De sphaera et cylindro

Archimedes

Archimedes. Archimède, Volume 1. Mugler, Charles, editor. Paris: Les Belles Lettres, 1970.

Ἐὰν ἐπιψαύουσαι ἀχθῶσιν τοῦ κύκλου, ὅς ἐστι βάσις τοῦ κώνου, ἐν τῷ αὐτῷ ἐπιπέδῳ οὖσαι τῷ κύκλῳ καὶ

27
συμπίπτουσαι ἀλλήλαις, ἀπὸ δὲ τῶν ἁφῶν καὶ τῆς συμπτώσεως ἐπὶ τὴν κορυφὴν τοῦ κώνου εὐθεῖαι ἀχθῶσιν, τὰ περιεχόμενα τρίγωνα ὑπὸ τῶν ἐπιψαυουσῶν καὶ τῶν ἐπὶ τὴν κορυφὴν τοῦ κώνου ἐπιζευχθεισῶν εὐθειῶν μείζονά ἐστιν τῆς τοῦ κώνου ἐπιφανείας τῆς ἀπολαμβανομένης ὑπʼ αὐτῶν.

Ἔστω κῶνος οὗ βάσις μὲν ὁ ΑΒΓ κύκλος, κορυφὴ δὲ τὸ Ε σημεῖον, καὶ τοῦ ΑΒΓ κύκλου ἐφαπτόμεναι ἤχθωσαν ἐν τῷ αὐτῷ ἐπιπέδῳ οὖσαι αἱ Α△, Γ△, καὶ ἀπὸ τοῦ Ε σημείου, ὅ ἐστιν κορυφὴ τοῦ κώνου, ἐπὶ τὰ Α, △, Γ ἐπεζεύχθωσαν αἱ ΕΑ, Ε△, ΕΓ· λέγω ὅτι τὰ Α△Ε, △ΕΓ τρίγωνα μείζονά ἐστι τῆς κωνικῆς ἐπιφανείας τῆς μεταξὺ τῶν ΑΕ, ΓΕ εὐθειῶν καὶ τῆς ΑΒΓ περιφερείας.

Ἤχθω γὰρ ἡ ΗΒΖ ἐφαπτομένη τοῦ κύκλου καὶ παράλληλος οὖσα τῇ ΑΓ δίχα τμηθείσης τῆς ΑΒΓ περιφερείας κατὰ τὸ Β, καὶ ἀπὸ τῶν Η, Ζ ἐπὶ τὸ Ε ἐπεζεύχθωσαν αἱ ΗΕ, ΖΕ. Καὶ ἐπεὶ μείζους εἰσὶν αἱ Η△, △Ζ τῆς ΗΖ, κοιναὶ προσκείσθωσαν αἱ ΗΑ, ΖΓ ὅλαι ἄρα αἱ Α△, △Γ μείζους εἰσὶν τῶν ΑΗ, ΗΖ, ΖΓ. Καὶ ἐπεὶ αἱ ΑΕ, ΕΒ, EΓ πλευραί εἰσιν τοῦ κώνου, ἴσαι εἰσὶν διὰ τὸ ἰσοσκελῆ εἶναι τὸν κῶνον ὁμοίως δὲ καὶ κάθετοί εἰσιν ὡς ἐδείχθη ἐν τῷ λήμματι, τὰ δὲ ὑπὸ τῶν καθέτων καὶ τῶν βάσεων διπλασίονά ἐστιν τῶν τριγώνων· μείζονα ἄρα ἐστὶ τὰ ΑΕ△, △ΕΓ τρίγωνα τῶν ΑΗΕ, ΗΕΖ, ΖΕΓ τριγώνων εἰσὶν γὰρ αἱ μὲν ΑΗ, ΗΖ, ΖΓ ἐλάσσους τῶν Γ△, △Α, τὰ δὲ ὕψη αὐτῶν ἴσα φανερὸν γὰρ ὅτι ἡ ἀπὸ τῆς κορυφῆς τοῦ ὀρθοῦ κώνου ἐπὶ τὴν ἐφαπὴν τῆς βάσεως ἐπιζευγνυμένη κάθετός ἐστιν ἐπὶ τὴν ἐφαπτομένην. Ὧι δὴ μείζονά ἐστιν τὰ ΑΕ△, △ΓΕ τρίγωνα τῶν ΑΕΗ. ΗΕΖ, ΖΕΓ τριγώνων, ἔστω τὸ Θ

28
χωρίον. Τὸ δὴ Θ χωρίον ἤτοι ἔλαττόν ἐστιν τῶν ΑΗΒΚ, ΒΖΓΛ ἀποτμημάτων ἢ οὐκ ἔλαττον.

Ἔστω πρότερον μὴ ἔλαττον, Ἐπεὶ οὖν εἰσιν ἐπιφάνειαι σύνθετοι, ἥ τε τῆς πυραμίδος τῆς ἐπὶ βάσεως τοῦ ΗΑΓΖ τραπεζίου κορυφὴν ἔχουσα τὸ Ε καὶ ἡ κωνικὴ ἐπιφάνεια ἡ μεταξὺ τῶν ΑΕΓ μετὰ τοῦ ΑΒΓ τμήματος, καὶ πέρας ἔχουσι τὴν αὐτὴν περίμετρον τοῦ ΑΕΓ τριγώνου, δῆλον ὡς ἡ ἐπιφάνεια τῆς πυραμίδος χωρὶς τοῦ ΑΕΓ τριγώνου μείζων ἐστὶν τῆς κωνικῆς ἐπιφανείας μετὰ τοῦ τμήματος τοῦ ΑΒΓ. Κοινὸν ἀφῃρήσθω τὸ ΑΒΓ τμῆμα· λοιπὰ ἄρα τὰ τρίγωνα τὰ ΑΗΕ, ΗΕΖ, ΖΕΓ μετὰ τῶν ΑΗΒΚ, ΒΖΓΛ

29
περιλειμμάτων μείζονά ἐστιν τῆς κωνικῆς ἐπιφανείας τῆς μεταξὺ τῶν ΑΕ, ΕΓ. Τῶν δὲ ΑΗΒΚ, ΒΖΓΛ περιλειμμάτων οὐκ ἔλασσόν ἐστιν τὸ Θ χωρίον· πολλῷ ἄρα τὰ ΑΗΕ, ΗΕΖ, ΖΕΓ τρίγωνα μετὰ τοῦ Θ μείζονα ἔσται τῆς κωνικῆς ἐπιφανείας τῆς μεταξὺ τῶν ΑΕΓ. Ἀλλὰ τὰ ΑΗΕ, ΗΕΖ, ΖΕΓ τρίγωνα μετὰ τοῦ Θ ἐστὶν τὰ ΑΕ△, △ΕΓ τρίγωνα· τὰ ἄρα ΑΕ△, △ΕΓ τρίγωνα μείζονα ἔσται τῆς εἰρημένης κωνικῆς ἐπιφανείας.

Ἔστω δὴ τὸ Θ ἔλασσον τῶν περιλειμμάτων. Ἀεὶ δὴ περιγράφοντες πολύγωνα περὶ τὰ τμήματα ὁμοίως δίχα τεμνομένων τῶν περιλειπομένων περιφερειῶν καὶ ἀγομένων ἐφαπτομένων λείψομέν τινα ἀπολείμματα, ἃ ἔσται ἐλάσσονα τοῦ Θ χωρίου. Λελείφθω καὶ ἔστω τὰ ΑΜΚ, ΚΝΒ, ΒΞΛ, ΛΟΓ ἐλάσσονα ὄντα τοῦ Θ χωρίου, καὶ ἐπεζεύχθω ἐπὶ τὸ Ε. Πάλιν δὴ φανερὸν ὅτι τὰ ΑΗΕ, ΗΕΖ, ΖΕΓ τρίγωνα τῶν ΑΕΜ, ΜΕΝ, ΝΕΞ, ΞΕΟ, ΟΕΓ τριγώνων ἔσται μείζονα αἵ τε γὰρ βάσεις τῶν βάσεών εἰσι μείζους καὶ τὸ ὕψος ἴσον. Ἔτι δὲ πάλιν ὁμοίως μείζονα ἔχει ἐπιφάνειαν ἡ πυραμὶς ἡ βάσιν μὲν ἔχουσα τὸ ΑΜΝΞΟΓ πολύγωνον, κορυφὴν δὲ τὸ Ε, χωρὶς τοῦ ΑΕΓ τριγώνου, τῆς κωνικῆς ἐπιφανείας τῆς μεταξὺ τῶν ΑΕΓ μετὰ τοῦ ΑΒΓ τμήματος. Κοινὸν ἀφῃρήσθω τὸ ΑΒΓ τμῆμα· λοιπὰ ἄρα τὰ ΑΕΜ, ΜΕΝ. ΝΕΞ, ΞΕΟ, ΟΕΓ τρίγωνα μετὰ τῶν ΑΜΚ, ΚΝΒ, ΒΞΛ, ΛΟΓ περιλειμμάτων μείζονα ἔσται τῆς κωνικῆς ἐπιφανείας τῆς μεταξὺ τῶν ΑΕΓ. Ἀλλὰ τῶν μὲν εἰρημένων περιλειμμάτων μεῖζόν ἐστιν τὸ Θ χωρίον, τῶν δὲ ΑΕΜ, ΜΕΝ. ΝΕΞ, ΞΕΟ, ΟΕΓ τριγώνων μείζονα ἐδείχθη τὰ ΑΕΗ,

30
ΗΕΖ, ΖΕΓ τρίγωνα πολλῷ ἄρα τὰ ΑΕΗ, ΗΕΖ, ΖΕΓ τρίγωνα μετὰ τοῦ Θ χωρίου, τουτέστι τὰ Α△Ε, △ΕΓ τρίγωνα, μείζονά ἐστιν τῆς κωνικῆς ἐπιφανείας τῆς μεταξὺ τῶν ΑΕΓ εὐθειῶν.

Ἐὰν ἐν ἐπιφανείᾳ ὀρθοῦ κυλίνδρου δύο εὐθεῖαι ὦσιν, ἡ ἐπιφάνεια τοῦ κυλίνδρου ἡ μεταξὺ τῶν εὐθειῶν μείζων ἐστὶν τοῦ παραλληλογράμμου τοῦ περιεχομένου ὑπό τε τῶν ἐν τῇ ἐπιφανείᾳ τοῦ κυλίνδρου εὐθειῶν καὶ τῶν ἐπιζευγνυουσῶν τὰ πέρατα αὐτῶν.

Ἔστω κύλινδρος ὀρθός, οὗ βάσις μὲν ὁ ΑΒ κύκλος, ἀπεναντίον δὲ ὁ Γ△, καὶ ἐπεζεύχθωσαν αἱ ΑΓ, Β△· λέγω ὅτι ἡ ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, Β△ εὐθειῶν μείζων ἐστὶν τοῦ ΑΓΒ△ παραλληλογράμμου.

Τετμήσθω γὰρ ἑκατέρα τῶν ΑΒ, Γ△ δίχα κατὰ τὰ Ε, Ζ σημεῖα, καὶ ἐπεζεύχθωσαν αἱ ΑΕ, ΕΒ, ΓΖ, Ζ△. Καὶ ἐπεὶ

31
αἱ ΑΕ, ΕΒ τῆς ΑΒ διαμέτρου μείζους εἰσίν, καί ἐστιν ἰσουψῆ τὰ παραλληλόγραμμα τὰ ἐπʼ αὐτῶν, μείζονα οὖν ἐστιν τὰ παραλληλόγραμμα, ὧν αἱ βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, τοῦ ΑΒ△Γ παραλληλογράμμου. Τίνι ἄρα μείζονά ἐστιν; Ἔστω τῷ Η χωρίῳ. Τὸ δὴ Η χωρίον ἤτοι ἔλασσον τῶν ΑΕ, ΕΒ, ΓΖ, Ζ△ ἐπιπέδων ἐστὶ τμημάτων ἢ οὐκ ἔλασσον.

