ἄξονα ἐχόντων ἴσον τᾷ △Ε ποτὶ ἕκαστον τῶν κυλίνδρων τῶν ἐν τῷ περιγιγραμμένῳ σχήματι
207
ἄξονα ἐχόντων τὸν αὐτὸν ἕξει τοῦτον τὸν λόγον, ὃν ἁ ἡμίσεια τᾶς διαμέτρου τᾶς βάσιος αὐτοῦ ποτὶ τὰν ἀπολελαμμέναν ἀπʼ αὐτᾶς μεταξὺ τᾶν ΑΒ, Β△ εὐθειᾶν καὶ πάντες οὖν οἱ κύλινδροι οἱ ἐν τῷ ὅλῳ κυλίνδρῳ, οὗ ἄξων ἐστὶν ἁ Β△ εὐθεῖα, ποτὶ πάντας τοὺς κυλίνδρους τοὺς ἐν τῷ περιγεγραμμένῳ σχήματι τὸν αὐτὸν ἑξοῦντι λόγον, ὃν πᾶσαι αἱ εὐθεῖαι ποτὶ πάσας τὰς εὐθείας. Αἱ δὲ εὐθεῖαι πᾶσαι αἱ ἐκ τῶν κέντρων τῶν κύκλων, οἳ βάσιές ἐντι τῶν κυλίνδρων, τᾶν εὐθειᾶν πασᾶν τᾶν ἀπολελαμμενᾶν ἀπʼ αὐτᾶν σὺν τᾷ Α△ ἐλάσσονές ἐντι ἢ διπλάσιαι· δῆλον οὖν ὅτι καὶ οἱ κύλινδροι πάντες οἱ ἐν τῷ ὅλῳ κυλίνδρῳ ἐλάσσονές ἐντι ἢ διπλάσιοι τῶν κυλίνδρων τῶν ἐν τῷ περιγεγραμμένῳ σχήματι · ὁ ἄρα κύλινδρος ὁ βάσιν ἔχων τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν Β△, ἐλάσσων ἐστὶν ἢ διπλασίων τοῦ περιγεγραμμένου σχήματος. Οὐκ ἔστι δέ, ἀλλὰ μείζων ἢ διπλάσιος τοῦ γὰρ Ψ κώνου διπλασίων ἐστί, τὸ δὲ περιγεγραμμένον σχῆμα ἔλαττον ἐδείχθη τοῦ Ψ κώνου. Οὐκ ἄρα ἐστὶν οὐδὲ ἔλασσον τὸ τοῦ κωνοειδέος τμᾶμα τοῦ Ψ κώνου. Ἐδείχθη δὲ ὅτι οὐδὲ μεῖζον ἡμιόλιον ἄρα ἐστὶν τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν.

Καὶ τοίνυν εἴ κα μὴ ὀρθῷ ποτὶ τὸν ἄξονα ἐπιπέδῳ ἀποτμαθῇ τὸ τμᾶμα ἀπὸ τοῦ ὀρθογωνίου κωνοειδέος, ὁμοίως ἡμιόλιον ἐσσεῖται τοῦ ἀποτμάματος τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν.

Ἔστω τμᾶμα ὀρθογωνίου κωνοειδέος ἀποτετμαμένον, ὡς εἴρηται, καὶ τμαθέντος αὐτοῦ ἐπιπέδῳ διὰ τοῦ ἄξονος

208
ὀρθῷ ποτὶ τὸ ἐπίπεδον τὸ ἀποτετμακὸς τὸ τμᾶμα τοῦ μὲν σχήματος τομὰ ἔστω ἁ ΑΒΓ ὀρθογωνίου κώνου τομά, τοῦ δὲ ἐπιπέδου τοῦ ἀποτετμακότος τὸ τμᾶμα ἁ ΑΓ εὐθεῖα, παρὰ δὲ τὰν ΑΓ ἁ ΦΥ ἐπιψαύουσα τᾶς τοῦ ὀρθογωνίου κώνου τομᾶς κατὰ τὸ Β, καὶ ἁ Β△ ἀχθῶ παρὰ τὸν ἄξονα τεμεῖ δὴ οὕτα δίχα τὰν ΑΓ ἀπὸ δὲ τᾶς ΦΥ ἐπίπεδον ἀνεστακέτω παράλληλον τῷ κατὰ τὰν Α△ ἐπιψαύσει δὴ τοῦτο τὸ κωνοειδὲς κατὰ τὸ Β, καὶ ἐσσεῖται τοῦ τμάματος κορυφὰ τὸ Β σαμεῖον, ἄξων δὲ ἁ Β△. Ἐπεὶ οὖν τὸ ἐπίπεδον τὸ κατὰ τὰν ΑΓ οὐ ποτʼ ὀρθὰς ἐὸν τῷ ἄξονι τετμάκει τὸ κωνοειδές, ἁ τομά ἐστιν ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἁ μείζων ἁ ΑΓ. Ἐούσας δὴ ὀξυγωνίου κώνου τομᾶς περὶ διάμετρον τὰν ΓΑ καὶ γραμμᾶς τᾶς Β△, ἅ ἐστιν ἀπὸ τοῦ κέντρου τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς ἀνεστάκουσα ἐν ἐπιπέδῳ ὀρθῷ ἀνεστακότι ἀπὸ τᾶς διαμέτρου ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐστιν ἁ τοῦ ὀξυγωνίου κώνου τομά, δυνατόν ἐστι κύλινδρον εὑρεῖν τὸν ἄξονα ἔχοντα ἐπʼ εὐθείας τᾷ Β△, οὗ ἐν τᾷ ἐπιφανείᾳ ἐσσεῖται ἁ τοῦ ὀξυγωνίου κώνου τομά δυνατὸν δέ ἐστι καὶ κῶνον εὑρεῖν κορυφὰν ἔχοντα τὸ Β σαμεῖον, οὗ ἐν τᾷ ἐπιφανείᾳ ἁ τοῦ ὀξυγωνίου κώνου τομὰ ἐσσεῖται ὥστε ἐσσεῖται τόμος κυλίνδρου τις βάσιν ἔχων τὰν τοῦ ὀξυγωνίου κώνου τομὰν τὰν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν Β△, καὶ ἀπότμαμα κώνου βάσιν ἔχον τὰν αὐτὰν τῷ τε τόμῳ καὶ τῷ τμάματι, ἄξονα δὲ τὸν αὐτόν. Δεικτέον, ὅτι τὸ τοῦ κωνοειδέος τμᾶμα ἡμιόλιόν ἐστι τούτου τοῦ κώνου.

Ἔστω δὴ ὁ Ψ κῶνος ἡμιόλιος τοῦ ἀποτμάματος τούτου ἐσσεῖται δὴ ὁ τόμος τοῦ κυλίνδρου ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν διπλάσιος τοῦ Ψ

209
κώνου· οὗτος γὰρ ἡμιόλιός ἐστι τοῦ ἀποτμάματος τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν, τὸ δὲ ἀπότμαμα τοῦ κώνου τὸ εἰρημένον τρίτον μέρος ἐστὶ τοῦ τόμου τοῦ κυλίνδρου τοῦ βάσιν μὲν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν. Ἀναγκαῖον δή ἐστι τὸ τοῦ κωνοειδέος τμᾶμα ἴσον εἶμεν τῷ Ψ κώνῳ.

Εἰ γὰρ μή ἐστιν ἴσον, ἤτοι μεῖζόν ἐστι ἤ ἔλασσον. Ἔστω δὴ πρότερον, εἱ δυνατόν, μεῖζον. Ἐγγεγράφθω δή τι εἰς τὸ τμᾶμα σχῆμα στερεόν, καὶ ἄλλο περιγεγράφθω ἐκ κυλίνδρων τόμων ὕψος ἴσον ἐχόντων συγκείμενα, ὥστε τὸ περιγραφὲν σχῆμα τοῦ ἐγγραφέντος ὑπερέχειν ἐλάσσονι ἢ ἁλίκῳ ὑπερέχει τὸ τοῦ κωνοειδέος τμᾶμα τοῦ Ψ κώνου, καὶ διάχθω τὰ ἐπίπεδα τῶν τόμων ἔστε ποτὶ τὰν ἐπιφάνειαν τοῦ τόμου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν, Πάλιν δὴ ὁ πρῶτος τόμος τῶν ἐν τῷ ὅλῳ τόμῳ ὁ ἔχων ἄξονα τὰν △Ε ποτὶ τὸν πρῶτον τόμον τῶν ἐν τῷ ἐγγεγραμμένῳ σχήματι τὸν ἔχοντα ἄξονα τὰν △Ε τὸν ἀυτὸν ἔχει λόγον, ὃν τὸ ἀπὸ τᾶς Α△ τετράγωνον ποτὶ τὸ ἀπὸ τᾶς ΚΕ οἱ γὰρ τόμοι οἱ ἴσον ὕψος ἔχοντες

210
τὸν αὐτὸν ἔχοντι λόγον ποτʼ ἀλλάλους ταῖς βάσεσιν, αἱ δὲ βάσιες αὐτῶν, ἐπεὶ ὁμοῖαί ἐντι ὀξυγωνίων κώνων τομαί, τὸν αὐτὸν ἔχοντι λόγον, ὃν αἱ ὁμόλογοι διάμετροι αὐτῶν δυνάμει, ἡμίσειαι δέ ἐντι τῶν ὁμολόγων διαμέτρων αἱ Α△, ΚΕ. Ὃν δὲ λόγον ἔχει ἁ Α△ ποτὶ τὰν ΚΕ δυνάμει, τοῦτον ἔχει ἁ Β△ ποτὶ τὰν ΒΕ μάκει, ἐπεὶ ἁ μὲν Β△ παρὰ τὰν διάμετρόν ἐστιν, αἱ δὲ Α△, ΚΕ παρὰ τὰν κατὰ τὸ Β ἐπιψαύουσαν· ὃν δὲ λόγον ἔχει ἁ Β△ ποτὶ τὰν ΒΕ, τοῦτον ἔχει ἁ Α△ ποτὶ τὰν ΕΞ ἕξει οὖν ὁ πρῶτος τόμος τῶν ἐν τῷ ὅλῳ τόμῳ ποτὶ τὸν πρῶτον τόμον τῶν ἐν τῷ ἐγγεγραμμένηῳ σχήματι τὸν αὐτὸν λόγον, ὃν ἁ Α△ ποτὶ τὰν ΕΞ καὶ τῶν ἄλλων τόμων ἕκαστος τῶν ἐν τῷ ὅλῳ τόμῳ ἄξονα ἴσον ἐχόντων τᾷ △Ε ποτὶ ἕκαστον τῶν τόμων τῶν ἐν τῷ ἐγγεγραμμένῳ σχήματι τὸν αὐτὸν ἄξονα ἐχόντων τὸν αὐτὸν ἔχει λόγον, ὃν ἁ ἡμίσεια τᾶς διαμέτρου τᾶν βασίων αὐτοῦ ποτὶ τὰν ἀπολελαμμέναν ἀπʼ αὐτᾶς μεταξὺ τᾶν ΑΒ, Β△. Δειχθήσεται οὖν ὁμοίως τοῖς πρότερον τὸ μὲν ἐγγεγραμμένον
211
σχῆμα μεῖζον ἐὸν τοῦ Ψ κώνου, ὁ δὲ τοῦ κυλίνδρου τόμος ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν μείζων ἐὼν ἢ διπλασίων τοῦ ἐγγεγραμμένου σχήματος ὥστε καὶ τοῦ Ψ κώνου μείζων ἐσσεῖται ἢ διπλασίων. Οὐκ ἔστι δέ, ἀλλὰ διπλασίων. Οὐκ ἄρα ἐστὶ μεῖζον τὸ τοῦ κωνοειδέος τμᾶμα τοῦ Ψ κώνου. Διὰ τῶν αὐτῶν δὲ δειχθήσεται ὅτι οὐδὲ ἔλασσόν ἐστιν δῆλον οὖν ὅτι ἴσον. Ἡμιόλιον ἄρα ἐστὶ τὸ τοῦ κωνοειδέος τμᾶμα τοῦ ἀποτμάματος τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν.

Εἴ κα τοῦ ὀρθογωνίου κωνοειδέος δύο τμάματα ἀποτμαθέωντι ἐπιπέδοις, τὸ μὲν ἕτερον ὀρθῷ ποτὶ τὸν ἄξονα, τὸ δὲ ἕτερον μὴ ὀρθῷ, ἔωντι δὲ οἱ τῶν τμαμάτων ἄξονες ἴσοι, ἴσα ἐσσοῦνται τὰ τμάματα.

Ἀποτετμάσθω γὰρ ὀρθογωνίου κωνοειδέος δύο τμάματα, ὡς εἴρηται, τμαθέντος δὲ τοῦ κωνοειδέος ἐπιπέδῳ διὰ τοῦ ἄξονος καὶ ἄλλῳ ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα τοῦ μὲν κωνοειδέος ἔστω τομὰ ἁ ΑΒΓ ὀρθογωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἁ Β△, τῶν δὲ ἐπιπέδων αἱ ΑΖ, ΕΓ εὐθεῖαι, τοῦ μὲν ὀρθοῦ ποτὶ τὸν ἄξονα ἁ ΕΓ, τοῦ δὲ μὴ ὀρθοῦ ἁ ΖΑ, ἄξονες δὲ ἔστων τῶν τμαμάτων αἱ ΒΘ, ΚΛ ἴσαι ἀλλάλαις, κορυφαὶ δὲ τὰ Β, Λ δεικτέον ὅτι ἴσον ἐστὶ τὸ τμᾶμα τοῦ κωνοειδέος, οὗ κορυφὰ τὸ Β, τῷ τμάματι τοῦ κωνοειδέος, οὗ κορυφὰ τὸ Λ.

Ἐπεὶ γὰρ ἀπὸ τᾶς αὐτᾶς ὀρθογωνίου κώνου τομᾶς δύο τμάματά ἐντι ἀφῃρημένα τό τε ΑΛΖ καὶ τὸ ΕΒΓ, καί ἐντι αὐτῶν αἱ διάμετροι ἴσαι αἱ ΚΛ, ΒΘ, ἴσον ἐστὶ τὸ τρίγωνον