Ἔστω πρότερον μὴ ἔλασσον. Καὶ ἐπεὶ ἡ ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, Β△ εὐθειῶν καὶ τὰ ΑΕΒ, ΓΖ△ τρίγωνα πέρας ἔχει τὸ τοῦ ΑΓΒ△ παραλληλογράμμου ἐπίπεδον, ἀλλὰ καὶ ἡ συγκειμένη ἐπιφάνεια ἐκ τῶν παραλληλογράμμων, ὧν βάσεις μὲν ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, καὶ τὰ ΑΕΒ, ΓΖ△ ἐπίπεδα πέρας ἔχει τὸ τοῦ Α△ΒΓ παραλληλογράμμου ἐπίπεδον, καὶ ἡ ἑτέρα τὴν ἑτέραν περιλαμβάνει, καὶ ἀμφότεραι ἐπὶ τὰ αὐτὰ κοῖλαί εἰσιν, μείζων οὖν ἐστιν ἡ ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, Β△ εὐθειῶν καὶ τὰ ΑΕΒ, ΓΖ△ ἐπίπεδα τμήματα τῆς συγκειμένης ἐπιφανείας ἐκ τῶν παραλληλογράμμων, ὧν αἱ βάσεις μὲν αἱ ΑΕ, ΕΒ,

32
ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, καὶ τῶν ΑΕΒ, ΓΖ△ τριγώνων. Κοινὰ ἀφῃρήσθω τὰ ΑΕΒ, ΓΖ△ τρίγωνα λοιπὴ οὖν ἡ ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, Β△ εὐθειῶν καὶ τὰ ΑΕ, ΕΒ, ΓΖ, Ζ△ ἐπίπεδα τμήματα μείζονά ἐστι τῆς συγκειμένης ἐπιφανείας ἐκ τῶν παραλληλογράμμων, ὧν βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ. Τὰ δὲ παραλληλόγραμμα, ὧν βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, ἴσα ἐστὶν τῷ ΑΓΒ△ παραλληλογράμμῳ καὶ τῷ Η χωρίῳ λοιπὴ ἄρα ἡ ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, Β△ εὐθειῶν μείζων ἐστὶ τοῦ ΑΓΒ△ παραλληλογράμμου.

Ἀλλὰ δὴ ἔστω ἔλασσον τὸ Η χωρίον τῶν ΑΕ, ΕΒ, ΓΖ, Ζ△ ἐπιπέδων τμημάτων. Καὶ τετμήσθω ἑκάστη τῶν ΑΕ, ΕΒ, ΓΖ, Ζ△ περιφερειῶν δίχα κατὰ τὰ Θ, Κ, Λ, Μ σημεῖα, καὶ ἐπεζεύχθωσαν αἱ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ΓΛ, ΛΖ, ΖΜ, Μ△ τῶν δὲ ΑΕ, ΕΒ, ΓΖ, Ζ△ ἄρα ἐπιπέδων τμημάτων ἀφαιρεῖται οὐκ ἔλασσον ἢ τὸ ἥμισυ τὰ ΑΘΕ, ΕΚΒ, ΓΛΖ, ΖΜ△ τρίγωνα. Τούτου οὖν ἑξῆς γινομένου καταλειφθήσεταί τινα τμήματα, ἃ ἔσται ἐλάσσονα τοῦ Η χωρίου. Καταλελείφθω καὶ ἔστω τὰ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ΓΛ, ΛΖ, ΖΜ, Μ△. Ὁμοίως δὴ δείξομεν ὅτι τὰ παραλληλόγραμμα, ὧν βάσεις μὲν αἱ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ μείζονα ἔσται τῶν παραλληλογράμμων, ὧν βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, Καὶ ἐπεὶ ἡ ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, Β△ εὐθειῶν καὶ τὰ ΑΕΒ, ΓΖ△ ἐπίπεδα τμήματα πέρας ἔχει τὸ τοῦ ΑΓΒ△ παραλληλογράμμου ἐπίπεδον, ἀλλὰ καὶ ἡ συγκειμένη ἐπιφάνεια ἐκ τῶν παραλληλογράμμων, ὧν

33
βάσεις μὲν αἱ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, καὶ τῶν ΑΘΕΚΒ, ΓΛΖΜ△ εὐθυγράμμων, κοινὰ ἀφῃρήσθω τὰ ΑΘΕΚΒ, ΓΛΖΜ△ εὐθύγραμμα λοιπὴ ἄρα ἡ ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, Β△ εὐθειῶν καὶ τὰ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ΓΛ, ΛΖ, ΖΜ, Μ△ ἐπίπεδα τμήματα μείζονά ἐστιν τῆς συγκειμένης ἐπιφανείας ἐκ τῶν παραλληλογράμμων, ὧν βάσεις μὲν αἱ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ. Τὰ δὲ παραλληλόγραμμα, ὧν βάσεις μὲν αἱ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, μείζονά ἐστιν τῶν παραλληλογράμμων, ὧν βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ· καὶ ἡ ἀποτεμνομένη ἄρα κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, Β△ εὐθειῶν καὶ τὰ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ΓΛ, ΛΖ, ΖΜ, Μ△ ἐπίπεδα τμήματα μείζονά ἐστιν τῶν παραλληλογράμμων, ὧν βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ. Τὸ δὲ παραλληλόγραμμα, ὧν βάσεις μὲν αἱ ΑΕ, ΕΒ, ὕψος δὲ τὸ αὐτὸ τῷ κυλίνδρῳ, ἴσα ἐστὶν τῷ ΑΓ△Β παραλληλογράμμῳ καὶ τῷ Η χωρίῳ καὶ ἡ ἀποτεμνομένη ἄρα κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, Β△ εὐθειῶν καὶ τὰ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ΓΛ, ΛΖ, ΖΜ, Μ△ ἐπίπεδα τμήματα μείζονά ἐστιν τοῦ ΑΓΒ△ παραλληλογράμμου καὶ τοῦ Η χωρίου. Ἀφαιρεθέντα δὲ τὰ ΑΘ, ΘΕ, ΕΚ, ΚΒ, ΓΛ, ΛΖ, ΖΜ, Μ△ τμήματα τοῦ Η χωρίου ἐλάσσονα λοιπὴ ἄρα ἡ ἀποτεμνομένη κυλινδρικὴ ἐπιφάνεια ὑπὸ τῶν ΑΓ, Β△ εὐθειῶν μείζων ἐστὶν τοῦ ΑΓΒ△ παραλληλογράμμου.

Ἐὰν ἐν ἐπιφανείᾳ κυλίνδρου τινὸς ὀρθοῦ δύο εὐθεῖαι ὦσιν, ἀπὸ δὲ τῶν περάτων τῶν εὐθειῶν ἀχθῶσίν τινες

34
ἐπιψαύουσαι τῶν κύκλων, οἵ εἰσιν βάσεις τοῦ κυλίνδρου, ἐν τῷ ἐπιπέδῳ αὐτῶν οὖσαι καὶ συμπέσωσιν, τὰ παραλληλόγραμμα τὰ περιεχόμενα ὑπό τε τῶν ἐπιψαυουσῶν καὶ τῶν πλευρῶν τοῦ κυλίνδρου μείζονα ἔσται τῆς ἐπιφανείας τοῦ κυλίνδρου τῆς μεταξὺ τῶν εὐθειῶν τῶν ἐν τῇ ἐπιφανείᾳ τοῦ κυλίνδρου.

Ἔστω κυλίνδρου τινὸς ὀρθοῦ βάσις ὁ ΑΒΓ κύκλος, καὶ ἔστωσαν ἐν τῇ ἐπιφανείᾳ αὐτοῦ δύο εὐθεῖαι, ὧν πέρατα τὰ Α, Γ, ἀπὸ δὲ τῶν Α, Γ ἤχθωσαν ἐπιψαύουσαι τοῦ κύκλου ἐν τῷ αὐτῷ ἐπιπέδῳ οὖσαι καὶ συμπιπτέτωσαν κατὰ τὸ Η, νοείσθωσαν δὲ καὶ ἐν τῇ ἑτέρᾳ βάσει τοῦ κυλίνδρου ἀπὸ τῶν περάτων τῶν ἐν τῇ ἐπιφανείᾳ εὐθεῖαι ἠγμέναι ἐπιψαύουσαι τοῦ κύκλου· δεικτέον ὅτι τὰ παραλληλόγραμμα τὰ περιεχόμενα ὑπὸ τῶν ἐπιψαυουσῶν καὶ τῶν πλευρῶν τοῦ κυλίνδρου μείζονά ἐστι τῆς κατὰ τὴν ΑΒΓ περιφέρειαν ἐπιφανείας τοῦ κυλίνδρου.

Ἤχθω γὰρ ἡ ΕΖ ἐπιψαύουσα, καὶ ἀπὸ τῶν Ε, Ζ σημείων ἤχθωσάν τινες εὐθεῖαι παρὰ τὸν ἄξονα τοῦ κυλίνδρου

35
ἕως τῆς ἐπιφανείας τῆς ἑτέρας βάσεως τὰ δὴ παραλληλόγραμμα τὰ περιεχόμενα ὑπὸ τῶν ΑΗ, ΗΓ καὶ τῶν πλευρῶν τοῦ κυλίνδρου μείζονά ἐστιν τῶν παραλληλογράμμων τῶν περιεχομένων ὑπό τε τῶν ΑΕ, ΕΖ, ΖΓ καὶ τῆς πλευρᾶς τοῦ κυλίνδρου ἐπεὶ γὰρ αἱ ΕΗ, ΗΖ τῆς ΕΖ μείζους εἰσίν, κοιναὶ προσκείσθωσαν αἱ ΑΕ, ΖΓ. Ὡι δὴ μείζονά ἐστιν, ἔστω τὸ Κ χωρίον. Τοῦ δὴ Κ χωρίου τὸ ἥμισυ ἤτοι μεῖζόν ἐστι τῶν σχημάτων τῶν περιεχομένων ὑπὸ τῶν ΑΕ, ΕΖ, ΖΓ εὐθειῶν καὶ τῶν Α△, △Β, ΒΘ, ΘΓ περιφερειῶν ἢ οὔ. Ἔστω πρότερον μεῖζον. Τῆς δὴ ἐπιφανείας τῆς συγκειμένης ἔκ τε τῶν παραλληλογράμμων τῶν κατὰ τὰς ΑΕ, ΕΖ, ΖΓ καὶ τοῦ ΑΕΖΓ τραπεζίου καὶ τοῦ κατεναντίον αὐτοῦ ἐν τῇ ἑτέρα βάσει τοῦ κυλίνδρου πέρας ἐστὶν ἡ περίμετρος τοῦ παραλληλογράμμου τοῦ κατὰ τὴν ΑΓ. Ἔστιν δὲ καὶ τῆς ἐπιφανείας τῆς συγκειμένης ἐκ τῆς ἐπιφανείας τοῦ κυλίνδρου τῆς κατὰ τὴν ΑΒΓ περιφέρειαν καὶ τῶν τμημάτων τοῦ τε ΑΒΓ καὶ τοῦ ἀπεναντίον αὐτοῦ πέρας ἡ αὐτὴ περίμετρος· αἱ οὖν εἰρημέναι ἐπιφάνειαι τὸ αὐτὸ πέρας ἔχουσαι τυγχάνουσιν, ὅπερ ἐστὶν ἐν ἐπιπέδῳ, καί εἰσιν ἀμφότεραι ἐπὶ τὰ αὐτὰ κοῖλαι, καί τινα μὲν περιλαμβάνει ἡ ἑτέρα αὐτῶν, τινὰ δὲ κοινὰ ἔχουσιν ἐλάσσων ἄρα ἐστὶν ἡ περιλαμβανομένη, Ἀφαιρεθέντων οὖν κοινῶν τοῦ τε ΑΒΓ τμήματος καὶ τοῦ ἀπεναντίον αὐτοῦ ἐλάσσων ἐστὶν ἡ ἐπιφάνεια τοῦ κυλίνδρου ἡ κατὰ τὴν ΑΒΓ περιφέρειαν τῆς συγκειμένης ἐπιφανείας ἔκ τε τῶν παραλληλογράμμων τῶν κατὰ τὰς ΑΕ, ΕΖ, ΖΓ καὶ τῶν σχημάτων τῶν ΑΕΒ, ΒΖΓ καὶ τῶν ἀπεναντίον αὐτῶν. Αἱ δὲ τῶν εἰρημένων παραλληλογράμμων ἐπιφάνειαι μετὰ τῶν εἰρημένων
36
σχημάτων ἐλάττους εἰσὶν τῆς ἐπιφανείας τῆς συγκειμένης ἔκ τε τῶν παραλληλογράμμων τῶν κατὰ τὰς ΑΗ, ΗΓ μετὰ γὰρ τοῦ Κ μείζονος ὄντος τῶν σχημάτων ἴσαι ἧσαν αὐτοῖς· δῆλον οὖν ὅτι τὰ παραλληλόγραμμα τὰ περιεχόμενα ὑπὸ τῶν ΑΗ, ΓΗ καὶ τῶν πλευρῶν τοῦ κυλίνδρου μείζονά ἐστι τῆς ἐπιφανείας τοῦ κυλίνδρου τῆς κατὰ τὴν ΑΒΓ περιφέρειαν.