212
τὸ ΑΛΚ τῷ ΕΘΒ δέδεικται γὰρ ὅτι τὸ ΑΛΖ τρίγωνον ἴσον ἐστὶ τῷ ΕΒΓ τριγώνῳ. Ἀχθω δὴ ἁ ΑΧ κάθετος ἐπὶ τὰν ΚΛ ἐκβληθεῖσαν. Καὶ ἐπεὶ ἴσαι αἱ ΒΘ, ΚΛ, ἴσαι καὶ αἱ ΕΘ, ΑΧ. Ἔστω δὴ ἐν τῷ τμάματι, οὗ κορυφὰ τὸ Β, κῶνος ἐγγεγραμμένος τὰν αὐτὰν βάσιν ἔχων τῷ τμάματι καὶ ἄξονα τὸν αὐτόν, ἐν δὲ τῷ τμάματι, οὗ κορυφὰ τὸ Λ, ἀπότμαμα κώνου τὰν αὐτὰν βάσιν ἔχον τῷ τμάματι καὶ ἄξονα τὸν αὐτόν, ἀχθῶ δὲ ἀπὸ τοῦ Λ κάθετος ἐπὶ τὰν ΑΖ ἁ ΛΝ · ἐσσεῖται δὴ αὕτα ὕψος τοῦ ἀποτμάματος τοῦ κώνου, οὗ κορυφὰ τὸ Λ. Τὸ δὲ ἀπότμαμα τοῦ κώνου, οὗ κορυφὰ τὸ Λ, καὶ ὁ κῶνος, οὗ κορυφὰ τὸ Β, τὸν συγκείμενον λόγον ἔχοντι ποτʼ ἄλλαλα ἔκ τε τοῦ τῶν βασίων λόγου καὶ ἐκ τοῦ τῶν ὑψέων τὸν συγκείμενον οὖν ἔχοντι λόγον ἔκ τε τοῦ ὃν ἔχει τὸ περιεχόμενον χωρίον ὑπὸ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς τᾶς περὶ διάμετρον τὰν ΑΖ ποτὶ τὸν κύκλον τὸν περὶ διάμετρον τὰν ΕΓ, καὶ ἐκ τοῦ ὃν ἔχει ἁ ΝΛ ποτὶ τὰν ΒΘ. Τὸ δὲ χωρίον τὸ περιεχόμενον ὑπὸ τᾶς τοῦ ὀξυγωνίου
213
κώνου τομᾶς ποτὶ τὸν αὐτὸν κύκλον τὸν αὐτὸν ἔχει λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν διαμέτρων ποτὶ τὸ τετράγωνον τὸ ἀπὸ τᾶς ΕΓ ἔχει καὶ τὸ ἀπότμαμα τοῦ κώνου, οὗ κορυφὰ τὸ Λ, πρὸς τὸν κῶνον, οὗ κορυφὰ τὸ Β, τὸν συγκείμενον λόγον ἔκ τε τοῦ ὃν ἔχει ἁ ΚΑ ποτὶ τὰν ΕΘ, καὶ τοῦ ὃν ἔχει ἁ ΝΛ ποτὶ τὰν ΒΘ ἁ μὲν γὰρ ΚΑ ἡμισέα ἐντὶ τᾶς διαμέτρου τᾶς βάσιος τᾶς τοῦ ἀποτμήματος τοῦ κώνου, οὗ κορυφὰ τὸ Λ, ἁ δὲ ΕΘ ἡμισέα τᾶς διαμέτρου τᾶς βάσεως τοῦ κώνου, αἱ δὲ ΛΝ, ΒΘ ὕψεά ἐντι αὐτῶν. Ἔχει δὲ ἁ ΛΝ ποτὶ τὰν ΒΘ τὸν αὐτὸν λόγον, ὃν καὶ ποτὶ τὰν ΚΛ, ἐπεὶ ἁ ΒΘ ἴση ἐστὶ τᾷ ΚΛ. Ἔχει δὲ καὶ ἁ ΛΝ ποτὶ τὰν ΚΛ, ὃν ἁ ΧΑ ποτὶ τὰν ΑΚ· ἔχοι οὖν κα καὶ τὸ ἀπότμαμα τοῦ κώνου ποτὶ τὸν κῶνον τὸν συγκείμενον λόγον ἔκ τε τοῦ ὃν ἔχει ἁ ΑΚ ποτὶ τὰν ΑΧ · ἴσα γάρ ἐστιν ἁ ΑΧ τᾷ ΕΘ, καὶ ἐκ τοῦ ὃν ἔχει ἀ ΛΝ ποτὶ τὰν ΒΘ. Ο δὲ ἐκ τῶν εἰρημένων λόγων, ὁ τᾶς ΑΚ ποτὶ ΑΧ, ὁ αὐτός ἐστι τῷ τᾶς ΛΚ ποτὶ ΛΝ · τὸ ἄρα ἀπότμαμα ποτὶ τὸν κῶνον λόγον ἔχει, ὃν ἁ ΛΚ ποτὶ τὰν ΛΝ, καὶ ὃν ἔχει ἁ ΛΝ ποτὶ τὰν ΒΘ. Ἴσα δὲ ἁ ΒΘ τᾷ ΚΛ δῆλον οὖν ὅτι ἴσον ἐστὶ τὸ ἀπότμαμα τοῦ κώνου, οὗ κορυφὰ τὸ Λ, τῷ κώνῳ, οὗ κορυφὰ τὸ Β. Φανερὸν οὖν ὅτι καὶ τὰ τμάματα ἴσα ἐντί, ἐπεὶ τὸ μὲν ἕτερον αὐτῶν ἡμιόλιόν ἐστι τοῦ κώνου, τὸ δὲ ἕτερον ἡμιόλιον τοῦ ἀποτμάματος τοῦ κώνου ἴσων ἐόντων.

Εἴ κα τοῦ ὀρθογωνίου κωνοειδέος δύο τμάματα ἀποτμαθέωντι ἐπιπέδοις ὁπωσοῦν ἀγμένοις, τὰ τμάματα ποτʼ ἄλλαλα τὸν αὐτὸν ἑξοῦντι λόγον τοῖς τετραγώνοις τοῖς ἀπὸ τῶν ἀξόνων αὐτῶν.

214

Ἀποτετμάσθω γὰρ τοῦ ὀρθογωνίου κωνοειδέος δύο τμάματα, ὡς ἔτυχεν, ἔστω δὲ τῷ μὲν τοῦ ἑτέρου τμάματος ἄξονι ἴσα ἁ Κ, τῷ δὲ τοῦ ἑτέρου ἴσα ἁ Λ δεικτέον ὅτι τὰ τμάματα τὸν αὐτὸν ἔχοντι λόγον ποτʼ ἄλλαλα τοῖς ἀπὸ τᾶν Κ, Λ τετραγώνοις.

Τμαθέντος δὴ τοῦ κωνοειδέος ἐπιπέδῳ διὰ τοῦ ἄξονος τοῦ τμάματος ἔστω τομὰ ἁ ΑΒΓ ὀρθογωνίου κώνου τομά, ἄξων δὲ ἁ Β△, καὶ ἀπολελάφθω ἁ Β△ τᾷ Κ ἴσα, καὶ διὰ τοῦ △ ἐπίπεδον ἐκβεβλήσθω ὀρθὸν ποτὶ τὸν ἄξονα τὸ δὴ τμᾶμα τοῦ κωνοειδέος τὸ βάσιν μὲν ἔχον τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν Β△ ἴσον ἐστὶ τῷ τμάματι τῷ ἄξονα ἔχοντι ἴσον τᾷ Κ, Εἰ μὲν οὖν καὶ ἁ Κ ἴσα ἐστὶ τᾷ Λ, φανερὸν ὅτι καὶ τὰ τμάματα ἴσα ἐσσοῦνται ἀλλάλοις ἑκάτερον γὰρ αὐτῶν ἴσον τῷ αὐτῷ καὶ τὰ τετράγωνα τὰ ἀπὸ τᾶν Κ, Λ ἴσα ὥστε τὸν αὐτὸν ἑξοῦντι λόγον τὰ τμάματα τοῖς τετραγώνοις τοῖς ἀπὸ τῶν ἀξόνων.

215
Εἰ δὲ μὴ ἴσα ἐστὶν ἁ Λ τᾷ Κ, ἔστω ἁ Λ ἴσα τᾷ ΒΘ, καὶ διὰ τοῦ Θ ἐπίπεδον ἄχθω ὀρθὸν ποτὶ τὸν ἄξονα · τὸ δὴ τμᾶμα τὸ βάσιν ἔχον τὸν κύκλον τὸν περὶ διάμετρον τὰν ΕΖ, ἄξονα δὲ τὰν ΒΘ, ἴσον ἐστὶ τῷ τμάματι τῷ ἔχοντι ἄξονα ἴσον τᾷ Λ. Ἐγγεγράφθωσαν δὴ κῶνοι βάσιας μὲν ἔχοντες τοὺς κύκλους τοὺς περὶ διαμέτρους τὰς ΑΓ, ΕΖ, κορυφὰν δὲ τὸ Β σαμεῖον · ὁ δὴ κῶνος ὁ ἔχων ἄξονα τὰν Β△ ποτὶ τὸν κῶνον τὸν ἔχοντα ἄξονα τὰν ΒΘ τὸν συγκείμενον ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἁ Α△ ποτὶ τὰν ΘΕ δυνάμει, καὶ ἐκ τοῦ ὃν ἔχει ἁ △Β ποτὶ τὰν ΒΘ μάκει. Ὃν δὲ λόγον ἔχει ἁ △Α ποτὶ τὰν ΘΕ δυνάμει, τοῦτον ἔχει ἁ Β△ ποτὶ τὰν ΒΘ μάκει· ὁ ἄρα κῶνος ὁ ἔχων ἄξονα τὰν Β△ ποτὶ τὸν κῶνον τὸν ἔχοντα ἄξονα τὰν ΒΘ τὸν συγκείμενον ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἁ △Β ποτὶ τὰν ΘΒ, καὶ ἐκ τοῦ ὃν ἔχει ἁ △Β ποτὶ τὰν ΒΘ οὗτος δὲ ἐστιν ὁ αὐτὸς τῷ ὃν ἔχει τὸ τετράγωνον τὸ ἀπὸ τᾶς △Β ποτὶ τὸ τετράγωνον τὸ ἀπὸ τᾶς ΘΒ. Ὃν δὲ λόγον ἔχει ὁ κῶνος ὁ ἄξονα ἔχων τὰν Β△ ποτὶ τὸν κῶνον τὸν ἄξονα ἔχοντα τὰν ΘΒ, τοῦτον ἔχει τὸν λόγον τὸ τμᾶμα τοῦ κωνοειδέος τὸ ἄξονα ἔχον τὰν △Β ποτὶ τὸ τμᾶμα τὸ ἄξονα ἔχον τὰν ΘΒ ἑκάτερον γὰρ ἡμιόλιόν ἐστιν. Καὶ ἔστιν τῷ μὲν τμάματι τῷ ἄξονα ἔχοντι τὰν Β△ ἴσον τὸ τμᾶμα τοῦ κωνοειδέος τὸ ἄξονα ἔχον ἴσον τᾷ Κ, τῷ δὲ τμάματι τῷ ἄξονα ἔχοντι τὰν ΘΒ ἴσον τὸ τμᾶμα τοῦ κωνοειδέος τὸ ἄξονα ἔχον ἴσον τᾷ Λ, καὶ τᾷ μὲν Β△ ἴσα ἁ Κ, τᾷ δὲ ΘΒ ἴσα ἁ Λ δῆλον οὖν ὅτι τὸ τμᾶμα τοῦ κωνοειδέος τὸ ἄξονα ἔχον ἴσον τᾷ Κ τὸν αὐτὸν ἔχει λόγον ποτὶ τὸ τμᾶμα τοῦ κωνοειδέος τὸ ἄξονα ἔχον ἴσον τᾷ Λ, ὃν τὸ τετράγωνον τὸ ἀπὸ τᾶς Κ ποτὶ τὸ τετράγωνον τὸ ἀπὸ τᾶς Λ.

216

Πᾶν τμᾶμα ἀμβλυγωνίου κωνοειδέος ἀποτετμαμένον ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν τῷ τμάματι καὶ ὕψος ἴσον τοῦτον ἔχει τὸν λόγον, ὃν ἔχει ἁ συναμφοτέραις ἴσα τῷ τε ἄξονι τοῦ τμάματος καὶ τᾷ τριπλασίᾳ τᾶς ποτεούσας τῷ ἄξονι ποτὶ τὰν ἴσαν ἀμφοτέραις τῷ τε ἄξονι τοῦ τμάματος καὶ τᾷ διπλασίᾳ τᾶς ποτεούσας τῷ ἄξονι.

Ἔστω τι τμᾶμα ἀμβλυγωνίου κωνοειδέος ἀποτετμαμένον ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα, καὶ τμαθέντος αὐτοῦ ἐπιπέδῳ ἄλλῳ διὰ τοῦ ἄξονος ἁ τομὰ ἔστω αὐτοῦ μὲν τοῦ κωνοειδέος ἁ ΑΒΓ ἀμβλυγωνίου κώνου τομά, τοῦ δὲ ἐπιπέδου τοῦ ἀποτέμνοντος τὸ τμᾶμα ἁ ΑΓ εὐθεῖα, ἄξων δὲ ἔστω τοῦ τμάματος ἁ Β△, ἁ δὲ ποτεοῦσα τῷ ἄξονι ἔστω ἁ ΒΘ καὶ τᾷ ΒΘ ἴσα ἁ ΖΘ καὶ ἁ ΖΗ. Δεικτέον ὅτι τὸ τμᾶμα ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν λόγον ἔχει, ὃν ἁ Η△ ποτὶ τὰν Ζ△.

Ἔστω δὴ κύλινδρος τὰν αὐτὰν βάσιν ἔχων τῷ τμάματι καὶ ἄξονα τὸν αὐτόν, πλευραὶ δὲ αὐτοῦ ἔστωσαν αἱ ΦΑ, ΓΥ, ἔστω δὲ καὶ κῶνός τις, ἐν ᾧ τὸ Ψ, καὶ ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὰν Β△ τοῦτον ἐχέτω τὸν λόγον, ὃν ἔχει ἁ Η△ ποτὶ τὰν △Ζ φαμὶ δὴ τὸ τμᾶμα τοῦ κωνοειδέος ἴσον εἶμεν τῷ Ψ κώνῳ. Εἰ γὰρ μή ἐστιν ἴσον, ἤτοι μεῖζον ἢ ἔλασσόν ἐστιν.

Ἔστω πρότερον, εἰ δυνατόν, μεῖζον. Ἐγγεγράφθω δὴ εἰς τὸ τμᾶμα σχῆμα στερεόν, καὶ ἄλλο περιγεγράφθω ἐκ

217
κυλίνδρων ὕψος ἴσον ἐχόντων συγκείμενον, ὥστε τὸ περιγραφὲν σχῆμα τοῦ ἐγγραφέντος ὑπερέχειν ἐλάσσονι ἢ ἁλίκῳ ὑπερέχει τὸ τοῦ κωνοειδέος τμᾶμα τοῦ Ψ κώνου, διάχθω δὲ τὰ ἐπίπεδα πάντων τῶν κυλίνδρων ποτὶ τὰν ἐπιφάνειαν τοῦ κυλίνδρου τοῦ βάσιν μὲν ἔχοντος τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν Β△· ἐσσεῖται δὴ ὅλος ὁ κύλινδρος διῃρημένος εἰς κυλίνδρους τῷ μὲν πλήθει ἴσους τοῖς κυλίνδροις τοῖς ἐν τῷ περιγεγραμμένῳ σχήματι, τῷ δὲ μεγέθει ἴσους τῷ μεγίστῳ αὐτῶν. Καὶ ἐπεὶ ἐλάσσονι ὑπερέχει τὸ περιγεγραμμένον σχῆμα τοῦ ἐγγεγραμμένου ἢ τὸ τμᾶμα τοῦ Ψ κώνου, καὶ μεῖζόν ἐστι τὸ περιγεγραμμένον σχῆμα τοῦ τμάματος, δῆλον ὅτι καὶ τὸ ἐγγεγραμμένον σχῆμα μεῖζόν ἐστι τοῦ Ψ κώνου. Ἔστω δὴ τρίτον μέρος τᾶς Β△ ἁ ΒΡ· ἐσσεῖται οὖν ἁ Η△ τριπλασία τᾶς ΘΡ. Καὶ ἐπεὶ ὁ μὲν κύλινδρος ὁ βάσιν ἔχων τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, ἄξονα
218
δὲ τὰν Β△, ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν καὶ ἄξονα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν ἁ Η△ ποτὶ τὰν ΘΡ, ἔχει δὲ καὶ ὁ εἰρημένος κῶνος ποτὶ τὸν Ψ κῶνον, ὃν ἁ Ζ△ ποτὶ τὰν Η△, ἕξει ἄρα μεγεθέων τριῶν ἀνομοίως τῶν λόγων τεταγμένων τὸν αὐτὸν λόγον ὁ κύλινδρος ὁ εἰρημένος ποτὶ τὸν Ψ κῶνον, ὃν ἁ Ζ△ ποτὶ τὰν ΘΡ. Ἔστωσαν δὲ γραμμαὶ κείμεναι, ἐφʼ ἇν τὰ Ξ, τῷ μὲν πλήθει ἴσαι τοῖς τμαμάτεσσιν τοῖς ἐν τᾷ Β△ εὐθείᾳ, τῷ δὲ μεγέθει ἑκάστα ἴσα τᾷ ΖΒ, καὶ παῤ ἑκάσταν αὐτᾶν παραπεπτωκέτω χωρίον ὑπερβάλλον εἴδει τετραγώνῳ, καὶ τὸ μὲν μέγιστον ἔστω ἴσον τῷ ὑπὸ Ζ△Β, τὸ δὲ ἐλάχιστον ἴσον τῷ ὑπὸ ΖΙΒ, αἱ δε πλευραὶ τῶν ὑπερβλημάτων τῷ ἴσῳ ἀλλαλᾶν ὑπερεχόντων καὶ γὰρ αἱ ἴσαι αὐταῖς αἱ ἐπὶ τᾶς Β△ εὐθείας τῷ ἴσῳ ἀλλάλων ὑπερέχουσιν, καὶ ἔστω ἁ μὲν τοῦ μεγίστου ὑπερβλήματος πλευρά, ἐφʼ ἇς τὸ Ν, ἴσα τᾷ Β△, ἁ δὲ τοῦ ἐλαχίστου ἴσα τᾷ ΒΙ, ἔστω δὲ καὶ ἄλλα χωρία, ἐν οἷς τὸ Ω, τῷ μὲν πλήθει ἴσα τούτοις, τῷ δὲ μεγέθει ἕκαστον ἴσον τῷ μεγίστῳ τῷ ὑπὸ τᾶν Ζ△Β· ὁ δὴ κύλινδρος ὁ βάσιν μὲν ἔχων τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν △Ε, ποτὶ τὸν κύλινδρον τὸν βάσιν μὲν ἔχοντα τὸν κύκλον τὸν περὶ διάμετρον τὰν ΚΛ, ἄξονα δὲ τὰν △Ε, τὸν αὐτὸν ἔχει λόγον, ὃν ἁ △Α ποτὶ τὰν ΚΕ δυνάμει· οὗτος δέ ἐστιν ὁ αὐτὸς τῷ ὃν ἔχει τὸ περιεχόμενον ὑπὸ τᾶν Ζ△, Β△ ποτὶ τὸ περιεχόμενον ὑπὸ τᾶν ΖΕ, ΒΕ· ἐν πάσᾳ γὰρ τοῦ ἀμβλυγωνίου κώνου τομᾷ τοῦτο συμβαίνει ἁ γὰρ διπλασία τᾶς ποτεούσας, τουτέστι τᾶς ἐκ τοῦ κέντρου, πλαγία ἐστὶ τοῦ εἴδους πλευρά. Καὶ ἔστι τῷ μὲν
219
ὑπὸ τᾶν Ζ△, Β△ περιεχομένῳ ἴσον τὸ ΞΝ χωρίον, τῷ δὲ ὑπὸ τᾶν ΖΕ, ΒΕ ἴσον ἐστὶ τὸ ΞΜ· ἁ γὰρ Ξ ἴσα ἐστὶ τᾷ ΖΒ, ἁ δὲ Μ τᾷ ΒΕ, ἁ δὲ Ν τᾷ Β△· ὁ ἄρα κύλινδρος ὁ βάσιν μὲν ἔχων τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν △Ε, ποτὶ τὸν κύλινδρον τὸν βάσιν ἔχοντα τὸν κύκλον τὸν περὶ διάμετρον τὰν ΚΛ, ἄξονα δὲ τὰν △Ε, τὸν αὐτὸν ἔξει λόγον, ὃν τὸ Ω χωρίον ποτὶ τὸ ΞΜ. Ὁμοίως δὲ δειχθήσεται καὶ τῶν ἄλλων κυλίνδρων ἕκαστος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ἄξονα ἔχων τὰν ἴσαν τᾷ △Ε ποτὶ τὸν κύλινδρον τὸν ἐν τῷ ἐγγεγραμμένῳ σχήματι τὸν ἔχοντα τὸν αὐτὸν ἄξονα τοῦτον ἔχων τὸν λόγον, ὃν ἔχει τὸ Ω χωρίον ποτὶ τὸ ὁμόλογον τῶν παρὰ τὰν Ξ παραπεπτωκότων ὑπερβαλλόντων τετραγώνῳ. Ἔστιν δή τινα μεγέθεα, οἱ κύλινδροι οἱ ἐν τῷ ὅλῳ κυλίνδρῳ, ὧν ἕκαστος ἄξονα ἔχει ἴσον τᾷ △Ε, καὶ ἄλλα μεγέθεα, τὰ χωρία, ἐν οἷς τὸ Ω, ἴσα τούτοις τῷ πλήθει, κατὰ δύο μεγέθεα τὸν αὐτὸν ἔχοντα λόγον, ἐπεὶ οἵ τε κύλινδροι ἴσοι ἐντὶ ἀλλάλοις καὶ τὰ Ω χωρία ἴσα ἀλλάλοις, λέγονται δὲ τῶν τε κυλίνδρων τινὲς ποτὶ ἄλλους κυλίνδρους τοὺς ἐν τῷ ἐγγεγραμμένῳ σχήματι, ὁ δὲ ἔσχατος οὐδὲ ποθʼ ἓν λέγεται, καὶ τῶν χωρίων, ἐν οἷς τὰ Ω, ποτʼ ἄλλα χωρία τὰ παρὰ τὰν Ξ παραπεπτωκότα ὑπερβάλλοντα εἴδει τετραγώνῳ, τὰ δὲ ὁμόλογα ἐν τοῖς αὐτοῖς λόγοις, τὸ δὲ ἔσχατον οὐδὲ ποθʼ ἓν λέγεται· δῆλον οὖν ὅτι καὶ πάντες οἱ κύλινδροι οἱ ἐν τῷ ὅλῳ κυλίνδρῳ ποτὶ πάντας τοὺς κυλίνδρους τοὺς ἐν τῷ ἐγγεγραμμένῳ σχήματι τὸν αὐτὸν ἑξοῦντι λόγον, ὃν
220
πάντα τὰ Ω χωρία ποτὶ πάντα τὰ παραβλήματα χωρὶς τοῦ μεγίστου. Δέδεικται δὲ ὅτι πάντα τὰ χωρία ποτὶ πάντα τὰ παραβλήματα χωρὶς τοῦ μεγίστου μείζω λόγον ἔχοντι ἢ ὃν ἁ ΝΞ ποτὶ τὰν ἴσαν συναμφοτέραις τᾷ τε ἡμισείᾳ τᾶς Ξ καὶ τῷ τρίτῳ μέρει τᾶς Ν· ὥστε καὶ ὅλος ὁ κύλινδρος ποτὶ τὸ ἐγγεγραμμένον σχῆμα μείζονα ἔχει λόγον ἢ ὃν ἁ Ζ△ ποτὶ τὰν ΘΡ· ὃν ὁ ὅλος κύλινδρος ἔχων ἐδείχθη ποτὶ τὸν Ψ κῶνον· μείζονα οὖν ἔχει λόγον ὁ ὅλος κύλινδρος ποτὶ τὸ ἐγγεγραμμένον σχῆμα ἢ ποτὶ τὸν Ψ κῶνον. Ὥστε μείζων ἐστὶν ὁ Ψ κῶνος τοῦ ἐγγεγραμμένου σχήματος· ὅπερ ἀδύνατον· ἐδείχθη γὰρ τὸ ἐγγεγραμμένον σχῆμα μεῖζον τοῦ Ψ κώνου· οὐκ ἄρα μεῖζον τὸ τοῦ κωνοειδέος τμᾶμα τοῦ Ψ κώνου.

Οὐδὲ τοίνυν ἔλασσον, Ἔστω γάρ, εἰ δυνατόν, ἔλασσον. Πάλιν οὖν ἐγγεγράφθω εἰς τὸ τμᾶμα σχῆμα στερεόν, καὶ ἄλλο περιγεγράφθω ἐκ κυλίνδρων ὕψος ἴσον ἐχόντων συγκείμενον, ὥστε τὸ περιγεγραμμένον σχῆμα τοῦ ἐγγραφέντος ὑπερέχειν ἐλάσσονι ἢ ἁλίκῳ ὑπερέχει ὁ κῶνος τοῦ τμάματος, καὶ τὰ ἄλλα τὰ αὐτὰ κατεσκευάσθω. Ἐπεὶ οὖν ἔλασσόν ἐστι τὸ ἐγγεγραμμένον σχῆμα τοῦ τμάματος, καὶ ἐλάσσονι ὑπερέχει τὸ περιγεγραμμένον τοῦ ἐγγεγραμμένου ἢ ὁ Ψ κῶνος τοῦ τμάματος, δῆλον ὅτι καὶ τὸ περιγεγραμμένῳ σχῆμα ἔλασσόν ἐστι τοῦ Ψ κώνου. Πάλιν δὴ ὅ τε κύλινδρος ὁ πρῶτος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ὁ ἔχων ἄξονα τὰν △Ε ποτὶ τὸν πρῶτον κύλινδρον τῶν ἐν τῷ περιγεγραμμένῳ σχήματι τὸν ἔχοντα ἄξονα  τὰν △Ε τὸν αὐτὸν ἔχει λόγον, ὃν τὸ Ω χωρίον ποτὶ τὸ ΞΝ ἴσον γὰρ ἑκάτερον, καὶ τῶν ἄλλων κυλίνδρων ἕκαστος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ἄξονα ἐχόντων τὰν ἴσαν τᾷ △Ε ποτὶ τὸν κύλινδρον τὸν ἐν τῷ περιγεγραμμένῳ σχήματι κατʼ αὐτὸν ἐόντα καὶ ἄξονα

221
ἔχοντα τὸν αὐτὸν τοῦτον ἕξει τὸν λόγον, ὃν τὸ Ω χωρίον ποτὶ τὸ ὁμόλογον τῶν παρὰ τὰν Ξ παραβλημάτων σὺν τῷ ὑπερβλήματι, διὰ τὸ ἕκαστον τῶν περιγεγραμμένων χωρὶς τοῦ μεγίστου ἴσον εἶμεν ἑκάστῳ τῶν ἐγγεγραμμένων σὺν τῷ μεγίστῳ· ἕξει οὖν καὶ ὁ ὅλος κύλινδρος ποτὶ τὸ περιγεγραμμένον σχῆμα τὸν αὐτὸν λόγον, ὃν πάντα τὰ Ω χωρία ποτὶ τὰ παραβλήματα σὺν τοῖς ὑπερβλημάτεσσιν. Δέδεικται δὲ πάλιν πάντα τὰ Ω χωρία ποτὶ πάντα τὰ ἕτερα ἐλάσσω λόγον ἔχοντα τοῦ ὃν ἔχει ἁ ΞΝ ποτὶ τὰν ἴσαν συναμφοτέραις τᾷ τε ἡμισέᾳ τᾶς Ξ καὶ τῷ τρίτῳ μέρει τᾶς Ν· ὥστε καὶ ὅλος ὁ κύλινδρος ποτὶ τὸ περιγεγραμμένον σχῆμα ἐλάσσονα λόγον ἕξει ἢ ἁ Ζ△ ποτὶ τὰν ΘΡ. Ἀλλʼ ὡς ἁ Ζ△ ποτὶ τὰν ΘΡ, ὁ ὅλος κύλινδρος ποτὶ τὸν Ψ κῶνον· ἐλάσσονα οὖν λόγον ἔχει ὁ αὐτὸς κύλινδρος ποτὶ τὸ περιγεγραμμένον σχῆμα ἢ ποτὶ τὸν Ψ. Ὥστε μεῖζόν ἐστι τὸ περιγεγραμμένον τοῦ Ψ κώνου· ὅπερ ἀδύνατον· ἐδείχθη γὰρ ἔλαττον ἐὸν τὸ περιγεγραμμένον σχῆμα τοῦ κώνου. Οὐκ ἀρα ἔλασσόν ἐστι τὸ τοῦ κωνοειδέος τμᾶμα τοῦ Ψ κώνου. Ἐπεὶ δὲ οὔτε μεῖζον οὔτε ἔλασσόν ἐστιν, δέδεικται οὖν τὸ προτεθέν.

Καὶ τοίνυν εἴ κα μὴ ὀρθῷ ποτὶ τὸν ἄξονα τῷ ἐπιπέδῳ ἀποτμαθῇ τὸ τμᾶμα τοῦ ἀμβλυγωνίου κωνοειδέος, ποτὶ τὸ ἀπότμαμα τοῦ κώνου τὸ βάσιν ἔχον τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἕξει τὸν λόγον, ὃν ἁ συναμφοτέραις ἴσα τῷ τε ἄξονι τοῦ τμάματος καὶ τᾷ τριπλασίᾳ τᾶς ποτεούσας τῷ ἄξονι ποτὶ τὰν ἴσαν συναμφοτέραις τῷ τε ἄξονι καὶ τᾷ διπλασίᾳ τᾶς ποτεούσας τῷ ἄξονι.

222

Ἔστω γὰρ τμᾶμα ἀμβλυγωνίου κωνοειδέος ἀποτετμαμένον ἐπιπέδῳ, ὡς εἴρηται, τμαθέντος δὲ ἐπιπέδῳ τοῦ σχήματος ἄλλῳ διὰ τοῦ ἄξονος ὀρθῷ ποτὶ τὸ ἐπίπεδον τὸ ἀποτετμακὸς τὸ τμᾶμα τοῦ μὲν σχήματος τομὰ ἔστω ἁ ΑΒΓ ἀμβλυγωνίου κώνου τομά, τοῦ δὲ ἐπιπέδου τοῦ ἀποτετμακότος τὸ τμᾶμα ἁ ΓΑ εὐθεῖα, κορυφὰ δὲ ἔστω τοῦ κώνου τοῦ περιέχοντος τὸ κωνοειδὲς τὸ Θ σαμεῖον, καὶ ἄχθω διὰ τοῦ Β παρὰ τὰν ΑΓ ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς ἁ ΦΥ, ἐπιψαυέτω δὲ κατὰ τὸ Β, καὶ ἀπὸ τοῦ Θ ἐπὶ τὸ Β ἐπιζευχθεῖσα ἐκβεβλήσθω· τεμεῖ δὴ αὕα δίχα τὰν ΑΓ, καὶ ἐσσεῖται κορυφὰ μὲν τοῦ τμάματος τὸ Β σαμεῖον, ἄξων δὲ ἁ Β△, ἁ δὲ ποτεοῦσα τῷ ἄξονι ἁ ΒΘ· τᾷ δὲ ΒΘ ἴσα ἔστω ἅ τε ΘΖ καὶ ἁ ΖΗ, ἀπὸ δὲ τᾶς ΦΥ ἐπίπεδον ἀνεστακέτω τι παράλληλον τῷ κατὰ τὰν ΑΓ· ἐπιψαύσει δὴ τοῦ κωνοειδέος κατὰ τὸ Β. Καὶ ἐπεὶ τὸ ἐπίπεδον τὸ κατὰ τὰν ΑΓ οὐκ ἐὸν ὀρθὸν ποτὶ τὸν ἄξονα τετμάκει τὸ κωνοειδές, ἁ τομὰ ἐσσεῖται ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς ἁ μείζων ἁ ΓΑ· ἐούσας δὴ ὀξυγωνίου κώνου τομᾶς περὶ διάμετρον τὰν ΑΓ καὶ τᾶς Β△ γραμμᾶς ἀπὸ τοῦ κέντρου ἀνεστακούσας ἐν ἐπιπέδῳ, ὅ ἐστιν ἀπὸ τᾶς διαμέτρου ὀρθὸν ποτὶ τὸ ἐπίπεδον, ἐν ᾧ ἐστιν ἁ τοῦ ὀξυγωνίου κώνου τομά, δυνατόν ἐστι κύλινδρον εὑρεῖν τὸν ἄξονα ἔχοντα ἐπʼ εὐθείας τᾷ Β△, οὗ ἐν τᾷ

223
ἐπιφανείᾳ ἐσσεῖται ἁ τοῦ ὀξυγωνίου κώνου τομὰ ἁ περὶ διάμετρον τὰν ΑΓ. Εὑρεθέντος οὖν ἐσσεῖταί τις κυλίνδρου τόμος τὰν αὐτὰν βάσιν ἔχων τῷ τμάματι καὶ ἄξονα τὸν αὐτόν, ἁ δὲ ἑτέρα βάσις αὐτοῦ ἐσσεῖται τὸ ἐπίπεδον τὸ κατὰ τὰν ΦΥ. Πάλιν δὲ καὶ κῶνον εὑρεῖν δυνατόν ἐστι κορυφὰν ἔχοντα τὸ Β σαμεῖον, οὗ ἐν τᾷ ἐπιφανείᾳ ἐσσεῖται ἁ τοῦ ὀξυγωνίου κώνου τομὰ ἁ περὶ διάμετρον τὰν ΑΓ. Εὑρεθέντος οὖν καὶ ἀπότμαμά τι ἐσσεῖται κώνου βάσιν ἔχον τὰν αὐτὰν τῷ τε τόμῳ καὶ τῷ τμάματι καὶ ἄξονα τὸν αὐτόν· δεικτέον ὅτι τὸ τοῦ κωνοειδέος τμᾶμα ποτὶ τὸ ἀπότμαμα τοῦ κώνου τὸ εἰρημένον τὸν αὐτὸν ἔχει λόγον, ὃν ἁ Η△ ποτὶ τὰν △Ζ.