Εἰ δὲ μή ἐστιν μεῖζον τὸ ἥμισυ τοῦ Κ χωρίου τῶν εἰρημένων σχημάτων, ἀχθήσονται εὐθεῖαι ἐπιψαύουσαι τοῦ τμήματος, ὥστε γενέσθαι τὰ περιλειπόμενα σχήματα ἐλάσσονα τοῦ ἡμίσους τοῦ Κ, καὶ τὰ ἄλλα τὰ αὐτὰ τοῖς ἔμπροσθεν δειχθήσεται.

ΠΟΡΙΣΜΑ.

Τούτων δὴ δεδειγμένων φανερὸν ἐπὶ μὲν τῶν προειρημένων ὅτι, ἐὰν εἰς κῶνον ἰσοσκελῆ πυραμὶς ἐγγραφῇ, ἡ ἐπιφάνεια τῆς πυραμίδος χωρὶς τῆς βάσεως ἐλάσσων ἐστὶ τῆς κωνικῆς ἐπιφανείας ἕκαστον γὰρ τῶν περιεχόντων τὴν πυραμίδα τριγώνων ἔλασσόν ἐστιν τῆς κωνικῆς ἐπιφανείας τῆς μεταξὺ τῶν τοῦ τριγώνου πλευρῶν ὥστε καὶ ὅλη ἡ ἐπιφάνεια τῆς πυραμίδος χωρὶς τῆς βάσεως ἐλάσσων ἐστὶ τῆς ἐπιφανείας τοῦ κώνου χωρὶς τῆς βάσεως, καὶ ὅτι, ἐὰν περὶ κῶνον ἰσοσκελῆ πυραμὶς περιγραφῇ, ἡ ἐπιφάνεια τῆς πυραμίδος χωρὶς τῆς βάσεως μείζων ἐστὶν τῆς ἐπιφανείας τοῦ κώνου χωρὶς τῆς βάσεως κατὰ τὸ συνεχὲς ἐκείνῳ.

37

ΠΟΡΙΣΜΑ.

Φανερὸν δὲ ἐκ τῶν ἀποδεδειγμένων ὅτι τε, ἐὰν εἰς κύλινδρον ὀρθὸν πρίσμα ἐγγραφῇ, ἡ ἐπιφάνεια τοῦ πρίσματος ἡ ἐκ τῶν παραλληλογράμμων συγκειμένη ἐλάσσων ἐστὶ τῆς ἐπιφανείας τοῦ κυλίνδρου χωρὶς τῆς βάσεως ἔλασσον γὰρ ἕκαστον παραλληλόγραμμον τοῦ πρίσματός ἐστι τῆς καθ᾿ αὑτὸ τοῦ κυλίνδρου ἐπιφανείας, καὶ ὅτι, ἐὰν περὶ κύλινδρον ὀρθὸν πρίσμα περιγραφῇ, ἡ ἐπιφάνεια τοῦ πρίσματος ἡ ἐκ τῶν παραλληλογράμμων συγκειμένη μείζων ἐστὶ τῆς ἐπιφανείας τοῦ κυλίνδρου χωρὶς τῆς βάσεως.

Παντὸς κυλίνδρου ὀρθοῦ ἡ ἐπιφάνεια χωρὶς τῆς βάσεως ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου μέσον λόγον ἔχει τῆς πλευρᾶς τοῦ κυλίνδρου καὶ τῆς διαμέτρου τῆς βάσεως τοῦ κυλίνδρου.

Ἔστω κυλίνδρου τινὸς ὀρθοῦ βάσις ὁ Α κύκλος, καὶ ἔστω τῇ μὲν διαμέτρῳ τοῦ Α κύκλου ἴση ἡ Γ△, τῇ δὲ πλευρᾷ τοῦ κυλίνδρου ἡ ΕΖ, ἐχέτω δὲ μέσον λόγον τῶν △Γ, ΕΖ ἡ Η, καὶ κείσθω κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ Η, ὁ Β· δεικτέον ὅτι ὁ Β κύκλος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ κυλίνδρου χωρὶς τῆς βάσεως.

38

Εἰ γὰρ μή ἐστιν ἴσος, ἤτοι μείζων ἐστὶ ἢ ἐλάσσων. Ἔστω πρότερον, εἰ δυνατόν, ἐλάσσων. Δύο δὴ μεγεθῶν ὄντων ἀνίσων τῆς τε ἐπιφανείας τοῦ κυλίνδρου καὶ τοῦ Β κύκλου δυνατόν ἐστιν εἰς τὸν Β κύκλον ἰσόπλευρον πολύγωνον ἐγγράψαι καὶ ἄλλο περιγράψαι, ὥστε τὸ περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχειν τοῦ ὃν ἔχει ἡ ἐπιφάνεια τοῦ κυλίνδρου πρὸς τὸν Β κύκλον. Νοείσθω δὴ περιγεγραμμένον καὶ ἐγγεγραμμένον, καὶ περὶ τὸν Α κύκλον περιγεγράφθω εὐθύγραμμον ὅμοιον τῷ περὶ τὸν Β περιγεγραμμένῳ, καὶ ἀναγεγράφθω ἀπὸ τοῦ εὐθυγράμμου πρίσμα· ἔσται δὴ περὶ τὸν κύλινδρον περιγεγραμμένον. Ἔστω δὲ καὶ τῇ περιμέτρῳ τοῦ εὐθυγράμμου τοῦ περὶ τὸν Α κύκλον ἴση ἡ Κ△ καὶ τῇ Κ△ ἴση ἡ △Ζ, τῆς δὲ Γ△ ἡμίσεια ἔστω ἡ ΓΤ· ἔσται δὴ τὸ Κ△Τ τρίγωνον ἴσον τῷ περιγεγραμμένῳ εὐθυγράμμῳ περὶ τὸν Α κύκλον ἐπειδὴ βάσιν μὲν ἔχει τῇ περιμέτρῳ ἴσην, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τοῦ Α κύκλου, τὸ δὲ ΕΛ παραλληλόγραμμον τῇ ἐπιφανείᾳ τοῦ πρίσματος τοῦ περὶ τὸν κύλινδρον περιγεγραμμένου ἐπειδὴ περιέχεται

39
ὑπὸ τῆς πλευρᾶς τοῦ κυλίνδρου καὶ τῆς ἴσης τῇ περιμέτρῳ τῆς βάσεως τοῦ πρίσματος. Κείσθω δὴ τῇ ΕΖ ἴση ἡ ΕΡ ἴσον ἄρα ἐστὶν τὸ ΖΡΛ τρίγωνον τῷ ΕΛ παραλληλογράμμῳ, ὥστε καὶ τῇ ἐπιφανείᾳ τοῦ πρίσματος. Καὶ ἐπεὶ ὅμοιά ἐστιν τὰ εὐθύγραμμα τὰ περὶ τοὺς Α, Β κύκλους περιγεγραμμένα, τὸν αὐτὸν ἕξει λόγον τὰ εὐθύγραμμα, ὅνπερ αἱ ἐκ τῶν κέντρων δυνάμει· ἕξει ἄρα τὸ ΚΤ△ τρίγωνον πρὸς τὸ περὶ τὸν Β κύκλον εὐθύγραμμον λόγον, ὃν ἡ Τ△ πρὸς Η δυνάμει αἱ γὰρ Τ△, Η ἴσαι εἰσὶν ταῖς ἐκ τῶν κέντρων. Ἀλλʼ ὃν ἔχει λόγον ἡ Τ△ πρὸς Η δυνάμει, τοῦτον ἔχει τὸν λόγον ἡ Τ△ πρὸς ΡΖ μήκει ἡ γὰρ Η τῶν Τ△, ΡΖ μέση ἐστὶ ἀνάλογον διὰ τὸ καὶ τῶν Γ△, ΕΖ· πῶς δὲ τοῦτο; ἐπεὶ γὰρ ἴση ἐστὶν ἡ μὲν △Γ τῇ ΤΓ, ἡ δὲ ΡΕ τῇ ΕΖ, διπλασία ἄρα ἐστὶν ἡ Γ△ τῆς Τ△, καὶ ἡ ΡΖ τῆς ΡΕ· ἔστιν ἄρα ὡς ἡ △Γ πρὸς △Τ, οὕτως ἡ ΡΖ πρὸς ΖΕ. Τὸ ἄρα ὑπὸ τῶν Γ△, ΕΖ ἴσον ἐστὶν τῷ ὑπὸ τῶν Τ△, ΡΖ. Τῷ δὲ ὑπὸ τῶν Γ△, ΕΖ ἴσον ἐστὶν τὸ ἀπὸ Η· καὶ τῷ ὑπὸ τῶν Τ△, ΡΖ ἄρα ἴσον ἐστὶ τὸ ἀπὸ τῆς Η· ἔστιν ἄρα ὡς ἡ Τ△ πρὸς Η, οὕτως ἡ Η πρὸς ΡΖ. Ἔστιν ἄρα ὡς ἡ Τ△ πρὸς ΡΖ, τὸ ἀπὸ τῆς Τ△ πρὸς τὸ ἀπὸ τῆς Η· ἐὰν γὰρ τρεῖς εὐθεῖαι ἀνάλογον ὦσιν, ἔστιν ὡς ἡ πρώτη πρὸς τὴν τρίτην, τὸ ἀπὸ τῆς πρώτης εἶδος πρὸς τὸ ἀπὸ τῆς δευτέρας εἶδος τὸ ὅμοιον καὶ ὁμοίως ἀναγεγραμμένον· ὃν δὲ λόγον ἔχει ἡ Τ△ πρὸς ΡΖ μήκει, τοῦτον ἔχει τὸ ΚΤ△ τρίγωνον πρὸς τὸ ΡΛΖ ἐπειδήπερ ἴσαι εἰσὶν αἱ Κ△, ΛΖ· τὸν αὐτὸν ἄρα λόγον ἔχει τὸ ΚΤ△ τρίγωνον πρὸς τὸ εὐθύγραμμον τὸ περὶ τὸν Β κύκλον περιγεγραμμένον, ὅνπερ τὸ ΤΚ△ τρίγωνον πρὸς τὸ ΡΖΛ τρίγωνον. Ἴσον ἄρα ἐστὶν τὸ ΖΛΡ τρίγωνον τῷ περὶ τὸν Β κύκλον
40
περιγεγραμμένῳ εὐθυγράμμῳ ὥστε καὶ ἡ ἐπιφάνεια τοῦ πρίσματος τοῦ περὶ τὸν Α κύλινδρον περιγεγραμμένου τῷ εὐθυγράμμῳ τῷ περὶ τὸν Β κύκλον ἴση ἐστίν. Καὶ ἐπεὶ ἐλάσσονα λόγον ἔχει τὸ εὐθύγραμμον τὸ περὶ τὸν Β κύκλον πρὸς τὸ ἐγγεγραμμένον ἐν τῷ κύκλῳ τοῦ ὃν ἔχει ἡ ἐπιφάνεια τοῦ Α κυλίνδρου πρὸς τὸν Β κύκλον, ἐλάσσονα λόγον ἕξει καὶ ἡ ἐπιφάνεια τοῦ πρίσματος τοῦ περὶ τὸν κύλινδρον περιγεγραμμένου πρὸς τὸ εὐθύγραμμον τὸ ἐν τῷ κύκλῳ τῷ Β ἐγγεγραμμένον ἤπερ ἡ ἐπιφάνεια τοῦ κυλίνδρου πρὸς τὸν Β κύκλον· καὶ ἐναλλάξ· ὅπερ ἀδύνατον ἡ μὲν γὰρ ἐπιφάνεια τοῦ πρίσματος τοῦ περιγεγραμμένου περὶ τὸν κύλινδρον μείζων οὖσα δέδεικται τῆς ἐπιφανείας τοῦ κυλίνδρου, τὸ δὲ ἐγγεγραμμένον εὐθύγραμμον ἐν τῷ Β κύκλῳ ἔλασσόν ἐστιν τοῦ Β κύκλου. Οὐκ ἄρα ἐστὶν ὁ Β κύκλος ἐλάσσων τῆς ἐπιφανείας τοῦ κυλίνδρου.