Ὃν γὰρ ἔχει λόγον ἁ Η△ ποτὶ τὰν △Ζ, τοῦτον ἐχέτω ὁ Ψ κῶνος ποτὶ τὸ ἀπότμαμα τοῦ κώνου. Εἰ οὖν μή ἐστιν ἴσον τὸ τοῦ κωνοειδέος τμᾶμα τῷ κώνῳ τῷ Ψ, ἔστω, εἰ δυνατόν ἐστιν, μεῖζον. Ἐγγεγράφθω δὴ εἰς τὸ τοῦ κωνοειδέος τμᾶμα σχῆμα στερεόν, καὶ ἄλλο περιγεγράφθω ἐκ κυλίνδρου τόμων ἴσον ὕψος ἐχόντων συγκείμενον, ὥστε τὸ περιγραφὲν σχῆμα τοῦ ἐγγραφέντος ὑπερέχειν ἐλάσσονι ἢ ἁλίκῳ ὑπερέχει τὸ τοῦ κωνοειδέος τμᾶμα τοῦ Ψ κώνου. Ἐπεὶ οὖν τὸ περιγεγραμμένον σχῆμα μεῖζον ἐὸν τοῦ τμάματος ἐλάσσονι ὑπερέχει τοῦ ἐγγεγραμμένου σχήματος ἢ τὸ τμᾶμα τοῦ Ψ κώνου, δῆλον ὅτι μεῖζόν ἐστι τὸ ἐγγεγραμμένον σχῆμα τοῦ Ψ κώνου. Διάχθω δὴ τὰ ἐπίπεδα τῶν τόμων τῶν ἐγγεγραμμένων ἐν τῷ τμάματι πάντων ἔστε

224
ποτὶ τὰν ἐπιφάνειαν τοῦ τόμου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν, καὶ ἅ τε ΒΡ τρίτον μέρος ἔστω τᾶς Β△, καὶ τἄλλα τὰ αὐτὰ τοῖς πρότερον κατεσκευάσθω. Πάλιν δὴ ὁ πρῶτος τόμος τῶν ἐν τῷ ὅλῳ τόμῳ ὁ ἔχων ἄξονα τὰν ΔΕ ποτὶ τὸν πρῶτον τόμον τῶν ἐν τῷ ἐγγεγραμμένῳ σχήματι τὸν ἔχοντα ἄξονα τὰν △Ε τοῦτον ἔχει τὸν λόγον, ὃν τὸ ἀπὸ τᾶς Α△ τετράγωνον ποτὶ τὸ ἀπὸ τᾶς ΚΕ· οἱ γὰρ τόμοι οἱ ἴσον ὕψος ἔχοντες τὸν αὐτὸν ἔχοντι λόγον ποτʼ ἀλλάλους, ὅνπερ αἱ βάσιες αὐτῶν, αἱ δὲ βάσιες αὐτῶν, ἐπεὶ ὁμοῖαί ἐντι ὀξυγωνίων κώνων τομαί, τὸν αὐτὸν οὖν λόγον ἔχοντι ποτʼ ἀλλάλας, ὃν αἱ ὁμόλογοι διάμετροι αὐτᾶν δυνάμει. Ὃν δὲ λόγον ἔχει τὸ ἀπὸ τᾶς Α△ τετράγωνον ποτὶ τὸ ἀπὸ τᾶς ΚΕ, τοῦτον ἔχει τὸ ὑπὸ τᾶν Ζ△Β περιεχόμενον ποτὶ τὸ ὑπὸ τᾶν ΖΕΒ, ἐπεί ἐστιν ἁ μὲν Ζ△ ἀγμένα διὰ τοῦ Θ, καθʼ ὃ αἱ ἔγγιστα συμπίπτοντι, αἱ δὲ Α△, ΚΕ παρὰ τὰν κατὰ τὸ Β ἐπιψαύουσαν· ἔστιν δὲ τὸ μὲν ὑπὸ τᾶν Ζ△Β περιεχόμενον ἴσον τῷ Ω χωρίῳ, τὸ δὲ ὑπὸ τᾶν ΖΕΒ τῷ ΞΜ· ἔχει οὖν ὁ πρῶτος τόμος τῶν ἐν τῷ ὅλῳ τόμῳ ὁ ἔχων ἄξονα τὰν
225
△Ε ποτὶ τὸν πρῶτον τόμον τῶν ἐν τῷ ἐγγεγραμμένῳ σχήματι τὸν ἔχοντα ἄξονα τὰν △Ε τὸν αὐτὸν λόγον, ὃν τὸ Ω χωρίον ποτὶ τὸ ΞΜ· καὶ τῶν ἄλλων δὲ τόμων ἕκαστος τῶν ἐν τῷ ὅλῳ τόμῳ ἄξονα ἐχόντων τὰν ἴσαν τᾷ △Ε ποτὶ τὸν τόμον τὸν ἐν τῷ ἐγγεγραμμένῳ σχήματι κατʼ αὐτὸν ἐόντα καὶ ἄξονα ἔχοντα τὰν ἴσαν τᾷ △Ε τοῦτον ἔχει τὸν λόγον, ὃν τὸ Ω χωρίον ποτὶ τὸ ὁμόλογον τῶν παρὰ τὰν Ξ παραπεπτωκότων ὑπερβαλλόντων εἴδει τετραγώνῳ. Πάλιν οὖν ἐντί τινα μεγέθεα, οἱ τόμοι οἱ ἐν τῷ ὅλῳ τόμῳ, καὶ ἄλλα μεγέθεα, τὰ χωρία, ἐν οἷς τὸ Ω, ἴσα τῷ πλήθει τοῖς τόμοις καὶ κατὰ δύο τὸν αὐτὸν λόγον ἔχοντα αὐτοῖς, λέγονται δὲ οἱ τόμοι ποτʼ ἄλλους τόμους τοὺς ἐν τῷ ἐγγεγραμμένῳ σχήματι, ὁ δὲ ἔσχατος τόμος οὐδὲ ποθʼ ἓν λέγεται, τὰ δὲ Ω χωρία ποτʼ ἄλλα χωρία τὰ παρὰ τὰν Ξ παραπεπτωκότα ὑπερβάλλοντα εἴδεσι τετραγώνοις, τὰ ὁμόλογα ἐν τοῖς αὐτοῖς λόγοις, τὸ δὲ ἔσχατον οὐδὲ ποθʼ ἓν λέγεται δῆλον οὖν ὅτι καὶ πάντες οἱ τόμοι ποτὶ πάντας τὸν αὐτὸν ἑξοῦντι λόγον, ὃν πάντα τὰ Ω χωρία ποτὶ πάντα τὰ παραβλήματα χωρὶς τοῦ μεγίστου. Πάντα δὲ τὰ Ω χωρία ποτὶ πάντα τὰ παραβλήματα χωρὶς τοῦ μεγίστου μείζονα λόγον ἔχοντι ἢ ὃν ἁ ΞΝ ποτὶ τὰν ἴσαν ἀμφοτέραις τᾷ τε ἡμισέᾳ τᾶς Ξ καὶ τῷ τρίτῳ μέρει τᾶς Ν· μείζονα οὖν λόγον ἔχει ὅλος ὁ τόμος ποτὶ τὸ ἐγγεγραμμένον σχῆμα τοῦ ὃν ἔχει ἁ ΞΝ ποτὶ τὰν ἴσαν ἀμφοτέραις τᾷ τε ἡμισέᾳ τᾶς Ξ καὶ τῷ τρίτῳ μέρει τᾶς Ν· ὥστε καὶ τοῦ ὃν ἔχει ἁ Ζ△ ποτὶ τὰν ΘΡ. Μείζονα οὖν ἔχει λόγον ὁ ὅλος τόμος ποτὶ τὸ ἐγγεγραμμένον σχῆμα ἢ ποτὶ τὸν Ψ κῶνον·
226
ὅπερ ἀδύνατον· ἐδείχθη γὰρ μεῖζον ἐὸν τὸ ἐγγεγραμμένον σχῆμα τοῦ Ψ κώνου. Οὐκ ἔστιν οὖν μεῖζον τὸ τοῦ κωνοειδέος τμᾶμα τοῦ Ψ κώνου.

Εἰ δὲ ἔλασσόν ἐστι τὸ τοῦ κωνοειδέος τμᾶμα τοῦ Ψ κώνου, ἐγγραφέντος εἰς τὸ τμᾶμα σχήματος στερεοῦ καὶ ἄλλου περιγραφέντος ἐκ κυλίνδρου τόμων ἴσον ὕψος ἐχόντων συγκειμένου, ὥστε τὸ περιγεγραμμένον σχῆμα τοῦ ἐγγραφέντος ὑπερέχειν ἐλάσσονι ἢ ἁλίκῳ ὑπερέχει ὁ Ψ κῶνος τοῦ τμάματος, πάλιν ὁμοίως δειχθήσεται τὸ περιγεγραμμένον σχῆμα ἔλασσον ἐὸν τοῦ Ψ κώνου καὶ ὁ τοῦ κυλίνδρου τόμος ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν ποτὶ τὸ περιγεγραμμένον σχῆμα ἐλάσσονα λόγον ἔχων ἢ ποτὶ τὸν Ψ κῶνον· ὅπερ ἐστὶν ἀδύνατον, Οὐκ ἔστιν οὖν οὐδʼ ἔλασσον τὸ τοῦ κωνοειδέος τμᾶμα τοῦ Ψ κώνου. Δῆλον οὖν τὸ προτεθέν.

Παντὸς σχήματος σφαιροειδέος ἐπιπέδῳ τμαθέντος διὰ τοῦ κέντρου ὀρθῷ ποτὶ τὸν ἄξονα τὸ ἁμίσεον τοῦ σφαιροειδέος διπλάσιόν ἐστι τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν. Ἔστω σφαιροειδὲς σχῆμα ἐπιπέδῳ τετμαμένον διὰ τοῦ κέντρου ὀρθῷ ποτὶ τὸν ἄξονα, τμαθέντος δὲ αὐτοῦ ἄλλῳ ἐπιπέδῳ διὰ τοῦ ἄξονος τοῦ μὲν σχήματος τομὰ ἔστω ἁ ΑΒΓ△ ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς καὶ ἄξων τοῦ σφαιροειδέος ἁ Β△, κέντρον δὲ τὸ Θ· διοίσει δὲ οὐδέν, εἴτε ἁ μείζων ἐστὶ διάμετρος ἁ Β△ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς εἴτε ἁ ἐλάσσων· τοῦ δὲ τετμακότος ἐπιπέδου τὸ σχῆμα τομὰ ἔστω ἁ ΓΑ εὐθεῖα· ἐσσεῖται δὴ οὕτα διὰ

227
τοῦ Θ καὶ ὀρθὰς ποιήσει γωνίας ποτὶ τὰν Β△, ἐπεὶ τὸ ἐπίπεδον ὑπόκειται διὰ τοῦ κέντρου τε ἄχθαι καὶ ὀρθὸν εἶμεν ποτὶ τὸν ἄξονα. Δεικτέον ὅτι τὸ ἁμίσεον τοῦ σφαιροειδέος τμᾶμα τὸ βάσιν μὲν ἔχον τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, κορυφὰν δὲ τὸ Β σαμεῖον, διπλάσιόν ἐστι τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν.

Ἔστω γὰρ κῶνός τις, ἐν ᾧ τὸ Ψ, διπλασίων τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τὰν ΘΒ· φαμὶ δὴ τὸ ἁμίσεον τοῦ σφαιροειδέος ἴσον εἶμεν τῷ Ψ κώνῳ.

Εἰ οὖν μή ἐστιν ἴσον τὸ ἁμίσεον τοῦ σφαιροειδέος τῷ Ψ κώνῳ, ἔστω πρῶτον, εἰ δυνατόν, μεῖζον. Ἐγγεγράφθω δὴ εἰς τὸ τμᾶμα τὸ ἁμίσεον τοῦ σφαιροειδέος σχῆμα

228
στερεόν, καὶ ἄλλο περιγεγράφθω ἐκ κυλίνδρων ὕψος ἴσον ἐχόντων συγκείμενον, ὥστε τὸ περιγραφὲν σχῆμα τοῦ ἐγγραφέντος ὑπερέχειν ἐλάσσονι ἢ ἁλίκῳ ὑπερέχει τὸ ἁμίσεον τοῦ σφαιροειδέος τοῦ Ψ κώνου. Ἐπεὶ οὖν μεῖζον ἐὸν τὸ περιγεγραμμένον σχῆμα τοῦ ἁμίσεος τοῦ σφαιροειδέος ἐλάσσονι ὑπερέχει τοῦ ἐγγεγραμμένου σχήματος ἢ τὸ ἁμίσεον τοῦ σφαιροειδέος τοῦ Ψ κώνου, δῆλον οὖν ὅτι καὶ τὸ ἐγγεγραμμένον σχῆμα ἐν τῷ τμάματι τῷ ἁμισέῳ τοῦ σφαιροειδέος μεῖζόν ἐστι τοῦ Ψ κώνου. Ἔστω δὴ κύλινδρος βάσιν μὲν ἔχων τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, ἄξονα δὲ τὰν ΒΘ. Ἐπεὶ οὖν οὗτος ὁ κύλινδρος τριπλάσιός ἐστι τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν, ὁ δὲ Ψ κῶνος διπλάσιός ἐστι τοῦ αὐτοῦ κώνου, δῆλον ὡς ὁ κύλινδρος ἡμιόλιός ἐστι τοῦ Ψ κώνου. Ἐκβεβλήσθω δὴ τὰ ἐπίπεδα τῶν κυλίνδρων πάντων, ἐξ ὧν σύγκειται τὸ ἐγγεγραμμένον σχῆμα, ἔστε ποτὶ τὰν ἐπιφάνειαν τοῦ κυλίνδρου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν ἐσσεῖται δὴ ὁ ὅλος κύλινδρος διαιρημένος εἰς κυλίνδρους τῷ μὲν πλήθει ἴσους τοῖς κυλίνδροις τοῖς ἐν τῷ περιγεγραμμένῳ σχήματι, τῷ δὲ μεγέθει ἴσους τῷ μεγίστῳ αὐτῶν. Ἔστων δὴ οὖν Υραμμαὶ κείμεναι, ἐφʼ ἇν τὰ Ξ, τῷ πλήθει ἴσαι τοῖς τμαμάτεσσι τοῖς τᾶς ΒΘ εὐθείας, τῷ δὲ μεγέθει ἴσα ἑκάστᾳ τᾷ ΒΘ, καὶ ἀπὸ ἑκάστας τετράγωνον ἀναγεγράφθω, ἀφαιρήσθω δὲ ἀπὸ μὲν τοῦ ἐσχάτου τετραγώνου γνώμων πλάτος ἔχων ἴσον τᾷ ΒΙ· ἐσσεῖται δὴ οὗτος ἴσος τῷ περιεχομένῳ ὑπὸ τᾶν ΒΙ, Ι△· ἀπὸ δὲ τοῦ παῤ αὐτῷ
229
τετραγώνου γνώμων ἀφαιρήσθω πλάτος ἔχων διπλάσιον τᾶς ΒΙ· ἐσσεῖται δὴ οὗτος ἴσος τῷ περιεχομένῳ ὑπὸ τᾶν ΒΧ, Χ△· καὶ ἀεὶ ἀπὸ τοῦ ἐχομένου τετραγώνου γνώμων ἀφαιρήσθω, οὗ πλάτος ἑνὶ τμάματι μεῖζον τοῦ πλάτεος τοῦ πρὸ αὐτοῦ ἀφαιρημένου γνώμονος ἐσσεῖται δὴ ἕκαστος αὐτῶν ἴσος τῷ περιεχομένῳ ὑπὸ τῶν τᾶς Β△ τμαμάτων, ὧν τὸ ἕτερον τμᾶμα ἴσον ἐστὶ τῷ πλάτει τοῦ γνώμονος. Ἐσσεῖται δὴ καὶ ἀπὸ τοῦ τετραγώνου τοῦ δευτέρου τὸ λοιπὸν τετράγωνον τὰν πλευρὰν ἔχον ἴσαν τᾷ ΘΕ. Ὁ δὲ κύλινδρος ὁ πρῶτος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ὁ ἔχων ἄξονα τὰν ΘΕ ποτὶ τὸν κύλινδρον τὸν πρῶτον τῶν ἐν τῷ ἐγγεγραμμένῳ σχήματι τὸν αὐτὸν ἔχοντα ἄξονα τὰν ΘΕ τὸν αὐτὸν ἔχει λόγον, ὃν τὸ τετράγωνον τὸ ἀπὸ τᾶς ΑΘ ποτὶ τὸ τετράγωνον τὸ ἀπὸ τᾶς ΚΕ· ὥστε καὶ ὃν τὸ ὑπὸ τᾶν ΒΘ, Θ△ περιεχόμενον ποτὶ τὸ ὑπὸ τᾶν ΒΕ, Ε△ περιεχόμενον ἔχει οὖν ὁ κύλινδρος ποτὶ τὸν κύλινδρον τὸν αὐτὸν λόγον, ὃν τὸ πρῶτον τετράγωνον ποτὶ τὸν γνώμονα τὸν ἀπὸ τοῦ δευτέρου τετραγώνου ἀφαιρημένον. Ὁμοίως δὲ καὶ τῶν ἄλλων κυλίνδρων ἕκαστος ἄξονα ἐχόντων ἴσον τᾷ ΘΕ ποτὶ τὸν κύλινδρον τὸν ἐν τῷ ἐγγεγραμμένῳ σχήματι καὶ ἔχοντα ἄξονα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν τὸ τετράγωνον τὸ ὁμοίως τεταγμένον αὐτῷ ποτὶ τὸν γνώμονα τὸν ἀπὸ τοῦ ἑπομένου αὐτῷ τετραγώνου ἀφαιρημένον. Ἐντὶ δή τινα μεγέθεα, οἱ κύλινδροι οἱ ἐν τῷ ὅλῳ κυλίνδρῳ, καὶ ἄλλα, τὰ τετράγωνα τὰ ἀπὸ τᾶν ΞΞ, ἴσα τῷ πλήθει τοῖς κυλίνδροις καὶ κατὰ δύο τὸν αὐτὸν λόγον ἔχοντα, λέγονται δὲ οἱ κύλινδροι ποτʼ ἄλλα μεγέθεα, τοὺς κυλίνδρους τοὺς ἐν τῷ ἐγγεγραμμένῳ σχήματι, ὁ δὲ
230
ἔσχατος οὐδὲ ποθʼ ἓν λέγεται, καὶ τὰ τετράγωνα ποτʼ ἄλλα μεγέθεα, τοὺς ἀπὸ τῶν τετραγώνων ἀφαιρημένους, τὰ ὁμόλογα ἐν τοῖς αὐτοῖς λόγοις, τὸ δὲ ἔσχατον τετράγωνον οὐδὲ ποθʼ ἓν λέγεται· πάντες οὖν οἱ κύλινδροι οἱ ἐν τῷ ὅλῳ κυλίνδρῳ ποτὶ πάντας τοὺς ἑτέρους κυλίνδρους τὸν αὐτὸν ἑξοῦντι λόγον, ὃν πάντα τὰ τετράγωνα ποτὶ πάντας τοὺς γνώμονας τοὺς ἀφαιρημένους ἀπʼ αὐτῶν· ὁ ἄρα κύλινδρος ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν ποτὶ τὸ ἐγγεγραμμένον σχῆμα τὸν αὐτὸν ἔχει λόγον, ὃν πάντα τὰ τετράγωνα ποτὶ πάντας τοὺς γνώμονας τοὺς ἀφαιρημένους ἀπʼ αὐτῶν, Τὰ δὲ τετράγωνα πάντων τῶν γνωμόνων τῶν ἀφαιρημένων ἀπʼ αὐτῶν μείζονά ἐντι ἢ ἡμιόλια· ἐντὶ γάρ τινες γραμμαὶ κείμεναι αἱ ΞΡ, ΞΣ, ΞΤ, ΞΥ, ΞΦ ΞΨ, ΞΩ τῷ ἴσῳ ἀλλαλᾶν ὑπερέχουσαι, καὶ ἁ ἐλαχίστα ἴσα τᾷ ὑπεροχᾷ, ἐντὶ δὲ καὶ ἄλλαι γραμμαί, ἐφʼ ἇν τὰ δύο Ξ, Ξ, τῷ μὲν πλήθει ἴσαι ταύταις, τῷ δὲ μεγέθει ἑκάστα ἴσα τᾷ μεγίστᾳ τὰ οὖν τετράγωνα τὰ ἀπὸ πασᾶν, ἇν ἐστιν ἑκάστα ἴσα τᾷ μεγίστᾳ, πάντων μὲν τῶν τετραγώνων τῶν ἀπὸ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν ἐλάσσονά ἐντι ἢ τριπλάσια, τῶν δὲ λοιπῶν χωρὶς τοῦ ἀπὸ τᾶς μεγίστας μείζονα ἢ τριπλάσια· τοῦτο γὰρ ἐν τοῖς περὶ τᾶν ἑλίκων ἐκδεδομένοις δέδεικται. Ἐπεὶ δὲ πάντα τὰ τετράγωνα ἐλάσσονά ἐντι ἢ τριπλάσια τῶν ἑτέρων τετραγώνων, ἅ ἐντι ἀφαιρημένα ἀπʼ αὐτῶν, δῆλον ὅτι τῶν λοιπῶν μείζονά ἐντι ἢ ἡμιόλια· τῶν οὖν γνωμόνων μείζονά ἐντι ἢ ἡμιόλια. Ὥστε καὶ ὁ κύλινδρος ὁ βάσιν ἔχων τὰν
231
αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν μείζων ἐστὶν ἢ ἡμιόλιος τοῦ ἐγγεγραμμένου σχήματος ὅπερ ἀδύνατον τοῦ γὰρ Ψ κώνου ἡμιόλιός ἐστι, τὸ δὲ ἐγγεγραμμένον σχῆμα μεῖζον ἐδείχθη τοῦ Ψ κώνου. Οὐκ ἄρα ἐστὶ μεῖζον τὸ ἡμίσεον τοῦ σφαιροειδέος τοῦ Ψ κώνου.

Οὐδὲ τοίνυν ἔλασσον. Ἔστω γὰρ, εἰ δυνατόν, ἔλασσον. Πάλιν δὴ ἐγγεγράφθω εἰς τὸ ἁμίσεον τοῦ σφαιροειδέος σχῆμα στερεόν, καὶ ἄλλο περιγεγράφθω ἐκ κυλίνδρων ὕψος ἴσον ἐχόντων συγκείμενον, ὥστε τὸ περιγραφὲν σχῆμα τοῦ ἐγγραφέντος ὑπερέχειν ἐλάσσονι ἢ ᾧ ὑπερέχει ὁ Ψ κῶνος τοῦ ἡμίσεος τοῦ σφαιροειδέος, καὶ τὰ ἄλλα τὰ αὐτὰ τοῖς πρότερον κατεσκευάσθω. Ἐπεὶ οὖν ἔλασσόν ἐστι τὸ ἐγγραφὲν σχῆμα τοῦ τμάματος, δῆλον ὅτι καὶ τὸ περιγραφὲν σχῆμα ἔλασσόν ἐστι τοῦ Ψ κώνου. Πάλιν δὴ ὁ πρῶτος κύλινδρος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ὁ ἔχων ἄξονα τὰν ΘΕ ποτὶ τὸν πρῶτον κύλινδρον τῶν ἐν τῷ περιγεγραμμένῳ σχήματι τὸν ἔχοντα ἄξονα τὰν ΘΕ τὸν αὐτὸν ἔχει λόγον, ὃν τὸ πρῶτον τετράγωνον ποθʼ αὐτό, ὁ δὲ δεύτερος κύλινδρος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ὁ ἔχων ἄξονα τὰν ΕΠ ποτὶ τὸν δεύτερον κύλινδρον τῶν ἐν τῷ περιγεγραμμένῳ σχήματι τὸν ἔχοντα ἄξονα τὰν ΕΠ τὸν αὐτὸν ἔχει λόγον, ὃν τὸ δεύτερον τετράγωνον ποτὶ τὸν γνώμονα τὸν ἀπʼ αὐτοῦ ἀφαιρημένον καὶ τῶν ἄλλων δὲ κυλίνδρων ἕκαστος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ἄξονα ἐχόντων τὰν ἴσαν τᾷ ΘΕ ποτὶ τὸν κύλινδρον τὸν ἐν τῷ περιγεγραμμένῳ σχήματι κατʼ αὐτὸν ἐόντα καὶ ἄξονα ἔχοντα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν τὸ ὁμοίως τεταγμένον αὐτῷ τετράγωνον ποτὶ τὸν γνώμονα τὸν ἀπʼ αὐτοῦ ἀφαιρημένον· καὶ πάντες

232
οὖν οἱ κύλινδροι οἱ ἐν τῷ ὅλῳ κυλίνδρῳ ποτὶ πάντας τοὺς κυλίνδρους τοὺς ἐν τῷ περιγεγραμμένῳ σχήματι τὸν αὐτὸν ἑξοῦντι λόγον, ὃν πάντα τὰ τετράγωνα ποτὶ τὸ ἴσον τῷ πρώτῳ τετραγώνῳ καὶ τοῖς γνωμόνεσσι τοῖς ἀπὸ τῶν λοιπῶν τετραγώνων ἀφαιρημένοις, Καὶ τὰ τετράγωνα πάντα ἐλάσσονά ἐντι ἢ ἡμιόλια τοῦ ἴσου τῷ τε πρώτῳ τετραγώνῳ καὶ τοῖς γνωμόνεσσιν τοῖς ἀπὸ τῶν λοιπῶν ἀφαιρημένοις, διότι τῶν τετραγώνων τῶν ἀπὸ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν χωρὶς τοῦ ἀπὸ τᾶς μεγίστας τετραγώνου μείζονά ἐντι ἢ τριπλάσια ὁ ἄρα κύλινδρος ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν ἐλάσσων ἢ ἡμιόλιός ἐστι τοῦ περιγεγραμμένου σχήματος· ὅπερ ἀδύνατον· τοῦ γὰρ Ψ κώνου ἡμιόλιός ἐστι, τὸ δὲ περιγεγραμμένον σχῆμα ἔλαττον ἐδείχθη τοῦ Ψ κώνου. Οὐκ ἄρα ἐστὶν ἔλασσον τὸ ἡμίσεον τοῦ σφαιροειδέος τοῦ Ψ κώνου. Ἐπεὶ δὲ οὕτε μεῖζόν ἐστι οὔτε ἔλασσον, ἴσον ἄρα ἐστίν.

Καὶ τοίνυν εἴ κα τὸ σφαιροειδὲς μὴ ὀρθῷ ποτὶ τὸν ἄξονα τῷ ἐπιπέδῳ διὰ τοῦ κέντρου τμαθῇ, ὁμοίως τὸ ἁμίσεον τοῦ σφαιροειδέος διπλάσιον ἐσσεῖται τοῦ ἀποτμάματος τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν.

Τετμάσθω γὰρ σχῆμα σφαιροειδές, τμαθέντος δὲ αὐτοῦ ἐπιπέδῳ ἄλλῳ διὰ τοῦ ἄξονος ὀρθῷ ποτὶ τὸ τέμνον ἐπίπεδον τοῦ μὲν σχήματος τομὰ ἔστω ἁ ΑΒΓ△ ὀξυγωνίου κώνου τομά, κέντρον δὲ αὐτᾶς τὸ Θ, τοῦ δε τετμακότος ἐπιπέδου τὸ σχῆμα ἔστω ἁ ΑΓ εὐθεῖα· ἐσσεῖται δʼ αὕτα διὰ τοῦ Θ ἀγμένα, ἐπεὶ τὸ ἐπίπεδον ὑπέκειτο διὰ τοῦ κέντρου ἄχθαι.

233
Ἐσσεῖται οὖν τις ὀξυγωνίου κώνου τομὰ περὶ διάμετρον τὰν ΑΓ, ἐπεὶ τὸ ἐπίπεδον τὸ ἀποτέμνον ὑπέκειτο οὐ ποτʼ ὀρθὰς εἶμεν τῷ ἄξονι ἀγμένον. Ἄχθων δή τινες αἱ ΚΛ, ΜΝ παρὰ τὰν ΑΓ ἐπιψαύουσαι τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς κατὰ τὰ Β, △, ἀπὸ δὲ τᾶν ΚΛ, ΜΝ ἐπίπεδα ἀνεστακέτω παράλληλα τῷ κατὰ τὰν ΑΓ· ἐπιψαύοντι δὴ ταῦτα τοῦ σφαιροειδέος κατὰ τὰ Β, △, καὶ ἁ Β△ ἐπιζευχθεῖσα πεσεῖται διὰ τοῦ Θ, καὶ ἐσσοῦνται τῶν τμαμάτων κορυφαὶ μὲν τὰ Β, △ σαμεῖα, ἄξονες δὲ αἱ ΒΘ, Θ△. Δυνατὸν δή ἐστιν κύλινδρον εὑρεῖν ἄξονα ἔχοντα τὰν ΒΘ, οὗ ἐν τᾷ ἐπιφανείᾳ ἐσσεῖται ἁ τοῦ ὀξυγωνίου κώνου τομὰ ἁ περὶ διάμετρον τὰν ΑΓ, εὑρεθέντος δὲ ἐσσεῖταί τις κυλίνδρου τόμος τὰν αὐτὰν βάσιν ἔχων τῷ ἡμισέῳ τοῦ σφαιροειδέος καὶ ἄξονα τὸν αὐτόν· πάλιν δὲ καὶ κῶνον εὑρεῖν δυνατόν ἐστι κορυφὰν ἔχοντα τὸ Β σαμεῖον, οὗ ἐν τᾷ ἐπιφανείᾳ ἐσσεῖται ἁ τοῦ ὀξυγωνίου κώνου τομὰ ἁ ἀπὸ διαμέτρου τᾶς ΑΓ. Εὑρεθέντος δὴ ἐσσεῖταί τι ἀπότμαμα κώνου τὰν αὐτὰν βάσιν ἔχον τῷ τμάματι καὶ ἄξονα τὸν αὐτόν· λέγω δὴ ὅτι τοῦ σφαιροειδέος τὸ ἡμίσεον διπλάσιόν ἐστι τοῦ κώνου τούτου.

Ἔστω δὴ ὁ Ψ κῶνος διπλάσιος τοῦ ἀποτμάματος τοῦ κώνου. Εἰ οὖν μή ἐστιν ἴσον τὸ ἡμίσεον τοῦ σφαιροειδέος τῷ Ψ κώνῳ, ἔστω πρῶτον, εἰ δυνατόν, μεῖζον. Ἐνέγραψα δή τι εἰς τὸ ἡμίσεον τοῦ σφαιροειδέος σχῆμα στερεὸν καὶ ἄλλο περιέγραψα ἐκ κυλίνδρου τόμων ὕψος ἴσον ἐχόντων συγκείμενον, ὥστε τὸ περιγραφὲν σχῆμα τοῦ ἐγγραφέντος

234
ὑπερέχειν ἐλάσσονι ἢ ἁλίκῳ ὑπερέχει τὸ ἁμίσεον τοῦ σφαιροειδέος τοῦ Ψ κώνου. Ὁμοίως δὴ τοῖς πρότερον δειχθήσεται τὸ ἐγγεγραμμένον σχῆμα ἐν τῷ ἡμισέῳ τοῦ σφαιροειδέος μεῖζον ἐὸν τοῦ Ψ κώνου καὶ ὁ τόμος ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦ μὲν Ψ κώνου ἡμιόλιος ἐών, τοῦ δὲ ἐγγεγραμμένου σχήματος ἐν τῷ ἡμισέῳ τοῦ σφαιροειδέος μείζων ἢ ἡμιόλιος· ὅπερ ἀδύνατον. Οὐκ ἐσσεῖται οὖν μεῖζον τὸ ἡμίσεον τοῦ σφαιροειδέος τοῦ Ψ κώνου.

Εἰ δὲ ἔλασσόν ἐστι τὸ ἡμίσεον τοῦ σφαιροειδέος τοῦ Ψ κώνου, ἐγγεγράφθω εἰς τὸ ἡμίσεον τοῦ σφαιροειδέος σχῆμα στερεόν, καὶ ἄλλο περιγεγράφθω ἐκ κυλίνδρων τόμων ὕψος ἴσον ἐχόντων συγκείμενον, ὥστε τὸ περιγραφὲν τοῦ ἐγγραφέντος ὑπερέχειν ἐλάσσονι ἢ ἁλίκῳ ὑπερέχει ὁ Ψ κῶνος τοῦ ἡμίσεος τοῦ σφαιροειδέος. Πάλιν οὖν ὁμοίως τοῖς πρότερον δειχθήσεται τὸ περιγεγραμμένον

235
σχῆμα ἔλασσον ἐὸν τοῦ Ψ κώνου καὶ ὁ τόμος τοῦ κυλίνδρου ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦ μὲν Ψ κώνου ἡμιόλιος ἐών, τοῦ δὲ περιγεγραμμένου σχήματος ἐλάσσων ἢ ἁμιόλιος· ὅπερ ἀδύνατον. Οὐκ ἐσσεῖται οὖν οὐδὲ ἔλασσον τὸ ἥμισυ τοῦ σφαιροειδέος τοῦ Ψ κώνου. Ἐπεὶ δὲ οὔτε μεῖζόν ἐστιν οὔτε ἔλασσον, ἴσον ἐστί. Φανερὸν οὖν ἐστιν ὃ ἔδει δεῖξαι.

Παντὸς σχήματος σφαιροειδέος ἐπιπέδῳ τμαθέντος μὴ διὰ τοῦ κέντρου ὀρθῷ ποτὶ τὸν ἄξονα τὸ ἔλαττον τμᾶμα ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν συναμφότερα τό τε ἡμίσεον τοῦ ἄξονος τοῦ σφαιροειδέος καὶ ὁ ἄξων τοῦ μείζονος τμάματος ποτὶ τὸν ἄξονα τὸν τοῦ μείζονος τμάματος.

Ἔστω γάρ τι τμᾶμα σφαιροειδέος σχήματος ἀποτετμαμένον ἐπιπέδῳ ὀρθῷ ποτὶ τὸν ἄξονα μὴ διὰ τοῦ κέντρου, τμαθέντος δὲ αὐτοῦ ἐπιπέδῳ ἄλλῳ διὰ τοῦ ἄξονος τοῦ μὲν σχήματος τομὰ ἔστω ἁ ΑΒΓ ὀξυγωνίου κώνου τομά, διάμετρος δὲ τᾶς τομᾶς καὶ ἄξων τοῦ σφαιροειδέος ἔστω ἁ ΒΖ, κέντρον δὲ τὸ Θ, τοῦ δὲ ἐπιπέδου τοῦ ἀποτέμνοντος τὸ τμᾶμα τομὰ ἔστω ἁ ΑΓ εὐθεῖα· ποιήσει δὲ αὕτα ὀρθὰς γωνιάς ποτὶ τὰν ΒΖ, ἐπεὶ τὸ ἐπίπεδον ὀρθὸν εἶμεν ποτὶ τὸν ἄξονα ὑπέκειτο· ἔστω δὲ τὸ τμᾶμα τὸ ἀποτετμαμένον, οὗ κορυφὰ τὸ Β σαμεῖον, ἔλασσον ἢ ἁμίσεον τοῦ σφαιροειδέος σχήματος, καὶ τᾷ ΒΘ ἴσα ἔστω ἁ ΖΗ. Δεικτέον ὅτι τὸ τμᾶμα, οὗ κορυφὰ

236
τὸ Β σαμεῖον, ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν ἁ △Η ποτὶ τὰν △Ζ.