Ἔστω δή, εἰ δυνατόν, μείζων. Πάλιν δὴ νοείσθω εἰς τὸν Β κύκλον εὐθύγραμμον ἐγγεγραμμένον καὶ ἄλλο περιγεγραμμένον, ὥστε τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον ἐλάσσονα λόγον ἔχειν ἢ τὸν Β κύκλον πρὸς τὴν ἐπιφάνειαν τοῦ κυλίνδρου, καὶ ἐγγεγράφθω εἰς τὸν Α κύκλον πολύγωνον ὅμοιον τῷ εἰς τὸν Β κύκλον ἐγγεγραμμένῳ, καὶ πρίσμα ἀναγεγράφθω ἀπὸ τοῦ ἐν τῷ κύκλῳ ἐγγεγραμμένου πολυγώνου καὶ πάλιν ἡ Κ△ ἴση ἔστω τῇ περιμέτρῳ τοῦ εὐθυγράμμου τοῦ ἐν τῷ Α κύκλῳ ἐγγεγραμμένου, καὶ ἡ ΖΛ ἴση αὐτῇ ἔστω. Ἔσται δὴ τὸ μὲν ΚΤ△ τρίγωνον μεῖζον τοῦ εὐθυγράμμου τοῦ ἐν τῷ Α κύκλῳ ἐγγεραμμένου διότι βάσιν μὲν ἔχει τὴν

41
περίμετρον αὐτοῦ, ὕψος δὲ μεῖζον τῆς ἀπὸ τοῦ κέντρου {πλευρᾶς} ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου ἀγομένης καθέτου, τὸ δὲ ΕΛ παραλληλόγραμμον ἴσον τῇ ἐπιφανείᾳ τοῦ πρίσματος τῇ ἐκ τῶν παραλληλογράμμων συγκειμένῃ διότι περιέχεται ὑπὸ τῆς πλευρᾶς τοῦ κυλίνδρου καὶ τῆς ἴσης τῇ περιμέτρῳ τοῦ εὐθυγράμμου, ὅ ἐστιν βάσις τοῦ πρίσματος ὥστε καὶ τὸ ΡΛΖ τρίγωνον ἴσον ἐστὶ τῇ ἐπιφανείᾳ τοῦ πρίσματος. Καὶ ἐπεὶ ὅμοιά ἐστι τὰ εὐθύγραμμα τὰ ἐν τοῖς Α, Β κύκλοις ἐγγεγραμμένα, τὸν αὐτὸν ἔχει λόγον πρὸς ἄλληλα ὃν αἱ ἐκ τῶν κέντρων αὐτῶν δυνάμει. Ἔχει δὲ καὶ τὰ ΚΤ△, ΖΡ△ τρίγωνα πρὸς ἄλληλα λόγον, ὃν αἱ ἐκ τῶν κέντρων τῶν κύκλων δυνάμει· τὸν αὐτὸν ἄρα λόγον ἔχει τὸ εὐθύγραμμον τὸ ἐν τῷ Α κύκλῳ ἐγγεγραμμένον πρὸς τὸ εὐθύγραμμον τὸ ἐν τῷ Β ἐγγεγραμμένον καὶ τὸ ΚΤ△ τρίγωνον πρὸς τὸ ΛΖΡ τρίγωνον, Ἔλασσον δὲ ἐστι τὸ εὐθύγραμμον τὸ ἐν τῷ Α κύκλῳ ἐγγεγραμμένον τοῦ ΚΤ△ τριγώνου· ἔλασσον ἄρα καὶ τὸ εὐθύγραμμον τὸ ἐν τῷ Β κύκλῳ ἐγγεγραμμένον τοῦ ΖΡΛ τριγώνου ὥστε καὶ τῆς ἐπιφανείας τοῦ πρίσματος τοῦ ἐν τῷ κυλίνδρῳ ἐγγεγραμμένου ὅπερ ἀδύνατον ἐπεὶ γὰρ ἐλάσσονα λόγον ἔχει τὸ περιγεγραμμένον εὐθύγραμμον περὶ τὸν Β κύκλον πρὸς τὸ ἐγγεγραμμένον ἢ ὁ Β κύκλος πρὸς τὴν ἐπιφάνειαν τοῦ κυλίνδρου, καὶ ἐναλλάξ, μεῖζον δὲ ἐστι τὸ περιγεγραμμένον περὶ τὸν Β κύκλον τοῦ Β κύκλου, μεῖζον ἄρα ἐστὶν τὸ ἐγγεγραμμένον ἐν τῷ Β κύκλῳ τῆς ἐπιφανείας τοῦ κυλίνδρου ὥστε καὶ τῆς ἐπιφανείας τοῦ πρίσματος, Οὐκ ἄρα μείζων ἐστὶν ὁ Β κύκλος τῆς ἐπιφανείας τοῦ κυλίνδρου. Ἐδείχθη δὲ ὅτι οὐδὲ ἐλάσσων· ἴσος ἄρα ἐστίν.

42

Παντὸς κώνου ἰσοσκελοῦς χωρὶς τῆς βάσεως ἡ ἐπιφάνεια ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου μέσον λόγον ἔχει τῆς πλευρᾶς τοῦ κώνου καὶ τῆς ἐκ τοῦ κέντρου τοῦ κύκλου, ὅς ἐστιν βάσις τοῦ κώνου.

Ἔστω κῶνος ἰσοσκελής, οὗ βάσις ὁ Α κύκλος, ἡ δὲ ἐκ τοῦ κέντρου ἔστω ἡ Γ, τῇ δὲ πλευρᾷ τοῦ κώνου ἔστω ἴση ἡ △, τῶν δὲ Γ, △ μέση ἀνάλογον ἡ Ε, ὁ δὲ Β κύκλος ἐχέτω τὴν ἐκ τοῦ κέντρου τῇ Ε ἴσην· λέγω ὅτι ὁ Β κύκλος ἐστὶν ἴσος τῇ ἐπιφανείᾳ τοῦ κώνου χωρὶς τῆς βάσεως.

Εἰ γὰρ μή ἐστιν ἴσος, ἤτοι μείζων ἐστὶν ἢ ἐλάσσων. Ἔστω πρότερον ἐλάσσων. Ἔστι δὴ δύο μεγέθη ἄνισα ἥ τε ἐπιφάνεια τοῦ κώνου καὶ ὁ Β κύκλος, καὶ μείζων ἡ ἐπιφάνεια τοῦ κώνου δυνατὸν ἄρα εἰς τὸν Β κύκλον πολύγωνον ἰσόπλευρον ἐγγράψαι καὶ ἄλλο περιγράψαι ὅμοιον τῷ ἐγγεγραμμένῳ, ὥστε τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον ἐλάσσονα λόγον ἔχειν τοῦ ὃν ἔχει ἡ ἐπιφάνεια τοῦ κώνου πρὸς τὸν Β κύκλον. Νοείσθω δὴ καὶ περὶ τὸν Α κύκλον πολύγωνον περιγεγραμμένον ὅμοιον τῷ περὶ τὸν Β κύκλον περιγεγραμμένῳ, καὶ ἀπὸ τοῦ περὶ τὸν Α κύκλον περιγεγραμμένου πολυγώνου

43
πυραμὶς ἀνεστάτω ἀναγεραμμένη τὴν αὐτὴν κορυφὴν ἔχουσα τῷ κώνῳ. Ἐπεὶ οὖν ὅμοιά ἐστιν τὰ πολύγωνα τὰ περὶ τοὺς Α, Β κύκλους περιγεγραμμένα, τὸν αὐτὸν ἔχει λόγον πρὸς ἄλληλα, ὃν αἱ ἐκ τοῦ κέντρου δυνάμει πρὸς ἀλλήλας, τουτέστιν ὃν ἔχει ἡ Γ πρὸς Ε δυνάμει, τουτέστιν ἡ Γ πρὸς △ μήκει. Ὃν δὲ λόγον ἔχει ἡ Γ πρὸς △ μήκει, τοῦτον ἔχει τὸ περιγεγραμμένον πολύγωνον περὶ τὸν Α κύκλον πρὸς τὴν ἐπιφάνειαν τῆς πυραμίδος τῆς περιγεγραμμένης περὶ τὸν κῶνον ἡ μὲν γὰρ Γ ἴση ἐστὶ τῇ ἀπὸ τοῦ κέντρου καθέτῳ ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου, ἡ δὲ △ τῇ πλευρᾷ τοῦ κώνου κοινὸν δὲ ὕψος ἡ περίμετρος τοῦ πολυγώνου πρὸς τὰ ἡμίση τῶν ἐπιφανειῶν· τὸν αὐτὸν ἄρα λόγον ἔχει τὸ εὐθύγραμμον τὸ περὶ τὸν Α κύκλον πρὸς τὸ εὐθύγραμμον τὸ περὶ τὸν Β κύκλον καὶ αὐτὸ τὸ εὐθύγραμμον πρὸς τὴν ἐπιφάνειαν τῆς πυραμίδος τῆς περιγεγραμμένης περὶ τὸν κῶνον ὥστε ἴση ἐστὶν ἡ ἐπιφάνεια τῆς πυραμίδος τῷ εὐθυγράμμῳ τῷ περὶ τὸν Β κύκλον περιγεγραμμένῳ. Ἐπεὶ οὖν ἐλάσσονα λόγον ἔχει τὸ εὐθύγραμμον τὸ περὶ τὸν Β κύκλον περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον ἤπερ ἡ ἐπιφάνεια τοῦ κώνου πρὸς τὸν Β κύκλον, ἐλάσσονα λόγον ἕξει ἡ ἐπιφάνεια τῆς πυραμίδος τῆς περὶ τὸν κῶνον περιγεγραμμένης πρὸς τὸ εὐθύγραμμον τὸ ἐν τῷ Β κύκλῳ ἐγγεγραμμένον ἤπερ ἡ ἐπιφάνεια τοῦ κώνου πρὸς τὸν Β κύκλον ὅπερ ἀδύνατον ἡ μὲν γὰρ ἐπιφάνεια τῆς πυραμίδος μείζων οὖσα δέδεικται τῆς ἐπιφανείας τοῦ κώνου, τὸ δὲ ἐγγεγραμμένον εὐθύγραμμον ἐν τῷ Β κύκλῳ ἔλασσον ἔσται τοῦ Β κύκλου. Οὐκ ἄρα ὁ Β κύκλος ἐλάσσων ἔσται τῆς ἐπιφανείας τοῦ κώνου.