Ἔστω δὴ κύλινδρος τὰν αὐτὰν βάσιν ἔχων τῷ ἐλάσσονι τμάματι καὶ ἄξονα τὸν αὐτόν, ἔστω δὲ καὶ κῶνος, ἐν ᾧ τὸ Ψ, ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν τοῦτον ἔχων τὸν λόγον, ὃν ἔχει ἁ △Η ποτὶ τὰν △Ζ· φαμὶ δὴ τὸν Ψ κῶνον ἴσον εἶμεν τῷ τμάματι τῷ κορυφὰν ἔχοντι τὸ Β σαμεῖον.

Εἰ γὰρ μή ἐστιν ἴσος, ἔστω πρῶτον, εἰ δυνατόν, ἐλάσσων. Ἐνέγραψα δὴ εἰς τὸ τμᾶμα σχῆμα στερεὸν καὶ ἄλλο περιέγραψα ἐκ κυλίνδρων ὕψος ἴσον ἐχόντων συγκείμενον, ὥστε τὸ περιγραφὲν σχῆμα τοῦ ἐγγραφέντος ὑπερέχειν ἐλάσσονι ἢ ἁλίκῳ μεῖζόν ἐστι τὸ τοῦ σφαιροειδέος τμᾶμα τοῦ Ψ κώνου. Ἐπεὶ οὖν μεῖζον ἐὸν τὸ περιγεγραμμένον σχῆμα τοῦ τμάματος

237
ἐλάσσονι ὑπερέχει τοῦ ἐγγεγραμμένου ἢ τὸ τμᾶμα τοῦ κώνου, δῆλον ὅτι μεῖζόν ἐστι καὶ τὸ ἐγγεγραμμένον σχῆμα τοῦ Ψ κώνου. Ἔστω δὴ τρίτον μέρος τᾶς Β△ ἁ ΒΡ. Ἐπεὶ οὖν ἁ μὲν ΒΗ τριπλασία ἐστὶν τᾶς ΒΘ, ἁ δὲ Β△ τᾶς ΒΡ, δῆλον ὅτι τριπλασία ἐστὶν ἁ △Η τᾶς ΘΡ· ἔχει δὴ ὁ μὲν κύλινδρος ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὰν Β△ ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν καὶ ἄξονα τὸν αὐτὸν τοῦτον τὸν λόγον, ὃν ἔχει ἁ △Η ποτὶ τὰν ΘΡ. Ὁ δὲ κῶνος ὁ εἰρημένος ποτὶ τὸν Ψ κῶνον τὸν αὐτὸν λόγον ἔχει, ὃν ἁ △Ζ ποτὶ τὰν △Η· ἕξει οὖν ἀνομοίως τῶν λόγων τεταγμένων ὁ κύλινδρος ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν ποτὶ τὸν Ψ κῶνον τὸν αὐτὸν λόγον, ὃν ἁ △Ζ ποτὶ τὰν ΘΡ. Ἔστων δὴ γραμμαὶ κείμεναι, ἐφʼ ἇν τὰ Ξ, Ν, τῷ μὲν πλήθει ἴσαι τοῖς τμαμάτεσσιν τοῖς τᾶς Β△, τῷ δὲ μεγέθει ἑκάστα ἴσα τᾷ Ζ△, ἔστω δὲ καὶ τᾶν ΞΟ ἑκάστα ἴσα τᾷ Β△ τᾶν οὖν ΝΟ ἑκάστα διπλασία ἐσσεῖται τᾶς Θ△. Παραπεπτωκέτω δὴ παῤ ἑκάσταν αὐτᾶν χωρίον τι πλάτος ἔχον ἴσον τᾷ Β△, ὥστε εἶμεν ἕκαστον τῶν ἐχόντων τὰς διαμέτρους τετράγωνον. Ἀφαιρήσθω δὴ ἀπὸ μὲν τοῦ πρώτου γνώμων πλάτος ἔχων ἴσον τᾷ ΒΕ, ἀπὸ δὲ τοῦ δευτέρου πλάτος ἔχων ἴσον τᾷ ΒΧ, καὶ ἀφʼ ἑκάστου τὸν αὐτὸν τρόπον εἷς ἀπὸ τοῦ ἑπομένου χωρίου γνώμων ἀφαιρήσθω πλάτος ἔχων ἑνὶ τμάματι ἔλασσον τοῦ πλάτεος τοῦ πρὸ αὐτοῦ γνώμονος ἀφαιρημένου· ἐσσεῖται δὴ ὁ μὲν ἀπὸ τοῦ πρώτου χωρίου γνώμων ἀφαιρημένος ἴσος τῷ περιεχομένῳ ὑπὸ τᾶν ΒΕ, ΕΖ, καὶ τὸ λοιπὸν χωρίον παραπεπτωκὸς παρὰ τὰν
238
ΝΟ ὑπερβάλλον εἴδει τετραγώνῳ τὰν τοῦ ὑπερβλήματος πλευρὰν ἔχον ἴσαν τᾷ △Ε, ὁ δὲ ἀπὸ τοῦ δευτέρου χωρίου γνώμων ἀφαιρημένος ἴσος τῷ περιεχομένῳ ὑπὸ τᾶν ΖΧ, ΧΒ, καὶ τὸ λοιπὸν χωρίον παρὰ τὰν ΝΟ παραπεπτωκὸς ὑπερβάλλον εἴδει τετραγώνῳ, καὶ τὰ λοιπὰ ὁμοίως τούτοις ἑξοῦντι. Διάχθω δὲ τὰ ἐπίπεδα πάντων τῶν κυλίνδρων, ἐξ ὧν σύγκειται τὸ ἐγγεγραμμένον σχῆμα ἐν τῷ τμάματι, ποτὶ τὰν ἐπιφάνειαν τοῦ κυλίνδρου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν· ἐσσεῖται δὴ ὁ ὅλος κύλινδρος διαιρημένος εἰς κυλίνδρους τῷ μὲν πλήθει ἴσους τοῖς ἐν τῷ περιγεγραμμένῳ σχήματι, τῷ δὲ μεγέθει ἴσους τῷ μεγίστῳ αὐτῶν, Ὁ δὴ πρῶτος κύλινδρος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ὁ ἔχων ἄξονα τὰν △Ε ποτὶ τὸν πρῶτον κύλινδρον τῶν ἐν τῷ ἐγγεγραμμένῳ σχήματι τὸν ἔχοντα ἄξονα τὰν △Ε τὸν αὐτὸν ἔχει λόγον, ὃν τὸ τετράγωνον τὸ ἀπὸ τᾶς △Γ ποτὶ τὸ ἀπὸ τᾶς ΚΕ. Οὗτος δέ ἐστιν ὁ αὐτὸς τῷ ὃν ἔχει τὸ ὑπὸ τᾶν Β△, △Ζ περιεχόμενον ποτὶ τὸ ὑπὸ τᾶν ΒΕ, ΕΖ· ἔχει οὖν ὁ κύλινδρος ποτὶ τὸν κύλινδρον τὸν αὐτὸν λόγον, ὃν τὸ πρῶτον χωρίον ποτὶ τὸν γνώμονα τὸν ἀπʼ αὐτοῦ ἀφαιρημένον· ὁμοίως δὲ καὶ τῶν ἄλλων κυλίνδρων τῶν ἐν τῶ ὅλῳ κυλίνδρῳ ἕκαστος ἄξονα ἔχων τὰν ἴσαν τᾷ △Ε ποτὶ τὸν κατʼ αὐτὸν κύλινδρον τὸν ἐν τῷ ἐγγεγραμμένῳ σχήματι ἄξονα ἔχοντα τὸν αὐτὸν τοῦτον ἕξει τὸν λόγον, ὃν τὸ ὁμοίως τεταγμένον αὐτῷ χωρίον ποτὶ τὸν γνώμονα τὸν ἀπʼ αὐτοῦ ἀφαιρημένον, Ἐντὶ οὖν μεγέθεά τινα οἱ κύλινδροι οἱ ἐν τῷ ὅλῳ κυλίνδρῳ καὶ ἄλλα μεγέθεα τὰ χωρία τὰ παρὰ τὰν ΞΝ παραπεπτωκότα πλάτος ἔχοντα
239
τὰν ἴσαν τᾷ Β△, τῷ δὲ πλήθει ἴσα τοῖς κυλίνδροις καὶ κατὰ δύο τὸν αὐτὸν ἔχοντα λόγον, λέγονται δὲ οἵ τε κύλινδροι ποτʼ ἄλλους κυλίνδρους τοὺς ἐν τῷ ἐγγεγραμμένῳ σχήματι, ὁ δὲ ἔσχατος οὐδὲ ποθʼ ἓν λέγεται, καὶ τὰ χωρία ποτʼ ἄλλα χωρία, τοὺς ἀπʼ αὐτῶν ἀφαιρημένους, τὰ ὁμόλογα ἐν τοῖς αὐτοῖς λόγοις, τὸ δὲ ἔσχατον χωρίον οὐδὲ ποθ᾿ ἓν λέγεται· δῆλον οὖν ὅτι καὶ πάντες οἱ κύλινδροι ποτὶ πάντας τοὺς ἑτέρους τὸν αὐτὸν ἑξοῦντι λόγον, ὃν πάντα τὰ χωρία ποτὶ πάντας τοὺς γνώμονας ὁ ἄρα κύλινδρος ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν ποτὶ τὸ σχῆμα τὸ ἐγγεγραμμένον ἐν τῷ τμάματι τὸν αὐτὸν ἕξει λόγον, ὃν πάντα τὰ χωρία ποτὶ πάντας τοὺς γνώμονας. Καὶ ἐπεί ἐντί τινες γραμμαὶ ἴσαι κείμεναι, ἐφʼ ἆν τὰ Ν, Ο, καὶ παῤ ἑκάσταν παραπέπτωκέν τι χωρίον ὑπερβάλλον εἴδει τετραγώνῳ, αἱ δὲ πλευραὶ τῶν ὑπερβλημάτων τῷ ἴσῳ ἀλλαλᾶν ὑπερέχοντι, καὶ ἁ ὑπεροχὰ ἴσα ἐστὶ τᾷ ἐλαχίστᾳ, καὶ ἄλλα ἐντὶ χωρία παρὰ τὰν ΞΝ παραπεπτωκότα, πλάτος δὲ ἔχοντα τὰς ἴσας τᾷ Β△, τῷ μὲν πλήθει ἴσα τούτοις, τῷ δὲ μεγέθει ἕκαστον ἴσον τῷ μεγίστῳ, δῆλον ὡς σύμπαντα τὰ χωρία, ὧν ἐστιν ἕκαστον ἴσον τῷ μεγίστῳ, ποτὶ πάντα τὰ ἕτερα χωρία ἐλάσσω λόγον ἔχοντι τοῦ ὃν ἔχει ἁ ΞΝ ποτὶ τὰν ἴσαν συναμφοτέρᾳ τᾷ τε ἡμισέᾳ τᾶς ΝΟ καὶ τῷ τρίτῳ μέρει τᾶς ΞΟ. Φανερὸν οὖν ὅτι τὰ αὐτὰ χωρία ποτὶ πάντας τοὺς γνώμονας μείζονα λόγον ἑξοῦντι τοῦ ὃν ἔχει ἁ ΞΝ ποτὶ τὰν ἴσαν συναμφοτέραις τᾷ τε ἡμισέᾳ τᾶς ΝΟ καὶ δυοῖς τριταμορίοις τᾶς ΞΟ· ὁ ἄρα κύλινδρος ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν ποτὶ τὸ σχῆμα τὸ ἐγγεγραμμένον ἐν τῷ τμάματι μείζονα λόγον ἔχει ἢ ἁ ΞΝ ποτὶ τὰν ἴσαν συναμφοτέραις τᾷ τε ἡμισέᾳ τᾶς ΝΟ καὶ δυοῖς τριταμορίοις τᾶς
240
ΞΟ. Ἔστιν δὲ τᾷ μὲν ΞΝ ἴσα ἁ △Ζ, τᾷ δὲ ἡμισέᾳ τᾶς ΝΟ ἁ △Θ, τὰ δὲ δύο τριταμόρια τᾶς ΞΟ ἁ △Ρ· ὅλος ἄρα ὁ κύλινδρος ποτὶ τὸ σχῆμα τὸ ἐγγεγραμμένον ἐν τῷ τμάματι μείζονα λόγον ἔχει ἢ ὃν ἔχει ἁ △Ζ ποτὶ τὰν ΘΡ. Ὃν δὲ λόγον ἔχει ἁ △Ζ ποτὶ τὰν ΘΡ, τοῦτον ἐδείχθη ἔχων ὁ αὐτὸς κύλινδρος ποτὶ τὸν Ψ κῶνον· μείζονα οὖν ἕξει λόγον ποτὶ τὸ ἐγγεγραμμένον σχῆμα ἢ ποτὶ τὸν Ψ κῶνον ὅπερ ἀδύνατον· ἐδείχθη γὰρ μεῖζον ἐὸν τὸ ἐγγεγραμμένον σχῆμα τοῦ Ψ κώνου. Οὐκ ἄρα ἐστὶ μεῖζον τὸ τοῦ σφαιροειδέος τμᾶμα τοῦ Ψ κώνου.

Ἀλλʼ ἔστω, εἰ δυνατόν, ἔλασσον. Πάλιν δὴ ἐγγεγράφθω τι εἰς τὸ τμᾶμα σχῆμα στερεόν, καὶ ἄλλο περιγεγράφθω ἐκ κυλίνδρων ὕψος ἴσον ἐχόντων συγκείμενον, ὥστε τὸ περιγεγραμμένον σχῆμα τοῦ ἐγγραφέντος ὑπερέχειν ἐλάσσονι ἢ ἁλίκῳ μείζων ἐστὶν ὁ Ψ κῶνος τοῦ τμάματος, καὶ τὰ ἄλλα τὰ αὐτὰ τοῖς πρότερον κατεσκευάσθω. Ἐπεὶ οὖν ἔλασσόν ἐστι τὸ ἐγγεγραμμένον σχῆμα τοῦ τμάματος, καὶ ἐλάσσονι ὑπερέχει τὸ περιγραφὲν ἢ ὁ Ψ κῶνος τοῦ τμάματος, δῆλον ὅτι καὶ τὸ περιγραφὲν σχῆμα ἔλασσόν ἐστι τοῦ Ψ κώνου. Πάλιν δὴ ὁ πρῶτος κύλινδρος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ὁ ἔχων ἄξονα τὰν △Ε ποτὶ τὸν πρῶτον κύλινδρον τῶν ἐν τῷ περιγεγραμμένῳ σχήματι τὸν ἔχοντα ἄξονα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν τὸ ἔσχατον χωρίον τῶν παρὰ τὰν ΞΝ παραπεπτωκότων πλάτος ἐχόντων ἴσον τᾷ Β△ ποθʼ αὑτό· ἑκάτερα γὰρ ἴσα ἐστίν· ὁ δὲ δεύτερος κύλινδρος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ἄξονα ἔχων ἴσον τᾷ △Ε ποτὶ τὸν κύλινδρον τὸν κατʼ αὐτὸν ἐόντα τῶν ἐν τῷ περιγεγραμμένῳ σχήματι τὸν αὐτὸν ἔχει λόγον, ὃν τὸ πρῶτον χωρίον τῶν

241
παρὰ τὰν ΞΝ παραπεπτωκότων πλάτος ἐχόντων ἴσον τᾷ Β△ ποτὶ τὸν γνώμονα τὸν ἀφαιρημένον ἀπʼ αὐτοῦ, καὶ τῶν ἄλλων δὲ κυλίνδρων ἕκαστος τῶν ἐν τῷ ὅλῳ κυλίνδρῳ ἄξονα ἐχόντων ἴσον τᾷ △Ε ποτὶ τὸν κατʼ αὐτὸν κύλινδρον τῶν ἐν τῷ περιγεγραμμένῳ σχήματι τὸν αὐτὸν λόγον, ὃν τὸ ὁμόλογον χωρίον αὐτῷ τῶν παρὰ τὰν ΞΝ παραπεπτωκότων ποτὶ τὸν γνώμονα τὸν ἀπʼ αὐτοῦ ἀφαιρημένον πρώτου λεγομένου τοῦ ἐσχάτου· καὶ πάντες οὖν οἱ κύλινδροι οἱ ἐν τῷ ὅλῳ κυλίνδρῳ ποτὶ πάντας τοὺς κυλίνδρους τοὺς ἐν τῷ περιγεγραμμένῳ σχήματι τὸν αὐτὸν ἑξοῦντι λόγον, ὃν πάντα τὰ χωρία τὰ παρὰ τὰν ΞΝ παραπεπτωκότα ποτὶ τὸ ἴσον τῷ τε ἐσχάτῳ κειμένῳ χωρίῳ καὶ τοῖς γνωμόνεσσι τοῖς ἀφαιρημένοις ἀπὸ τῶν ἄλλων διὰ τὰ αὐτὰ τοῖς πρότερον. Ἐπεὶ οὖν δέδεικται ὅτι τὰ χωρία πάντα τὰ παρὰ τὰν ΞΝ παραπεπτωκότα ποτὶ τὰ χωρία πάντα τὰ παρὰ τὰν ΝΟ παραπεπτωκότα ὑπερβάλλοντα εἴδει τετραγώνῳ χωρὶς τοῦ μεγίστου μείζονα λόγον ἔχοντι τοῦ ὃν ἔχει ἁ ΞΝ ποτὶ τὰν ἴσαν συναμφοτέραις τᾷ τε ἡμισέᾳ τᾶς ΝΟ καὶ τῷ τρίτῳ μέρει τᾶς ΞΟ, δῆλον ὅτι τὰ αὐτὰ χωρία ποτὶ τὰ λοιπά, ἅ ἐντι ἴσα τῷ ἐσχάτῳ χωρίῳ κειμένῳ καὶ τοῖς γνωμόνεσσι τοῖς ἀπὸ τῶν λοιπῶν ἀφαιρουμένοις, ἐλάσσονα λόγον ἔχοντι τοῦ ὃν ἔχει ἁ ΞΝ ποτὶ τὰν ἴσαν συναμφοτέραις τᾷ τε ἡμισέᾳ τᾶς ΝΟ καὶ δυσὶ τριταμορίοις τᾶς ΞΟ· δῆλον οὖν ὅτι καὶ ὁ κύλινδρος ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν ποτὶ τὸ σχῆμα τὸ περιγεγραμμένον ἐλάσσονα λόγον ἔχει τοῦ ὃν ἔχει ἁ Ζ△ ποτὶ τὰν ΘΡ. Ὃν δὲ λόγον ἔχει ἁ △Ζ ποτὶ τὰν ΘΡ, τοῦτον ἔχει ὁ εἰρημένος κύλινδρος ποτὶ τὸν Ψ κῶνον· ἐλάσσονα
242
ἄρα λόγον ἔχει ὁ αὐτὸς κύλινδρος ποτὶ τὸ περιγεγραμμένον σχῆμα ἢ ποτὶ τὸν Ψ κῶνον· ὅπερ ἀδύνατον· ἐδείχθη γὰρ ἔλασσον ἐὸν τὸ περιγεγραμμένον σχῆμα τοῦ Ψ κώνου. Οὐκ ἄρα ἐστὶν ἔλασσον τοῦ κώνου. Ἐπεὶ δὲ οὔτε μεῖζον οὔτε ἔλασσον, ἴσον ἄρα ἐστίν.

Καὶ τοίνυν εἴ κα μὴ ὀρθῷ ποτὶ τὸν ἄξονα τμαθῇ τὸ σφαιροειδὲς μηδὲ διὰ τοῦ κέντρου, τὸ ἔλασσον αὐτοῦ τμᾶμα ποτὶ τὸ ἀπότμαμα τοῦ κώνου τὸ βάσιν ἔχον τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἕξει τὸν λόγον, ὃν ἁ ἴσα συναμφοτέρᾳ τᾷ τε ἡμισέᾳ τᾶς ἐπιζευγνυούσας τὰς κορυφὰς τῶν γενομένων τμαμάτων καὶ τῷ ἄξονι τοῦ μείζονος τμάματος ποτὶ τὸν ἄξονα τοῦ μείζονος τμάματος.

Τετμάσθω γάρ τι σχῆμα σφαιροειδές, ὡς εἴρηται, καὶ τμαθέντος αὐτοῦ ἄλλῳ ἐπιπέδῳ διὰ τοῦ ἄξονος ὀρθῷ ποτὶ τὸ τέμνον ἐπίπεδον τοῦ μὲν σχήματος τομὰ ἔστω ἁ ΑΒΓ ὀξυγωνίου κώνου

243
τομά, τοῦ δὲ τέμνοντος ἐπιπέδου τὸ σχῆμα ἁ ΓΑ εὐθεῖα, καὶ παρὰ τὰν ΑΓ ἄχθων αἱ ΠΡ, ΣΤ ἐπιψαύουσαι τᾶς τοῦ κώνου τομᾶς κατὰ τὰ Β, Ζ, καὶ ἀνεστακέτω ἀπʼ αὐτᾶν ἐπίπεδα παράλληλα τῷ κατὰ τὰν ΑΓ· ἐπιψαυσοῦντι δὲ ταῦτα τοῦ σφαιροειδέος κατὰ τὰ Β, Ζ, καὶ ἐσσοῦνται κορυφαὶ τῶν τμαμάτων τὰ Β, Ζ. Ἄχθω οὖν ἁ τὰς κορυφὰς τῶν τμαμάτων ἐπιζευγνύουσα καὶ ἔστω ἁ ΒΖ· πεσεῖται δὲ οὕτα διὰ τοῦ κέντρου· καὶ ἔστω κέντρον τοῦ σφαιροειδέος καὶ τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς τὸ Θ. Ἐπεὶ οὖν ὑπέκειτο μὴ ὀρθῷ ποτὶ τὸν ἄξονα τετμᾶσθαι τῷ ἐπιπέδῳ τὸ σχῆμα, ἁ τομά ἐστιν ὀξυγωνίου κώνου τομὰ καὶ διάμετρος αὐτᾶς ἁ ΓΑ. Λελάφθω οὖν ὅ τε κύλινδρος ὁ ἄξονα ἔχων ἐπʼ εὐθείας τᾷ Β△, οὗ ἐν τᾷ ἐπιφανείᾳ ἐσσεῖται ἁ τοῦ ὀξυγωνίου κώνου τομὰ ἁ περὶ διάμετρον τὰν ΑΓ, καὶ ὁ κῶνος ὁ κορυφὰν ἔχων τὸ Β σαμεῖον, οὗ ἐν τᾶ ἐπιφανείᾳ ἐσσεῖται ἁ τοῦ ὀξυγωνίου κώνου τομὰ ἁ περὶ διάμετρον τὰν ΑΓ· ἐσσεῖται δὴ τόμος τις κυλίνδρου τὰν αὐτὰν βάσιν ἔχων τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν καὶ ἀπότμαμα κώνου τὰν αὐτὰν βάσιν ἔχον τῷ τμάματι καὶ ἄξονα τὸν αὐτόν. Δεικτέον ὅτι τὸ τμᾶμα τοῦ σφαιροειδέος, οὗ κορυφὰ τὸ Β, ποτὶ τὸ ἀπότμαμα τοῦ κώνου τὸ βάσιν ἔχον τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἕξει τὸν λόγον, ὃν ἁ △Η ποτὶ τὰν △Ζ· ἴσα δὲ ἔστω ἁ ΖΗ τᾷ ΘΖ.

Λελάφθω δή τις κῶνος, ἐν ᾧ τὸ Ψ, ποτὶ τὸ ἀπότμαμα τοῦ κώνου τὸ βάσιν ἔχον τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἔχων τὸν λόγον, ὃν ἔχει ἁ △Η ποτὶ τὰν △Ζ. Εἰ οὖν μή ἐστιν ἴσον τὸ τμᾶμα τοῦ σφαιροειδέος τῷ

244
Ψ κώνῳ, ἔστω πρῶτον, εἰ δυνατόν, μεῖζον. Ἐνέγραψα δὴ εἰς τὸ τμᾶμα τοῦ σφαιροειδέος σχῆμα στερεὸν καὶ ἄλλο περιέγραψα ἐκ κυλίνδρων τόμων ὕψος ἴσον ἐχόντων συγκείμενον, ὥστε τὸ περιγραφὲν σχῆμα τοῦ ἐγγραφέντος ὑπερέχειν ἐλάσσονι ἢ ἁλίκῳ ὑπερέχει τὸ τμᾶμα τοῦ σφαιροειδέος τοῦ Ψ κώνου. Ὁμοίως δὴ τῷ προτέρῳ δειχθήσεται τὸ ἐγγεγραμμένον σχῆμα μεῖζον ἐὸν τοῦ Ψ κώνου καὶ ὁ τόμος τοῦ κυλίνδρου ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν ποτὶ τὸ ἐγγεγραμμένον σχῆμα μείζονα λόγον ἔχων ἢ ποτὶ τὸν Ψ κῶνον· ὅ ἐστιν ἀδύνατον. Οὐκ ἐσσεῖται οὖν τὸ τοῦ σφαιροειδέος τμᾶμα τοῦ Ψ κώνου μεῖζον.

Ἀλλʼ ἔστω, εἰ δυνατόν, ἔλασσον. Ἐγγεγράφθω δὴ πάλιν εἰς τὸ τμᾶμα σχῆμα στερεὸν καὶ ἄλλο περιγεγράφθω ἐκ κυλίνδρου τόμων ὕψος ἴσον ἐχόντων συγκείμενα, ὥστε τὸ περιγραφὲν σχῆμα τοῦ ἐγγραφέντος ὑπερέχειν ἐλάσσονι ἢ ἁλίκῳ ὑπερέχει ὁ Ψ κῶνος τοῦ τμάματος. Πάλιν δὴ διὰ τῶν αὐτῶν δειχθήσεται τὸ περιγεγραμμένον σχῆμα ἔλασσον τοῦ Ψ κώνου καὶ ὁ τόμος τοῦ κυλίνδρου ὁ βάσιν ἔχων τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν ποτὶ τὸ περιγεγραμμένον σχῆμα ἐλάσσονα λόγον ἔχων ἢ ποτὶ τὸν Ψ κῶνον· ὅ ἐστιν ἀδύνατον. Οὐκ ἐσσεῖται οὖν οὐδὲ ἔλασσον τὸ τμᾶμα τοῦ κώνου. Φανερὸν οὖν ὃ ἔδει δεῖξαι.

Παντὸς σχήματος σφαιροειδέος ἐπιπέδῳ τμαθέντος ὀρθῷ ποτὶ τὸν ἄξονα μὴ διὰ τοῦ κέντρου τὸ μεῖζον τμᾶμα ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν τῷ τμάματι

245
καὶ ἄξονα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν ἁ ἴσα συναμφοτέραις τᾷ τε ἡμισέᾳ τοῦ ἄξονος τοῦ σφαιροειδέος καὶ τῷ τοῦ ἐλάσσονος τμάματος ἄξονι ποτὶ τὸν τοῦ ἐλάσσονος τμάματος ἄξονα.

Τετμάσθω τι σφαιροειδές, ὡς εἴρηται, τμαθέντος δὲ αὐτοῦ ἐπιπέδῳ ἄλλῳ διὰ τοῦ ἄξονος ὀρθῷ ποτὶ τὸ τέμνον ἐπίπεδον τοῦ μὲν σχήματος τομὰ ἔστω ἁ ΑΒΓ ὀξυγωνίου κώνου τομά, διάμετρος δὲ αὐτᾶς καὶ ἄξων τοῦ σχήματος ἁ Β△, τοῦ δὲ τέμνοντος ἐπιπέδου ἁ ΓΑ εὐθεῖα· ἐσσεῖται δὲ αὕτα ποτʼ ὀρθὰς τᾷ Β△ ἔστω δὲ μεῖζον τῶν τμαμάτων, οὗ κορυφὰ τὸ Β, καὶ κέντρον τοῦ σφαιροειδέος τὸ Θ. Ποτικείσθω δὴ ἁ △Η τᾷ △Θ ἴσα καὶ ἁ ΒΖ τᾷ αὐτᾷ ἴσα· δεικτέον ὅτι τὸ τμᾶμα τοῦ σφαιροειδέος, οὗ κορυφὰ τὸ Β, ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν ἔχει ἁ ΕΗ ποτὶ τὰν Ε△.

246

Τετμάσθω δὴ τὸ σφαιροειδὲς ἐπιπέδῳ διὰ τοῦ κέντρου ὀρθῷ ποτὶ τὸν ἄξονα, καὶ ἀπὸ τοῦ γενομένου κύκλου κῶνος ἔστω κορυφὰν ἔχων τὸ △ σαμεῖον· ἔστιν δὴ τὸ μὲν ὅλον σφαιροειδὲς διπλάσιον τοῦ τμάματος τοῦ βάσιν ἔχοντος τὸν κύκλον τὸν περὶ διάμετρον τὰν ΚΛ, κορυφὰν δὲ τὸ △ σαμεῖον, τὸ δὲ εἰρημένον τμᾶμα διπλάσιον τοῦ κώνου τοῦ βάσιν ἔχοντος τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτόν· δέδεικται γὰρ ταῦτα· τὸ ὅλον οὖν σφαιροειδὲς τετραπλάσιόν ἐστι τοῦ κώνου τοῦ εἰρημένου. Ὁ δὲ κῶνος οὗτος ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, κορυφὰν δὲ τὸ △ σαμεῖον, τὸν συγκείμενον ἔχει λόγον ἔκ τε τοῦ ὃν ἔχει ἁ Θ△ ποτὶ τὰν Ε△, καὶ ἐκ τοῦ ὃν ἔχει τὸ ἀπὸ τᾶς ΚΘ τετράγωνον ποτὶ τὸ ἀπὸ τᾶς ΕΑ· ὃν δὲ λόγον ἔχει τὸ ἀπὸ τᾶς ΚΘ ποτὶ τὸ ἀπὸ τᾶς ΕΑ, ὁ αὐτός ἐστι τῷ ὃν ἔχει τὸ ὑπὸ ΒΘ, Θ△ ποτὶ τὸ ὑπὸ τᾶν ΒΕ, Ε△. Ὃν δὴ λόγον ἔχει ἁ Θ△ ποτὶ τὰν Ε△, τοῦτον ἐχέτω ἁ Ξ△ ποτὶ τὰν Θ△· ἕξει οὖν καὶ τὸ περιεχόμενον ὑπὸ τᾶν Ξ△, ΒΘ ποτὶ τὸ ὑπὸ τᾶν ΒΘ, Θ△, ὃν ἁ △Θ ποτὶ τὰν △Ε. Ὁ δὲ συγκείμενος λόγος ἔκ τε τοῦ ὃν ἔχει τὸ ὑπὸ Ξ△, ΘΒ ποτὶ τὸ ὑπὸ ΒΘ△, καὶ ἐκ τοῦ ὃν ἔχει τὸ ὑπὸ τᾶν ΒΘ, Θ△ ποτὶ τὸ ὑπὸ τᾶν ΒΕ, Ε△ ὁ αὐτός ἐστι τῷ ὃν ἔχει τὸ περιεχόμενον ὑπὸ τᾶν Ξ△, ΒΘ ποτὶ τὸ ὑπὸ τᾶν ΒΕ, Ε△· ἔχει οὖν ὁ μὲν κῶνος ὁ βάσιν ἔχων τὸν κύκλον τὸν περὶ διάμετρον τὰν ΚΛ, κορυφὰν δὲ τὸ △ σαμεῖον, ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, κορυφὰν δὲ τὸ △ σαμεῖον, τὸν αὐτὸν λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν Ξ△, ΒΘ ποτὶ τὸ ὑπὸ τᾶν ΒΕ, Ε△. Ὁ δὲ κῶνος ὁ βάσιν ἔχων τὸν κύκλον τὸν περὶ διάμετρον τὰν ΑΓ, κορυφὰν δὲ τὸ △ σαμεῖον, ποτὶ