Λέγω δὴ ὅτι οὐδὲ μείζων. Εἰ γὰρ δυνατόν ἐστιν, ἔστω

44
μείζων. Πάλιν δὴ νοείσθω εἰς τὸν Β κύκλον πολύγωνον ἐγγεγραμμένον καὶ ἄλλο περιγεγραμμένον, ὥστε τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον ἐλάσσονα λόγον ἔχειν τοῦ ὃν ἔχει ὁ Β κύκλος πρὸς τὴν ἐπιφάνειαν τοῦ κώνου, καὶ εἰς τὸν Α κύκλον νοείσθω ἐγγεγραμμένον πολύγωνον ὅμοιον τῷ εἰς τὸν Β κύκλον ἐγγεγραμμένῳ, καὶ ἀναγεγράφθω ἀπʼ αὐτοῦ πυραμὶς τὴν αὐτὴν κορυφὴν ἔχουσα τῷ κώνῳ. Ἐπεὶ οὖν ὅμοιά ἐστι τὰ ἐν τοῖς Α, Β κύκλοις ἐγγεγραμμένα, τὸν αὐτὸν ἕξει λόγον πρὸς ἄλληλα, ὃν αἱ ἐκ τῶν κέντρων δυνάμει πρὸς ἀλλήλας τὸν αὐτὸν ἄρα λόγον ἔχει τὸ πολύγωνον πρὸς τὸ πολύγωνον καὶ ἡ Γ πρὸς τὴν △ μήκει Ἡ δὲ Γ πρὸς τὴν △ μείζονα λόγον ἔχει ἢ τὸ πολύγωνον τὸ ἐν τῷ Α κύκλῳ ἐγγεγραμμένον πρὸς τὴν ἐπιφάνειαν τῆς πυραμίδος τῆς ἐγγεγραμμένης εἰς τὸν κῶνον ἡ γὰρ ἐκ τοῦ κέντρου τοῦ Α κύκλου πρὸς τὴν πλευρὰν τοῦ κώνου μείζονα λόγον ἔχει ἤπερ ἡ ἀπὸ τοῦ κέντρου ἀγομένη κάθετος ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου πρὸς τὴν ἐπὶ τὴν πλευρὰν τοῦ πολυγώνου κάθετον ἀγομένην ἀπὸ τῆς κορυφῆς τοῦ κώνου· μείζονα ἄρα λόγον ἔχει τὸ πολύγωνον τὸ ἐν τῷ Α κύκλῳ ἐγγεγραμμένον πρὸς τὸ πολύγωνον τὸ ἐν τῷ Β ἐγγεγραμμένον ἢ αὐτὸ τὸ πολύγωνον πρὸς τὴν ἐπιφάνειαν τῆς πυραμίδος μείζων ἄρα ἐστὶν ἡ ἐπιφάνεια τῆς πυραμίδος τοῦ ἐν τῷ Β πολυγώνου ἐγγεγραμμένου. Ἐλάσσονα δὲ λόγον ἔχει τὸ πολύγωνον τὸ περὶ τὸν Β κύκλον περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον ἢ ὁ Β κύκλος πρὸς τὴν ἐπιφάνειαν τοῦ κώνου πολλῷ ἄρα τὸ πολύγωνον τὸ περὶ τὸν Β κύκλον περιγεγραμμένον πρὸς τὴν ἐπιφάνειαν τῆς πυραμίδος τῆς ἐν τῷ κώνῳ ἐγγεγραμμένης ἐλάσσονα λόγον ἔχει ἢ ὁ Β κύκλος πρὸς τὴν ἐπιφάνειαν τοῦ κώνου· ὅπερ
45
ἀδύνατον τὸ μὲν γὰρ περιγεγραμμένον πολύγωνον μεῖζόν ἐστιν τοῦ Β κύκλου, ἡ δὲ ἐπιφάνεια τῆς πυραμίδος τῆς ἐν τῷ κώνῳ ἐλάσσων ἐστὶ τῆς ἐπιφανείας τοῦ κώνου. Οὐκ ἄρα οὐδὲ μείζων ἐστὶν ὁ κύκλος τῆς ἐπιφανείας τοῦ κώνου. Ἐδείχθη δὲ ὅτι οὐδὲ ἐλάσσων· ἴσος ἄρα.

Παντὸς κώνου ἰσοσκελοῦς ἡ ἐπιφάνεια πρὸς τὴν βάσιν τὸν αὐτὸν ἔχει λόγον, ὃν ἡ πλευρὰ τοῦ κώνου πρὸς τὴν ἐκ τοῦ κέντρου τῆς βάσεως τοῦ κώνου.

Ἔστω κῶνος ἰσοσκελής, οὗ βάσις ὁ Α κύκλος, ἔστω δὲ τῇ μὲν ἐκ τοῦ κέντρου τοῦ Α ἴση ἡ Β, τῇ δὲ πλευρᾷ τοῦ κώνου ἡ Γ· δεικτέον ὅτι τὸν αὐτὸν ἔχει λόγον ἡ ἐπιφάνεια τοῦ κώνου πρὸς τὸν Α κύκλον καὶ ἡ Γ πρὸς τὴν Β.

Εἰλήφθω γὰρ τῶν Β, Γ μέση ἀνάλογον ἡ Ε, καὶ ἐκκείσθω κύκλος ὁ △ ἴσην ἔχων τὴν ἐκ τοῦ κέντρου τῇ Ε· ὁ △ ἄρα κύκλος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ κώνου τοῦτο γὰρ ἐδείχθη ἐν τῷ πρὸ τούτου. Ἐδείχθη δὲ ὁ △ κύκλος πρὸς τὸν Α κύκλον λόγον ἔχων τὸν αὐτὸν τῷ τῆς Γ πρὸς Β μήκει ἑκάτερος γὰρ ὁ αὐτός ἐστι τῷ τῆς Ε πρὸς Β δυνάμει διὰ τὸ τοὺς κύκλους πρὸς ἀλλήλους εἶναι ὡς τὰ ἀπὸ τῶν διαμέτρων τετράγωνα πρὸς ἄλληλα, ὁμοίως δὲ καὶ τὰ ἀπὸ τῶν ἐκ τῶν κέντρων τῶν κύκλων εἰ γὰρ

46
αἱ διάμετροι, καὶ τὰ ἡμίση, τουτέστιν αἱ ἐκ τῶν κέντρων ταῖς δὲ ἐκ τῶν κέντρων ἴσαι εἰσὶν αἱ Β, Ε. Δῆλον οὖν ὅτι ἡ ἐπιφάνεια τοῦ κώνου πρὸς τὸν Α κύκλον τὸν αὐτὸν ἔχει λόγον, ὃν ἡ Γ πρὸς Β μήκει.

Ἐὰν κῶνος ἰσοσκελὴς ἐπιπέδῳ τμηθῇ παραλλήλῳ τῇ βάσει, τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων ἐπιφανείᾳ ἴσος ἐστὶ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου μέσον λόγον ἔχει τῆς τε πλευρᾶς τοῦ κώνου τῆς μεταξὺ τῶν παραλλήλων ἐπιπέδων καὶ τῆς ἴσης ἀμφοτέραις ταῖς ἐκ τῶν κέντρων τῶν κύκλων τῶν ἐν τοῖς παραλλήλοις ἐπιπέδοις.

Ἔστω κῶνος, οὗ τὸ διὰ τοῦ ἄξονος τρίγωνον ἴσον τῷ ΑΒΓ, καὶ τετμήσθω παραλλήλῳ ἐπιπέδῳ τῇ βάσει, καὶ ποιείτω τομὴν △Ε, ἄξων δὲ τοῦ κώνου ἔστω ὁ ΒΗ, κύκλος δέ τις ἐκκείσθω, οὗ ἡ ἐκ τοῦ κέντρου μέση ἀνάλογόν ἐστι τῆς τε Α△ καὶ συναμφοτέρου τῆς △Ζ, ΗΑ, ἔστω δὲ κύκλος ὁ Θ λέγω ὅτι ὁ Θ κύκλος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν △Ε, ΑΓ.

47

Ἐκκείσθωσαν γὰρ κύκλοι οἱ Λ, Κ, καὶ τοῦ μὲν Κ κύκλου ἡ ἐκ τοῦ κέντρου δυνάσθω τὸ ὑπὸ Β△Ζ, τοῦ δὲ Λ ἡ ἐκ τοῦ κέντρου δυνάσθω τὸ ὑπὸ ΒΑΗ ὁ μὲν ἄρα Λ κύκλος ἴσος ἐστὶν τῇ ἐπιφανείᾳ τοῦ ΑΒΓ κώνου, ὁ δὲ Κ κύκλος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ △ΕΒ. Καὶ ἐπεὶ τὸ ὑπὸ τῶν ΒΑ, ΑΗ ἴσον ἐστὶ τῷ τε ὑπὸ τῶν Β△, △Ζ καὶ τῷ ὑπὸ τῆς Α△ καὶ συναμφοτέρου τῆς △Ζ, ΑΗ διὰ τὸ παράλληλον εἶναι τὴν △Ζ τῇ ΑΗ, ἀλλὰ τὸ μὲν ὑπὸ ΑΒ, ΑΗ δύναται ἡ ἐκ τοῦ κέντρου τοῦ Λ κύκλου, τὸ δὲ ὑπὸ Β△, △Ζ δύναται ἡ ἐκ τοῦ κέντρου τοῦ Κ κύκλου, τὸ δὲ ὑπὸ τῆς △Α καὶ συναμφοτέρου τῆς △Ζ, ΑΗ δύναται ἡ ἐκ τοῦ κέντρου τοῦ Θ, τὸ ἄρα ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Λ κύκλου ἴσον ἐστὶ τοῖς ἀπὸ τῶν ἐκ τῶν κέντρων τῶν Κ, Θ κύκλων ὥστε καὶ ὁ Λ κύκλος ἴσος ἐστὶ τοῖς Κ, Θ κύκλοις. Ἀλλʼ ὁ μὲν Λ ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ ΒΑΓ κώνου, ὁ δὲ Κ τῇ ἐπιφανείᾳ τοῦ △ΒΕ κώνου· λοιπὴ ἄρα ἡ ἐπιφάνεια τοῦ κώνου ἡ μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν △Ε, ΑΓ ἴση ἐστὶ τῷ Θ κύκλῳ.

Ἔστω παραλληλόγραμμον τὸ ΒΑΗ, καὶ διάμετρος αὐτοῦ ἔστω ἡ ΒΗ. Τετμήσθω ἡ ΒΑ πλευρά, ὡς ἔτυχεν, κατὰ τὸ △, καὶ διὰ τοῦ △ ἤχθω παράλληλος τῇ ΑΗ ἡ △Θ, διὰ δὲ τοῦ Ζ τῇ ΒΑ ἡ ΚΛ λέγω ὅτι τὸ ὑπὸ ΒΑΗ ἴσον ἐστὶ τῷ τε ὑπὸ Β△Ζ καὶ τῷ ὑπὸ △Α καὶ συναμφοτέρου τῆς △Ζ, ΑΗ.

48

Ἐπεὶ γὰρ τὸ μὲν ὑπὸ ΒΑΗ ὅλον ἐστὶ τὸ ΒΗ, τὸ δὲ ὑπὸ Β△Ζ τὸ ΒΖ, τὸ δὲ ὑπὸ △Α καὶ συναμφοτέρου τῆς △Ζ, ΑΗ ὁ ΜΝΞ γνώμων· τὸ μὲν γὰρ ὑπὸ △ΑΗ ἴσον ἐστὶν τῷ ΚΗ διὰ τὸ ἴσον εἶναι τὸ ΚΘ παραπλήρωμα τῷ △Λ παραπληρώματι, τὸ δὲ ὑπὸ △Α, △Ζ τῷ △Λ· ὅλον ἄρα τὸ ΒΗ, ὅπερ ἐστὶν τὸ ὑπὸ ΒΑΗ, ἴσον ἐστὶ τῷ τε ὑπὸ Β△Ζ καὶ τῷ ΜΝΞ γνώμονι, ὅς ἐστιν ἴσος τῷ ὑπὸ △Α καὶ συναμφοτέρου τῆς ΑΗ, △Ζ.

ΛΗΜΜΑΤΑ.

α΄. Οἱ κῶνοι οἱ ἴσον ὕψος ἔχοντες τὸν αὐτὸν ἔχουσι λόγον ταῖς βάσεσιν καὶ οἱ ἴσας ἔχοντες βάσεις τὸν αὐτὸν ἔχουσι λόγον τοῖς ὕψεσιν.

β΄. Ἐὰν κύλινδρος ἐπιπέδῳ τμηθῇ παρὰ τὴν βάσιν, ἔστιν, ὡς ὁ κύλινδρος πρὸς τὸν κύλινδρον, ὁ ἄξων πρὸς τὸν ἄξονα.