247
τὸ τμᾶμα τοῦ σφαιροειδέος τὸ βάσιν ἔχον τὰν αὐτὰν αὐτῷ καὶ ἄξονα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν ΒΕ, Ε△ ποτὶ τὸ περιεχόμενον ὑπὸ ΖΕ, Ε△ τουτέστιν ἁ ΒΕ ποτὶ ΕΖ· τὸ γὰρ ἔλασσον ἢ ἡμίσεον τοῦ σφαιροειδέος ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν δέδεικται τοῦτον ἔχον τὸν λόγον, ὃν ἁ συναμφοτέραις ἴσα τᾷ τε ἡμισέᾳ τοῦ ἄξονος τοῦ σφαιροειδέος καὶ τῷ ἄξονι τῷ τοῦ μείζονος τμάματος ποτὶ τὸν ἄξονα τὸν τοῦ μείζονος τμάματος, οὗτος δέ ἐστιν ὃν ἔχει ἁ ΖΕ ποτὶ τὰν ΒΕ· ὁ ἄρα κῶνος ὁ ἐν τῷ ἡμισέῳ τοῦ σφαιροειδέος ποτὶ τὸ τμᾶμα τοῦ σφαιροειδέος τὸ ἔλασσον τοῦ ἡμίσεος τὸν αὐτὸν ἔχει λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν Ξ△, ΒΘ ποτὶ τὸ ὑπὸ τᾶν ΖΕ, Ε△. Ἐπεὶ οὖν τὸ μὲν ὅλον σφαιροειδὲς ποτὶ τὸν κῶνον τὸν ἐν τῷ ἡμισέῳ τοῦ σφαιροειδέος τὸν αὐτὸν ἔχει λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν ΖΗ, Ξ△ ποτὶ τὸ ὑπὸ τᾶν ΒΘ, Ξ△ τετραπλάσιον γὰρ ἑκάτερον, ὁ δὲ κῶνος ὁ ἐν τῷ ἡμισέῳ τοῦ σφαιροειδέος ποτὶ τὸ τμᾶμα τὸ ἔλασσον ἢ τὸ ἡμίσεον τοῦ σφαιροειδέος τοῦτον ἔχει τὸν λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν Ξ△, ΒΘ ποτὶ τὸ ὑπὸ τᾶν ΖΕ, Ε△, ἔχοι κα καὶ τὸ ὅλον σφαιροειδὲς ποτὶ τὸ τμᾶμα τὸ ἔλασσον αὐτοῦ τὸν αὐτὸν λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν ΖΗ, Ξ△ ποτὶ τὸ ὑπὸ τᾶν ΖΕ△ ὥστε καὶ τὸ μεῖζον τμᾶμα τοῦ σφαιροειδέος ποτὶ τὸ ἔλασσον τὸν αὐτὸν λόγον ἔχει, ὃν ἁ ὑπεροχά, ᾇ ὑπερέχει τὸ περιεχόμενον ὑπὸ τᾶν ΖΗ, Ξ△ τοῦ ὑπὸ τᾶν ΖΕ, Ε△, ποτὶ τὸ ὑπὸ τᾶν ΖΕ△. Ὑπερέχει δὲ τὸ ὑπὸ τᾶν ΖΗ, Ξ△ τοῦ ὑπὸ τᾶν ΖΕ, Ε△ τῷ τε ὑπὸ τᾶν Ξ△, ΕΗ περιεχομένῳ καὶ τῷ
248
ὑπὸ τᾶν ΖΕ, ΞΕ· ἔχει ἄρα τὸ μεῖζον τμᾶμα τοῦ σφαιροειδέος ποτὶ τὸ ἔλασσον τὸν αὐτὸν λόγον, ὃν τὸ ἴσον ἀμφοτέροις τῷ τε περιεχομένῳ ὑπὸ τᾶν Ξ△, ΕΗ καὶ τῷ ὑπὸ τᾶν ΖΕ, ΞΕ ποτὶ τὸ περιεχόμενον ὑπὸ τᾶν ΖΕ, Ε△. Τὰ δὲ ἔλασσον τμᾶμα τοῦ σφαιροειδέος ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν αὐτῷ καὶ ἄξονα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν ΖΕ, Ε△ ποτὶ τὸ ὑπὸ τᾶν ΒΕ△ τὸν γὰρ αὐτὸν ἔχει λόγον, ὃν ἁ ΖΕ ποτὶ τὰν ΒΕ, ὁ δὲ κῶνος ὁ ἐν τῷ ἐλάσσονι τμάματι ποτὶ τὸν κῶνον τὸν ἐν τῷ μείζονι τμάματι τὸν αὐτὸν ἔχει λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν ΒΕ, Ε△ ποτὶ τὸ ἀπὸ τᾶς ΒΕ τετράγωνον· τὸν γὰρ τῶν ὑψέων λόγον ἔχοντι οἱ κῶνοι, ἐπεὶ βάσιν ἔχοντι τὰν αὐτάν· ἔχοι οὖν κα τὸ μεῖζον τμᾶμα τοῦ σφαιροειδέος ποτὶ τὸν κῶνον τὸν ἐν αὐτῷ ἐγγεγραμμένον ὃν τὸ ἴσον ἀμφοτέροις τῷ τε περιεχομένῳ ὑπὸ τᾶν Ξ△, ΕΗ καὶ τῷ ὑπὸ τᾶν ΖΕ, ΞΕ ποτὶ τὸ τετράγωνον τὸ ἀπὸ τᾶς ΒΕ. Οὗτος δὲ ὁ αὐτός ἐστι τῷ ὃν ἔχει ἁ ΕΗ ποτὶ τὰν Ε△· τὸ γὰρ ὑπὸ τᾶν Ξ△, ΕΗ ποτὶ τὸ ὑπὸ τὰν Ξ△, Ε△ τοῦτον ἔχει τὸν λόγον, ὃν ἁ ΕΗ ποτὶ τὰν Ε△, καὶ τὸ ὑπὸ τᾶν ΞΕ, ΖΕ περιεχόμενον ποτὶ τὸ ὑπὸ τᾶν ΖΕ, ΘΕ τοῦτον ἔχει τὸν λόγον, ὃν ἁ ΕΗ ποτὶ τὰν Ε△· ἁ γὰρ ΞΕ ποτὶ τὰν ΘΕ τὸν αὐτὸν ἔχει λόγον, ὃν ἁ ΕΗ ποτὶ τὰν Ε△ διὰ τὸ ἀνάλογόν τε εἶμεν τὰς Ξ△, Θ△, △Ε, καὶ τὰν Θ△ ἴσαν εἶμεν τᾷ Η△· καὶ τὸ ἴσον οὖν ἀμφοτέροις τῷ τε περιεχομένῳ ὑπὸ τᾶν Ξ△, ΕΗ καὶ τῷ ὑπὸ τᾶν ΖΕ, ΞΕ ποτὶ τὸ ἴσον συναμφοτέροις τῷ τε ὑπὸ τᾶν Ξ△, Ε△ καὶ τῷ ὑπὸ τᾶν ΖΕ, ΘΕ τὸν αὐτὸν ἔχει λόγον, ὃν ἁ ΕΗ ποτὶ τὰν Ε△. Τὸ δὲ ἀπὸ τᾶς ΕΒ τετράγωνον ἴσον ἐντὶ ἀμφοτέροις
249
τῷ τε περιεχομένῳ ὑπὸ τᾶν Ξ△, Ε△ καὶ τῷ ὑπὸ τᾶν ΖΕ, ΘΕ· τὸ μὲν γὰρ ἀπὸ τᾶς ΒΘ τετράγωνον ἴσον τῷ ὑπὸ τᾶν Ξ△, Ε△ περιεχομένῳ, ἁ δὲ ὑπεροχά, ᾇ μεῖζόν ἐστι τὸ ἀπὸ τᾶς ΒΕ τετράγωνον τοῦ ἀπὸ τᾶς ΒΘ, ἴσον ἐστὶ τῷ περιεχομένῳ ὑπὸ τᾶν ΖΕ, ΘΕ, ἐπεὶ ἴσαι αἱ ΒΘ, ΒΖ· δῆλον οὖν ὅτι τὸ μεῖζον τοῦ σφαιροειδέος τμᾶμα ποτὶ τὸν κῶνον τὸν βάσιν ἔχοντα τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν ἁ ΕΗ ποτὶ τὰν Ε△.

Καὶ τοίνυν εἴ κα μὴ ὀρθῷ ποτὶ τὸν ἄξονα τῷ ἐπιπέδῳ τμαθῇ τὸ σφαιροειδὲς μηδὲ διὰ τοῦ κέντρου, τὸ μεῖζον τμᾶμα αὐτοῦ ποτὶ τὸ ἀπότμαμα τοῦ κώνου τὸ βάσιν ἔχον τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἕξει τὸν λόγον, ὃν ἁ συναμφοτέραις ἴσα τᾷ τε ἡμισέᾳ τᾶς ἐπιζευγνυούσας τὰς κορυφὰς τῶν γενομένων τμαμάτων καὶ τῷ ἄξονι τῷ τοῦ ἐλάσσονος τμάματος ποτὶ τὸν ἄξονα τὸν τοῦ ἐλάσσονος τμάματος.

Τετμάσθω τὸ σφαιροειδὲς ἐπιπέδῳ, ὡς εἴρηται, τμαθέντος δὲ αὐτοῦ ἐπιπέδῳ ἄλλῳ διὰ τοῦ ἄξονος ὀρθῷ ποτὶ τὸ τέμνον ἐπίπεδον τοῦ μὲν σχήματος τομὰ ἔστω ἁ ΑΒΓ△ ὀξυγωνίου κώνου τομά, τοῦ δὲ τέμνοντος ἐπιπέδου τὸ σχῆμα ἁ ΓΑ εὐθεῖα, παρὰ δὲ τὰν ΑΓ ἄχθωσαν αἱ ΠΡ, ΣΤ ἐπιψαύουσαι τᾶς τοῦ ὀξυγωνίου κώνου τομᾶς κατὰ τὰ Β, △, καὶ ἀνεστακέτω ἀπʼ αὐτᾶν ἐπίπεδα παράλληλα τῷ κατὰ τὰν ΑΓ· ἐπιψαυσοῦντι δὲ ταῦτα τοῦ σφαιροειδέος κατὰ τὰ Β, △, καὶ ἐσσοῦνται κορυφαὶ τῶν τμαμάτων τὰ

250
Β, △. Ἄχθω οὖν ἁ τὰς κορυφὰς ἐπιχζευγνύουσα τῶν γενομένων τμαμάτων ἁ Β△· πεσεῖται δʼ αὕτα διὰ τοῦ κέντρου· καὶ ἔστω κέντρον τὸ Θ, μεῖζον δὲ ἢ τὸ ἡμίσεον τοῦ σφαιροειδέος τὸ τμᾶμα, οὗ κορυφὰ τὸ Β, ποτικείσθω δὲ ἁ △Η ἴσα τᾷ △EΘ καὶ ἁ ΒΖ τᾷ αὐτᾷ. Δεικτέον ὅτι τὸ τμᾶμα τοῦ σφαιροειδέος τὸ μεῖζον ποτὶ τὸ ἀπότμαμα τοῦ κώνου τὸ βάσιν ἔχον τὰν αὐτὰν τῷ τμάματι καὶ ἄξονα τὸν αὐτὸν τοῦτον ἔχει τὸν λόγον, ὃν ἁ ΕΗ ποτὶ τὰν Ε△.

Τετμάσθω γὰρ τὸ σφαιροειδὲς ἐπιπέδῳ διὰ τοῦ κέντρου παραλλήλῳ τῷ κατὰ τὰν ΑΓ ἐπιπέδῳ, καὶ ἐγγεγράφθω εἰς τὸ ἡμίσεον τοῦ σφαιροειδέος ἀπότμαμα κώνου κορυφὰν ἔχον τὸ △ σαμεῖον, καὶ ὃν ἔχει λόγον ἁ △Θ ποτὶ τὰν Ε△, τοῦτον ἐχέτω ἁ Ξ△ ποτὶ τὰν Θ△. Ὁμοίως δὴ τῷ πρότερον δειχθήσεται τό τε ἀπότμαμα τοῦ κώνου τὸ ἐν τῷ ἡμισέῳ

251
τοῦ σφαιροειδέος ἐγγεγραμμένον ποτὶ τὸ ἀπότμαμα τοῦ κώνου τὸ ἐν τῷ ἐλάσσονι ἐγγεγραμμένον τὸν αὐτὸν ἔχον λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν Ξ△, ΒΘ ποτὶ τὸ ὑπὸ τᾶν ΒΕ, Ε△, καὶ τὸ ἀπότμαμα τοῦ κώνου τὸ ἐν τῷ ἐλάσσονι τμάματι ἐγγεγραμμένον ποτὶ τὸ τμᾶμα τὸ ἐν ᾧ ἐγγέγραπται τὸν αὐτὸν ἔχον λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν ΒΕ, Ε△ ποτὶ τὸ ὑπὸ τᾶν ΖΕ, Ε△· ἕξει οὖν τὸ ἀπότμαμα τοῦ κώνου τὸ ἐν τῷ ἡμισέῳ τοῦ σφαιροειδέος ἐγγεγραμμένον ποτὶ τὸ ἔλασσον τμᾶμα τοῦ σφαιροειδέος ὃν τὸ περιεχόμενον ὑπὸ τᾶν Ξ△, ΒΘ ποτὶ τὸ ὑπὸ τᾶν ΖΕ, Ε△. Ἕξει οὖν τὸ μὲν ὅλον σφαιροειδὲς ποτὶ τὸ ἀπότμαμα τοῦ κώνου τὸ ἐν τῷ ἡμισέῳ τοῦ σφαιροειδέος ἐγγεγραμμένον τὸν αὐτὸν λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν ΖΗ, Ξ△ ποτὶ τὸ ὑπὸ τᾶν ΒΘ, Ξ△· τετραπλάσιον γὰρ ἑκατέρου ἑκάτερον· τὸ δὲ ἀπότμαμα τοῦ κώνου τὸ εἰρημένον ποτὶ τὸ ἔλασσον τμᾶμα τοῦ σφαιροειδέος τὸν αὐτὸν ἔχει λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν Ξ△, ΒΘ ποτὶ τὸ ὑπὸ τᾶν ΖΕ, Ε△· ἕξει οὖν τὸ ὅλον σφαιροειδὲς ποτὶ τὸ ἔλασσον τμᾶμα αὐτοῦ τοῦ σφαιροειδέος τὸν αὐτὸν λόγον, ὃν τὸ περιεχόμενον ὑπὸ τᾶν ΖΗ, Ξ△ ποτὶ τὸ ὑπὸ τᾶν ΖΕ, Ε△· αὐτὸ δὲ τὸ μεῖζον τμᾶμα ποτὶ τὸ ἔλασσον τὸν αὐτὸν ἔχει λόγον, ὃν ἁ ὑπεροχά, ᾇ ὑπερέχει τὸ περιεχόμενον ὑπὸ τᾶν ΖΗ, Ξ△ τοῦ περιεχομένου ὑπὸ τᾶν ΖΕ, Ε△, ποτὶ τὸ ὑπὸ τᾶν ΖΕ, Ε△. Τὸ δὲ ἔλασσον τμᾶμα ποτὶ τὸ ἀπότμαμα τοῦ κώνου τὸ ἐν αὐτῷ ἐγγεγραμμένον τὸν αὐτὸν ἔχει
252
λόγον, ὃν τὸ ὑπὸ τᾶν ΖΕ, Ε△ ποτὶ τὸ ὑπὸ τᾶν ΒΕ, Ε△ δέδεικται γὰρ τοῦτον ἔχον τὸν λόγον, ὃν ἁ ΖΕ ποτὶ τὰν ΒΕ· τὸ δὲ ἀπότμαμα τοῦ κώνου τὸ ἐν τῷ ἐλάσσονι τμάματι ἐγγεγραμμένον ποτὶ τὸ ἀπότμαμα τοῦ κώνου τὸ ἐν τῷ μείζονι τμάματι ἐγγεγραμμένον τὸν αὐτὸν ἔχει λόγον, ὃν τὸ ὑπὸ τᾶν ΒΕ, Ε△ ποτὶ τὸ ἀπὸ τᾶς ΒΕ τετράγωνον· τὰ γὰρ ἀποτμάματα τῶν κώνων τὰ εἰρημένα τὸν τῶν ὑψέων λόγον ἔχοντι, ἐπεὶ βάσιν ἔχοντι τὰν αὐτάν, τὰ δὲ ὕψεα αὐτῶν τὸν αὐτὸν λόγον ἔχοντι τῷ τᾶς △Ε ποτὶ τὰν ΕΒ· ἔχει οὖν καὶ τὸ μεῖζον τμᾶμα τοῦ σφαιροειδέος ποτὶ τὸ ἀπότμαμα τοῦ κώνου τὸ ἐν αὐτῷ ἐγγογραμμένον τὸν αὐτὸν λόγον, ὃν ἁ ὑπεροχά, ᾇ ὑπερέχει τὸ περιεχόμενον ὑπὸ τᾶν ΗΖ, Ξ△ τοῦ ὑπὸ τᾶν ΖΕ△, ποτὶ τὸ ἀπὸ τᾶς ΒΕ τετράγωνον· ὁ δὲ λόγος οὗτος ὁμοίως τῷ πρότερον δειχθείη κα ὁ αὐτὸς ἐὼν τῷ ὃν ἔχει ἁ ΕΗ ποτὶ τὰν Ε△.