γ΄. Τοῖς δὲ κυλίνδροις ἐν τῷ αὐτῷ λόγῳ εἰσὶν οἱ κῶνοι οἱ ἔχοντες τὰς αὐτὰς βάσεις τοῖς κυλίνδροις.

δ΄. Καὶ τῶν ἴσων κώνων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν καὶ ὧν ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν, ἴσοι εἰσίν.

ε΄. Καὶ οἱ κῶνοι, ὧν αἱ διάμετροι τῶν βάσεων τὸν αὐτὸν λόγον ἔχουσιν τοῖς ἄξοσιν τουτέστιν τοῖς ὕψεσι, πρὸς ἀλλήλους ἐν τριπλασίονι λόγῳ εἰσὶν τῶν ἐν ταῖς βάσεσι διαμέτρων.

Ταῦτα δὲ πάντα ὑπὸ τῶν πρότερον ἀπεδείχθη.

49

Ἐὰν ὦσιν δύο κῶνοι ἰσοσκελεῖς, ἡ δὲ τοῦ ἑτέρου κώνου ἐπιφάνεια ἴση ᾖ τῇ τοῦ ἑτέρου βάσει, ἡ δὲ ἀπὸ τοῦ κέντρου τῆς βάσεως ἐπὶ τὴν πλευρὰν τοῦ κώνου κάθετος ἀγομένη τῷ ὕψει ἴση ᾖ, ἴσοι ἔσονται οἱ κῶνοι. Ἔστωσαν δύο κῶνοι ἰσοσκελεῖς οἱ ΑΒΓ, △ΕΖ, καὶ τοῦ ΑΒΓ ἡ μὲν βάσις ἴση ἔστω τῇ ἐπιφανείᾳ τοῦ △ΕΖ, τὸ δὲ ὕψος τὸ ΑΗ ἴσον ἔστω τῇ ἀπὸ τοῦ κέντρου τῆς βάσεως τοῦ Θ ἐπὶ μίαν πλευρὰν τοῦ κώνου, οἷον ἐπὶ τὴν △Ε, καθέτῳ ἠγμένῃ τῇ ΚΘ· λέγω ὅτι ἴσοι εἰσὶν οἱ κῶνοι.

Ἐπεὶ γὰρ ἴση ἐστὶν ἡ βάσις τοῦ ΑΒΓ τῇ ἐπιφανείᾳ τοῦ △ΕΖ τὰ δὲ ἴσα πρὸς τὸ αὐτὸ τὸν αὐτὸν ἔχει λόγον, ὡς ἄρα ἡ τοῦ ΒΑΓ βάσις πρὸς τὴν τοῦ △ΕΖ βάσιν, οὕτως ἡ ἐπιφάνεια τοῦ △ΕΖ πρὸς τὴν βάσιν τοῦ △ΕΖ. Ἀλλʼ ὡς ἡ ἐπιφάνεια πρὸς τὴν ἰδίαν βάσιν, οὕτως ἡ △Θ πρὸς τὴν ΘΚ ἐδείχθη γὰρ τοῦτο, ὅτι παντὸς κώνου ἰσοσκελοῦς ἡ ἐπιφάνεια πρὸς τὴν βάσιν τὸν αὐτὸν λόγον ἔχει, ὃν

50
ἡ πλευρὰ τοῦ κώνου πρὸς τὴν ἐκ τοῦ κέντρου τῆς βάσεως, ἡ △Ε τουτέστι πρὸς ΕΘ. Ὡς δὲ ἡ Ε△ πρὸς Θ△, οὕτως ἡ ΕΘ πρὸς ΘΚ ἰσογώνια γάρ ἐστι τὰ τρίγωνα. Ἴση δέ ἐστιν ἡ ΘΚ τῇ ΑΗ ὡς ἄρα ἡ βάσις τοῦ ΒΑΓ πρὸς τὴν βάσιν τοῦ △ΕΖ, οὕτως τὸ ὕψος τοῦ △ΕΖ πρὸς τὸ ὕψος τοῦ ΑΒΓ. Τῶν ΑΒΓ, △ΕΖ ἄρα ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν· ἴσος ἄρα ἐστὶν ὁ ΒΑΓ τῷ △ΕΖ κώνῳ.

Παντὶ ῥόμβῳ ἐξ ἰσοσκελῶν κώνων συγκειμένῳ ἴσος ἐστὶ κῶνος ὁ βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ τοῦ ἑτέρου κώνου τῶν περιεχόντων τὸν ῥόμβον, ὕψος δὲ ἴσον τῇ ἀπὸ τῆς κορυφῆς τοῦ ἑτέρου κώνου καθέτῳ ἀγομένῃ ἐπὶ μίαν πλευρὰν τοῦ ἑτερου κώνου.

Ἔστω ῥόμβος ἐξ ἰσοσκελῶν κώνων συγκείμενος ὁ ΑΒΓ△, οὗ βάσις ὁ περὶ διάμετρον τὴν ΒΓ κύκλος, ὕψος δὲ τὸ Α△, ἐκκείσθω δέ τις ἕτερος ὁ ΗΘΚ τὴν μὲν βάσιν ἔχων τῇ ἐπιφανείᾳ τοῦ ΑΒΓ κώνου ἴσην, τὸ δὲ ὕψος ἴσον τῇ ἀπὸ τοῦ △ σημείου καθέτῳ ἐπὶ τὴν ΑΒ ἢ τὴν ἐπʼ εὐθείας αὐτῇ ἠγμένῃ, ἔστω δὲ ἡ △Ζ, τὸ δὲ ὕψος τοῦ ΘΗΚ κώνου ἔστω τὸ ΘΛ ἴσον δή ἐστιν τὸ ΘΛ τῇ △Ζ λέγω ὅτι ἴσος ἐστὶν ὁ κῶνος τῷ ῥόμβῳ.

51

Ἐκκείσθω γὰρ ἕτερος κῶνος ὁ ΜΝΞ τὴν μὲν βάσιν ἔχων ἴσην τῇ βάσει τοῦ ΑΒΓ κώνου, τὸ δὲ ὕψος ἴσον τῇ Α△, καὶ ἔστω τὸ ὕψος αὐτοῦ τὸ ΝΟ. Ἐπεὶ οὖν ἡ ΝΟ τῇ Α△ ἴση ἐστίν, ἔστιν ἄρα, ὡς ἡ ΝΟ πρὸς △Ε, οὕτως ἡ Α△ πρὸς △Ε. Ἀλλʼ ὡς μὲν ἡ Α△ πρὸς △Ε, οὕτως ὁ ΑΒΓ△ ῥόμβος πρὸς τὸν ΒΓ△ κῶνον, ὡς δὲ ἡ ΝΟ πρὸς τὴν △Ε, οὕτως ὁ ΜΝΞ κῶνος πρὸς τὸν ΒΓ△ κῶνον διὰ τὸ τὰς βάσεις αὐτῶν εἶναι ἴσας ὡς ἄρα ὁ ΜΝΞ κῶνος πρὸς τὸν ΒΓ△ κῶνον, οὕτως ὁ ΑΒΓ△ ῥόμβος πρὸς τὸν ΒΓ△ κῶνον ἴσος ἄρα ἐστὶν ὁ ΜΝΞ τῷ ΑΒΓ△ ῥόμβῳ. Καὶ ἐπεὶ ἡ ἐπιφάνεια τοῦ ΑΒΓ ἴση ἐστὶ τῇ βάσει τοῦ ΗΘΚ, ὡς ἄρα ἡ ἐπιφάνεια τοῦ ΑΒΓ πρὸς τὴν ἰδίαν βάσιν, οὕτως ἡ βάσις τοῦ ΗΘΚ πρὸς τὴν βάσιν τοῦ ΜΝΞ ἡ γὰρ βάσις τοῦ ΑΒΓ ἴση ἐστὶ τῇ βάσει τοῦ ΜΝΞ. Ὡς δὲ ἡ ἐπιφάνεια τοῦ ΑΒΓ πρὸς τὴν ἰδίαν βάσιν, οὕτως ἡ ΑΒ πρὸς τὴν ΒΕ, τουτέστιν ἡ Α△ πρὸς △Ζ ὅμοια γὰρ τὰ τρίγωνα· ὡς ἄρα ἡ βάσις τοῦ ΗΘΚ πρὸς τὴν βάσιν τοῦ ΜΝΞ, οὕτως ἡ Α△ πρὸς △Ζ. Ἴση δὲ ἡ μὲν Α△ τῇ ΝΟ ὑπέκειτο γάρ, ἡ δὲ △Ζ

52
τῇ ΘΛ· ὡς ἄρα ἡ βάσις τοῦ ΗΘΚ πρὸς τὴν βάσιν τοῦ ΜΝΞ, οὕτως τὸ ΝΟ ὕψος πρὸς τὸ ΘΛ. Τῶν ΗΘΚ, ΜΝΞ ἄρα κώνων ἀντιπεπόνθασιν αἱ βάσεις τοῖς ὕψεσιν· ἴσοι ἄρα εἰσὶν οἱ κῶνοι. Ἐδείχθη δὲ ὁ ΜΝΞ ἴσος τῷ ΑΒΓ△ ῥόμβῳ καὶ ὁ ΗΘΚ ἄρα κῶνος ἴσος ἐστὶ τῷ ΑΒΓ△ ῥόμβῳ.

Ἐὰν κῶνος ἰσοσκελὴς ἐπιπέδῳ τμηθῇ παραλλήλῳ τῇ βάσει, ἀπὸ δὲ τοῦ γενομένου κύκλου κῶνος ἀναγραφῇ κορυφὴν ἔχων τὸ κέντρον τῆς βάσεως, ὁ δὲ γενόμενος ῥόμβος ἀφαιρεθῇ ἀπὸ τοῦ ὅλου κώνου, τῷ περιλείμματι ἴσος ἔσται κῶνος ὁ βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ κέντρου τῆς βάσεως ἐπὶ μίαν πλευρὰν τοῦ κώνου καθέτῳ ἠγμένῃ.

53

Ἔστω κῶνος ἰσοσκελὴς ὁ ΑΒΓ καὶ τετμήσθω ἐπιπέδῳ παραλλήλῳ τῇ βάσει, καὶ ποιείτω τομὴν τὴν △Ε, κέντρον δὲ τῆς βάσεως ἔστω τὸ Ζ, καὶ ἀπὸ τοῦ περὶ διάμετρον τὴν △Ε κύκλου κῶνος ἀναγεγράφθω κορυφὴν ἔχων τὸ Ζ ἔσται δὴ ῥόμβος ὁ Β△ΖΕ ἐξ ἰσοσκελῶν κώνων συγκείμενος. Ἐκκείσθω δή τις κῶνος ὁ ΚΘΛ, οὗ ἡ μὲν βάσις ἔστω ἴση τῇ ἐπιφανείᾳ τῇ μεταξὺ τῶν △Ε, ΑΓ, τὸ δὲ ὕψος, ἀχθείσης ἀπὸ τοῦ Ζ σημείου καθέτου ἐπὶ τὴν ΑΒ τῆς ΖΗ, ἔστω ἴσον τῇ ΖΗ· λέγω ὅτι, ἐὰν ἀπὸ τοῦ ΑΒΓ κώνου νοηθῇ ἀφῃρημένος ὁ Β△ΖΕ ῥόμβος, τῷ περιλείμματι ἴσος ἔσται ὁ ΘΚΛ κῶνος.

Ἐκκείσθωσαν γὰρ δύο κῶνοι οἱ ΜΝΞ, ΟΠΡ, ὥστε τὴν μὲν τοῦ ΜΝΞ βάσιν ἴσην εἶναι τοῦ ΑΒΓ κώνου τῇ ἐπιφανείᾳ, τὸ δὲ ὕψος ἴσον τῇ ΖΗ διὰ δὴ τοῦτο ἴσος ἐστὶν ὁ ΜΝΞ κῶνος τῷ ΑΒΓ κώνῳ ἐὰν γὰρ ὦσι δύο κῶνοι ἰσοσκελεῖς, ἡ δὲ τοῦ ἑτέρου κώνου ἐπιφάνεια ἴση ᾖ τῇ τοῦ ἑτέρου βάσει, ἔτι δὲ ἡ ἀπὸ τοῦ κέντρου τῆς βάσεως ἐπὶ τὴν πλευρὰν τοῦ κώνου ἀγομένη κάθετος τῷ ὕψει ἴση, ἴσοι ἔσονται οἱ κῶνοι, τὴν δὲ τοῦ ΟΠΡ κώνου βάσιν ἴσην εἶναι τῇ ἐπιφανείᾳ τοῦ △ΒΕ κώνου, ὕψος δὲ τῇ ΖΗ διὰ δὴ τοῦτο καὶ ἴσος ἐστὶν ὁ ΟΠΡ κῶνος τῷ Β△ΖΕ ῥόμβῳ τοῦτο γὰρ προαπεδείχθη. Ἐπεὶ δὲ ἡ τοῦ ΑΒΓ κώνου ἐπιφάνεια σύγκειται ἔκ τε τῆς τοῦ △ΒΕ ἐπιφανείας καὶ τῆς μεταξὺ τῶν △Ε, ΑΓ, ἀλλʼ ἡ μὲν τοῦ ΑΒΓ κώνου ἐπιφάνεια ἴση ἐστὶ τῇ βάσει τοῦ ΜΝΞ κώνου, ἡ δὲ τοῦ △ΒΕ ἐπιφάνεια ἴση ἐστὶν τῇ βάσει τοῦ ΟΠΡ, ἡ δὲ μεταξὺ τῶν △Ε, ΑΓ ἴση ἐστὶ τῇ βάσει τοῦ ΘΚΛ, ἡ ἄρα τοῦ ΜΝΞ βάσις ἴση ἐστὶ ταῖς βάσεσιν τῶν ΘΚΛ, ΟΠΡ. Καί εἰσιν οἱ κῶνοι ὑπὸ τὸ αὐτὸ ὕψος ἴσος ἄρα ἐστὶν καὶ ὁ ΜΝΞ κῶνος τοῖς ΘΚΛ, ΟΠΡ κώνοις. Ἀλλʼ ὁ μὲν ΜΝΞ κῶνος ἴσος ἐστὶ

54
τῷ ΑΒΓ κώνῳ, ὁ δὲ ΠΟΡ τῷ Β△ΕΖ ὁόμβῳ· λοιπὸς ἄρα ὁ ΘΚΛ κῶνος τῷ περιλείμματι ἴσος ἐστίν.

Ἐὰν ῥόμβου ἐξ ἰσοσκελῶν κώνων συγκειμένου ὁ ἕτερος κῶνος ἐπιπέδῳ τμηθῇ παραλλήλῳ τῇ βάσει, ἀπὸ δὲ τοῦ γενομένου κύκλου κῶνος ἀναγραφῇ κορυφὴν ἔχων τὴν αὐτὴν τῷ ἑτέρῳ κώνῳ, ἀπὸ δε τοῦ ὅλου ὁόμβου ὁ γενόμενος ῥόμβος ἀφαιρεθῇ, τῷ περιλείμματι ἴσος ἔσται ὁ κῶνος ὁ βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων, ὕψος δὲ ἴσον τῇ ἀπὸ τῆς κορυφῆς τοῦ ἑτέρου κώνου ἐπὶ τὴν πλευρὰν τοῦ ἑτέρου κώνου καθέτῳ ἠγμένῃ.

Ἔστω ῥόμβος ἐξ ἰσοσκελῶν κώνων συγκείμενος ὁ ΑΒΓ△, καὶ τμηθήτω ὁ ἕτερος κῶνος ἐπιπέδῳ παραλλήλῳ τῇ βάσει, καὶ ποιείτω τομὴν τὴν ΕΖ, ἀπὸ δὲ τοῦ περὶ διάμετρον τὴν ΕΖ κύκλου κῶνος ἀναγεγράφθω τὴν κορυφὴν ἔχων τὸ μετρον σημεῖον· ἔσται δὴ γεγονὼς ῥόμβος ὁ ΕΒ△Ζ. Καὶ νοείσθω ἀφῃρημένος ἀπὸ τοῦ ὅλου ῥόμβου, ἐκκείσθω δέ τις κῶνος ὁ ΘΚΛ τὴν μὲν βάσιν ἴσην ἔχων τῇ ἐπιφανείᾳ τῇ μεταξὺ τῶν ΑΓ, ΕΖ, τὸ δὲ ὕψος ἴσον τῇ ἀπὸ τοῦ △ σημείου καθέτῳ ἀγομένῃ ἐπὶ τὴν ΒΑ ἢ τὴν ἐπʼ εὐθείας αὐτῇ· λέγω ὅτι ὁ ΘΚΛ κῶνος ἴσος ἐστὶ τῷ εἰρημένῳ περιλείμματι.

55

Ἐκκείσθωσαν γὰρ δύο κῶνοι οἱ ΜΝΞ, ΟΠΡ, καὶ ἡ μὲν βάσις τοῦ ΜΝΞ κώνου ἴση ἔστω τῇ ἐπιφανείᾳ τοῦ ΑΒΓ, τὸ δὲ ὕψος ἴσον τῇ △Η διὰ δὴ τὰ προδειχθέντα ἴσος ἐστὶν ὁ ΜΝΞ κῶνος τῷ ΑΒΓ△ ῥόμβῳ, τοῦ δὲ ΟΠΡ κώνου ἡ μὲν βάσις ἴση ἔστω τῇ ἐπιφανείᾳ τοῦ ΕΒΖ κώνου, τὸ δὲ ὕψος ἴσον τῇ △Η ὁμοίως δὴ ἴσος ἐστὶν ὁ ΟΠΡ κῶνος τῷ ΕΒ△Ζ ῥόμβῳ. Ἐπεὶ δὲ ὁμοίως ἡ ἐπιφάνεια τοῦ ΑΒΓ κώνου σύγκειται ἔκ τε τῆς τοῦ ΕΒΖ καὶ τῆς μεταξὺ τῶν ΕΖ, ΑΓ, ἀλλὰ ἡ μὲν τοῦ ΑΒΓ κώνου ἐπιφάνεια ἴση ἐστὶ τῇ βάσει τοῦ ΜΝΞ, ἡ δὲ τοῦ ΕΒΖ κώνου ἐπιφάνεια ἴση ἐστὶ τῇ βάσει τοῦ ΟΡΠ κώνου, ἡ δὲ μεταξὺ τῶν ΕΖ, ΑΓ ἴση ἐστὶ τῇ βάσει τοῦ ΘΚΛ, ἡ ἄρα βάσις τοῦ ΜΝΞ ἴση ἐστὶ ταῖς βάσεσιν τῶν ΟΠΡ, ΘΚΛ. Καί εἰσιν οἱ κῶνοι ὑπὸ τὸ αὐτὸ ὕψος· καὶ ὁ ΜΝΞ ἄρα κῶνος ἴσος ἐστὶ τοῖς ΘΚΛ, ΟΠΡ κώνοις. Ἀλλʼ ὁ μὲν ΜΝΞ κῶνος ἴσος ἐστὶ τῷ ΑΒΓ△ ῥόμβῳ, ὁ δὲ ΟΠΡ κῶνος τῷ ΕΒ△Ζ ῥόμβῳ· λοιπὸς ἄρα ὁ κῶνος ὁ ΘΚΛ ἴσος ἐστὶ τῷ περιλείμματι τῷ λοιπῷ.

56

Ἐὰν εἰς κύκλον πολύγωνον ἐγγραφῇ ἀρτιόπλευρόν τε καὶ ἰσόπλευρον, καὶ διαχθῶσιν εὐθεῖαι ἐπιζευγνύουσα τὰς πλευρὰς τοῦ πολυγώνου, ὥστε αὐτὰς παραλλήλους εἶναι μιᾷ ὁποιᾳοῦν τῶν ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινουσῶν, αἱ ἐπιζευγνύουσαι πᾶσαι πρὸς τὴν τοῦ κύκλου διάμετρον τοῦτον ἔχουσι τὸν λόγον, ὃν ἔχει ἡ ὑποτείνουσα τὰς μιᾷ ἐλάσσονας τῶν ἡμίσεων πρὸς τὴν πλευρὰν τοῦ πολυγώνου.

Ἔστω κύκλος ὁ ΑΒΓ△, καὶ ἐν αὐτῷ πολύγωνον ἐγγεγράφθω τὸ ΑΕΖΒΗΘΓΜΝ△ΛΚ, καὶ ἐπεζεύχθωσαν αἱ ΕΚ ΖΛ, Β△, ΗΝ, ΘΜ· δῆλον δὴ ὅτι παράλληλοί εἰσιν τῇ ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινούσῃ· λέγω οὖν ὅτι αἱ εἰρημέναι πᾶσαι πρὸς τὴν τοῦ κύκλου διάμετρον τὴν ΑΓ τὸν αὐτὸν λόγον ἔχουσι τῷ τῆς ΓΕ πρὸς ΕΑ.

Ἐπεζεύχθωσαν γὰρ αἱ ΖΚ, ΛΒ, Η△, ΘΝ· παράλληλος ἄρα ἡ μὲν ΖΚ τῇ ΕΑ, ἡ δὲ ΒΛ τῇ ΖΚ, καὶ ἔτι ἡ μὲν △Η τῇ ΒΛ, ἡ δὲ ΘΝ τῇ △Η, καὶ ἡ ΓΜ τῇ ΘΝ καὶ ἐπεὶ δύο παράλληλοί εἰσιν αἱ ΕΑ, ΚΖ, καὶ δύο διηγμέναι εἰσὶν αἱ ΕΚ,

57
ΑΟ, ἔστιν ἄρα, ὡς ἡ ΕΞ πρὸς ΞΑ, ἡ ΚΞ πρὸς ΞΟ. Ὡς δ᾿  ἡ ΚΞ πρὸς ΞΟ, ἡ ΖΠ πρὸς ΠΟ, ὡς δὲ ἡ ΖΠ πρὸς ΠΟ, ἡ ΛΠ πρὸς ΠΡ, ὡς δὲ ἡ ΛΠ πρὸς ΠΡ, οὕτως ἡ ΒΣ πρὸς ΣΡ, καὶ ἔτι ὡς ἡ μὲν ΒΣ πρὸς ΣΡ, ἡ △Σ πρὸς ΣΓ, ὡς δὲ ἡ △Σ πρὸς ΣΤ, ἡ ΗΥ πρὸς ΥΤ, καὶ ἔτι ὡς ἡ μὲν ΗΥ πρὸς ΥΤ, ἡ ΝΥ πρὸς ΥΦ, ὡς δὲ ἡ ΝΥ πρὸς ΥΦ, ἡ ΘΧ πρὸς ΧΦ, καὶ ἔτι ὡς μὲν ἡ ΘΧ πρὸς ΧΦ, ἡ ΜΧ πρὸς ΧΓ καὶ πάντα ἄρα πρὸς πάντα ἐστὶν ὡς εἷς τῶν λόγων πρὸς ἕνα· ὡς ἄρα ἡ ΕΞ πρὸς ΞΑ, οὕτως αἱ ΕΚ, ΖΛ, Β△, ΗΝ, ΘΜ πρὸς τὴν ΑΓ διάμετρον. Ὡς δὲ ἡ ΕΞ πρὸς ΞΑ, οὕτως ἡ ΓΕ πρὸς ΕΑ· ἔσται ἄρα καὶ ὡς ἡ ΓΕ πρὸς ΕΑ, οὕτω πᾶσαι αἱ ΕΚ, ΖΛ, Β△, ΗΝ, ΘΜ πρὸς τὴν ΑΓ διάμετρον.

Ἐὰν εἰς τμῆμα κύκλου πολύγωνον ἐγγραφῇ τὰς πλευρὰς ἔχον χωρὶς τῆς βάσεως ἴσας καὶ ἀρτίους, ἀχθῶσιν δὲ εὐθεῖαι παρὰ τὴν βάσιν τοῦ τμήματος αἱ τὰς πλευρὰς ἐπιζευγνύουσαι τοῦ πολυγώνου, αἱ ἀχθεῖσαι πᾶσαι καὶ ἡ ἡμίσεια τῆς βάσεως πρὸς τὸ ὕψος τοῦ τμήματος τὸν αὐτὸν λόγον ἔχουσιν, ὃν ἡ ἀπὸ τῆς διαμέτρου τοῦ κύκλου ἐπὶ τὴν πλευρὰν τοῦ πολυγώνου ἐπιζευγνυμένη πρὸς τὴν τοῦ πολυγώνου πλευράν.

Εἰς γὰρ κύκλον τὸν ΑΒΓ△ διήχθω τις εὐθεῖα ἡ ΑΓ, καὶ ἐπὶ τῆς ΑΓ πολύγωνον ἐγγεγράφθω εἰς τὸ ΑΒΓ τμῆμα ἀρτιόπλευρόν τε καὶ ἴσας ἔχον τὰς πλευρὰς χωρὶς τῆς βάσεως τῆς ΑΓ, καὶ ἐπεζεύχθωσαν αἱ ΖΗ, ΕΘ, αἵ εἰσιν παράλληλοι τῇ βάσει τοῦ τμήματος· λέγω ὅτι ἐστὶν ὡς αἱ ΖΗ, ΕΘ, ΑΞ πρὸς ΒΞ, οὕτως ἡ △Ζ πρὸς ΖΒ.

58

Πάλιν γὰρ ὁμοίως ἐπεζεύχθωσαν αἱ ΗΕ, ΑΘ· παράλληλοι ἄρα εἰσὶν τῇ ΒΖ· διὰ δὴ ταὐτά ἐστιν, ὡς ἡ ΚΖ πρὸς ΚΒ, ἥ τε ΗΚ πρὸς ΚΛ καὶ ἡ ΕΜ πρὸς ΜΛ καὶ ἡ ΜΘ πρὸς ΜΝ καὶ ἡ ΞΑ πρὸς ΞΝ καὶ ὡς ἄρα πάντα πρὸς πάντα, εἷς τῶν λόγων πρὸς ἕνα· ὡς ἄρα αἱ ΖΗ, ΕΘ, ΑΞ πρὸς ΒΞ, οὕτως ἡ ΖΚ πρὸς ΚΒ. Ὡς δὲ ἡ ΖΚ πρὸς ΚΒ, οὕτως ἡ △Ζ πρὸς ΖΒ· ὡς ἄρα ἡ △Ζ πρὸς ΖΒ, οὕτως αἱ ΖΗ, ΕΘ, ΑΞ πρὸς ΞΒ.

Ἔστω ἐν σφαίρᾳ μέγιστος κύκλος ὁ ΑΒΓ△, καὶ ἐγγεγράφθω εἰς αὐτὸν πολύγωνον ἰσόπλευρον, τὸ δὲ πλῆθος τῶν πλευρῶν αὐτοῦ μετρείσθω ὑπὸ τετράδος, αἱ δὲ ΑΓ, △Β διάμετροι ἔστωσαν. Ἐὰν δὴ μενούσης τῆς ΑΓ διαμέτρου περιενεχθῇ ὁ ΑΒΓ△ κύκλος ἔχων τὸ πολύγωνον, δῆλον ὅτι ἡ μὲν περιφέρεια αὐτοῦ κατὰ τῆς ἐπιφανείας τῆς σφαίρας ἐνεχθήσεται, αἱ δὲ τοῦ πολυγώνου γωνίαι χωρὶς τῶν πρὸς τοῖς Α, Γ σημείοις κατὰ κύκλων περιφερειῶν ἐνεχθήσονται ἐν τῇ ἐπιφανείᾳ τῆς σφαίρας γεγραμμένων ὀρθῶν

59
πρὸς τὸν ΑΒΓ△ κύκλον· διάμετροι δὲ αὐτῶν ἔσονται αἱ ἐπιζευγνύουσαι τὰς γωνίας τοῦ πολυγώνου παρὰ τὴν Β△ οὖσαι. Αἱ δὲ τοῦ πολυγώνου πλευραὶ κατά τινων κώνων ἐνεχθήσονται, αἱ μὲν ΑΖ, ΑΝ κατʼ ἐπιφανείας κώνου, οὗ βάσις μὲν ὁ κύκλος ὁ περὶ διάμετρον τὴν ΖΝ, κορυφὴ δὲ τὸ Α σημεῖον, αἱ δὲ ΖΗ, ΜΝ κατά τινος κωνικῆς ἐπιφανείας οἰσθήσονται, ἧς βάσις μὲν ὁ κύκλος ὁ περὶ διάμετρον τὴν ΜΗ, κορυφὴ δὲ τὸ σημεῖον, καθʼ ὃ συμβάλλουσιν ἐκβαλλόμεναι αἱ ΖΗ, ΜΝ ἀλλήλαις τε καὶ τῇ ΑΓ, αἱ δὲ ΒΗ, Μ△ πλευραὶ κατὰ κωνικῆς ἐπιφανείας οἰσθήσονται, ἧς βάσις μέν ἐστιν ὁ κύκλος ὁ περὶ διάμετρον τὴν Β△ ὀρθὸς πρὸς τὸν ΑΒΓ△ κύκλον, κορυφὴ δὲ τὸ σημεῖον, καθ᾿  ὃ συμβάλλουσιν ἐκβαλλόμεναι αἱ ΒΗ, △Μ ἀλλήλαις τε καὶ τῇ ΓΑ· ὁμοίως δὲ καὶ αἱ ἐν τῷ ἑτέρῳ ἡμικυκλίῳ πλευραὶ κατὰ κωνικῶν ἐπιφανειῶν οἰσθήσονται πάλιν ὁμοίων ταύταις. Ἔσται δή τι σχῆμα ἐγγεγραμμένον ἐν τῇ σφαίρᾳ ὑπὸ κωνικῶν ἐπιφανειῶν περιεχόμενον τῶν προειρημένων, οὗ ἡ ἐπιφάνεια ἐλάσσων ἔσται τῆς ἐπιφανείας τῆς σφαίρας.

60

Διαιρεθείσης γὰρ τῆς σφαίρας ὑπὸ τοῦ ἐπιπέδου τοῦ κατὰ τὴν Β△ ὀρθοῦ πρὸς τὸν ΑΒΓ△ κύκλον ἡ ἐπιφάνεια τοῦ ἑτέρου ἡμισφαιρίου καὶ ἡ ἐπιφάνεια τοῦ σχήματος τοῦ ἐν αὐτῷ ἐγγεγραμμένου τὰ αὐτὰ πέρατα ἔχουσιν ἐν ἑνὶ ἐπιπέδῳ· ἀμφοτέρων γὰρ τῶν ἐπιφανειῶν πέρας ἐστὶν τοῦ κύκλου ἡ ἐπιφάνεια τοῦ περὶ διάμετρον τὴν Β△ ὀρθοῦ πρὸς τὸν ΑΒΓ△ κύκλον καί εἰσιν ἀμφότεραι ἐπὶ τὰ αὐτὰ κοῖλαι, καὶ περιλαμβάνεται αὐτῶν ἡ ἑτέρα ὑπὸ τῆς ἑτέρας ἐπιφανείας καὶ τῆς ἐπιπέδου τῆς τὰ αὐτὰ πέρατα ἐχούσης αὐτῇ. Ὁμοίως δὲ καὶ τοῦ ἐν τῷ ἑτέρῳ ἡμισφαιρίῳ σχήματος ἡ ἐπιφάνεια ἐλάσσων ἐστὶν τῆς τοῦ ἡμισφαιρίου ἐπιφανείας· καὶ ὅλη οὖν ἡ ἐπιφάνεια τοῦ σχήματος τοῦ ἐν τῇ σφαίρᾳ ἐλάσσων ἐστὶν τῆς ἐπιφανείας τῆς σφαίρας.

Ἡ τοῦ ἐγγραφομένου σχήματος εἰς τὴν σφαῖραν ἐπιφάνεια ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ περιεχόμενον ὑπό τε τῆς πλευρᾶς τοῦ σχήματος καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς πλευρὰς τοῦ πολυγώνου παραλλήλοις οὔσαις τῇ ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινούσῃ εὐθείᾳ.

Ἔστω ἐν σφαίρᾳ μέγιστος κύκλος ὁ ΑΒΓ△, καὶ ἐν αὐτῷ πολύγωνον ἐγγεγράφθω ἰσόπλευρον, οὗ αἱ πλευραὶ ὑπὸ τετράδος μετροῦνται, καὶ ἀπὸ τοῦ πολυγώνου τοῦ ἐγγεγραμμένου νοείσθω τι εἰς τὴν σφαῖραν ἐγγραφὲν σχῆμα, καὶ ἐπεζεύχθωσαν αἱ ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ παράλληλοι οὖσαι τῇ ὑπὸ δύο πλευρὰς ὑποτεινούσῃ εὐθείᾳ, κύκλος δέ τις ἐκκείσθω ὁ Ξ, οὗ ἡ ἐκ τοῦ κέντρου δυνάσθω

61
τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ τῆς ἴσης ταῖς ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ· λέγω ὅτι ὁ κύκλος οὗτος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ εἰς τὴν σφαῖραν ἐγγραφομένου σχήματος.

Ἐκκείσθωσαν γὰρ κύκλοι οἱ Ο, Π, Ρ, Σ, Τ, Υ, καὶ τοῦ μὲν Ο ἡ ἐκ τοῦ κέντρου δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΕΑ καὶ τῆς ἡμισείας τῆς ΕΖ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Π δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΕΑ καὶ τῆς ἡμισείας τῶν ΕΖ, ΗΘ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Ρ δυνάσθω τὸ περιεχόμενον ὑπὸ τῆς ΕΑ καὶ τῆς ἡμισείας τῶν ΗΘ, Γ△, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Σ δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΕΑ καὶ τῆς ἡμισείας τῶν Γ△, Κ△, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Τ δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ τῆς ἡμισείας τῶν ΚΛ, ΜΝ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Υ δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ τῆς ἡμισείας τῆς ΜΝ. Διὰ δὴ ταῦτα ὁ μὲν Ο κύκλος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ ΑΕΖ κώνου, ὁ δὲ Π τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν ΕΖ, ΗΘ, ὁ δὲ Ρ τῇ μεταξὺ τῶν ΗΘ, Γ△, ὁ δὲ Σ τῇ μεταξὺ τῶν △Γ, ΚΛ, καὶ ἔτι ὁ μὲν Τ ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν ΚΛ, ΜΝ, ὁ δὲ Υ τῇ τοῦ ΜΒΝ κώνου ἐπιφανείᾳ ἴσος ἐστίν· οἱ πάντες ἄρα κύκλοι ἴσοι εἰσὶν τῇ τοῦ ἐγγεγραμμένου σχήματος ἐπιφανείᾳ. Καὶ φανερὸν ὅτι αἱ ἐκ τῶν κέντρων τῶν Ο, Π, Ρ, Σ, Τ

62
κύκλων δύνανται τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ δὶς τῶν ἡμίσεων τῆς ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ, αἳ ὅλαι εἰσὶν αἱ ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ· αἱ ἄρα ἐκ τῶν κέντρων τῶν Ο, Π, Ρ, Σ, Τ, Υ κύκλων δύνανται τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ πασῶν τῶν ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ. Ἀλλὰ καὶ ἡ ἐκ τοῦ κέντρου τοῦ Ξ κύκλου δύναται τὸ ὑπὸ τῆς ΑΕ καὶ τῆς συγκειμένης ἐκ πασῶν τῶν ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ· ἡ ἄρα ἐκ τοῦ κέντρου τοῦ Ξ κύκλου δύναται τὰ ἀπὸ τῶν ἐκ τῶν κέντρων τῶν Ο, Π, Ρ, Σ, Τ, Υ κύκλων· καὶ ὁ κύκλος ἄρα ὁ Ξ ἴσος ἐστὶ τοῖς Ο, Π, Ρ, Σ, Τ, Υ κύκλοις. Οἱ δὲ Ο, Π, Ρ, Σ, Τ, Υ κύκλοι ἀπεδείχθησαν ἴσοι τῇ εἰρημένῃ τοῦ σχήματος ἐπιφανείᾳ· καὶ ὁ Ξ ἄρα κύκλος ἴσος ἔσται τῇ ἐπιφανείᾳ τοῦ σχήματος.