De sphaera et cylindro

Archimedes

Archimedes. Archimède, Volume 1. Mugler, Charles, editor. Paris: Les Belles Lettres, 1970.

Πρότερον μὲν ἀπέσταλκά σοι τῶν ὑφʼ ἡμῶν τεθεωρημένων γράψας μετὰ ἀποδείξεως, ὅτι πᾶν τμῆμα τὸ περιεχόμενον ὑπό τε εὐθείας καὶ ὀρθογωνίου κώνου τομῆς ἐπίτριτόν ἐστι τριγώνου τοῦ βάσιν τὴν αὐτὴν ἔχοντος τῷ τμήματι καὶ ὕψος ἴσον· ὕστερον δὲ ἡμῖν ὑποπεσόντων θεωρημάτων ἀξίων λόγου πεπραγματεύμεθα περὶ τὰς ἀποδείξεις αὐτῶν. Ἔστιν δὲ τάδε· πρῶτον μέν, ὅτι πάσης σφαίρας ἡ ἐπιφάνεια τετραπλασία ἐστὶν τοῦ μεγίστου κύκλου τῶν ἐν αὐτῇ· ἔπειτα δέ, ὅτι παντὸς τμήματος σφαίρας τῇ ἐπιφανείᾳ ἴσος ἐστὶ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ εὐθείᾳ τῇ ἀπὸ τῆς κορυφῆς τοῦ τμήματος ἀγομένῃ ἐπὶ τὴν περιφέρειαν τοῦ κύκλου, ὅς ἐστι βάσις τοῦ τμήματος· πρὸς δὲ τούτοις, ὅτι πάσης σφαίρας ὁ κύλινδρος ὁ βάσιν μὲν ἔχων ἴσην τῷ μεγίστῳ κύκλῳ τῶν ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ διαμέτρῳ τῆς σφαίρας αὐτός τε ἡμιόλιός ἐστιν τῆς σφαίρας, καὶ ἡ ἐπιφάνεια αὐτοῦ τῆς ἐπιφανείας τῆς σφαίρας. Ταῦτα δὲ τὰ συμπτώματα τῇ φύσει προυπῆρχεν περὶ τὰ εἰρημένα σχήματα, ἠγνοεῖτο δὲ ὑπὸ τῶν πρὸ ἡμῶν περὶ γεωμετρίαν ἀνεστραμμένων οὐδενὸς αὐτῶν ἐπινενοηκότος ὅτι τούτων τῶν σχημάτων ἐστὶν συμμετρία·

9
διόπερ οὐκ ἂν ὀκνήσαιμι ἀντιπαραβαλεῖν αὐτὰ πρός τε τὰ τοῖς ἄλλοις γεωμέτραις τεθεωρημένα καὶ πρὸς τὰ δόξαντα πολὺ ὑπερέχειν τῶν ὑπὸ Εὐδόξου περὶ τὰ στερεὰ θεωρηθέντων, ὅτι πᾶσα πυραμὶς τρίτον ἐστὶ μέρος πρίσματος τοῦ βάσιν ἔχοντος τὴν αὐτὴν τῇ πυραμίδι καὶ ὕψος ἴσον, καὶ ὅτι πᾶς κῶνος τρίτον μέρος ἐστὶν τοῦ κυλίνδρου τοῦ βάσιν ἔχοντος τὴν αὐτὴν τῷ κώνῳ καὶ ὕψος ἴσον· καὶ γὰρ τούτων προυπαρχόντων φυσικῶς περὶ ταῦτα τὰ σχήματα, πολλῶν πρὸ Ἐὐδόξου γεγενημένων ἀξίων λόγου γεωμετρῶν συνέβαινεν ὑπὸ πάντων ἀγνοεῖσθαι μηδ᾿ ὑφʼ ἑνὸς κατανοτηθῆναι. Ἐξέσται δὲ περὶ τούτων ἐπισκέψασθαι τοῖς δυνησομένοις. Ὤφειλε μὲν οὖν Κόνωνος ἔτι ζῶντος ἐκδίδοσθαι ταῦτα τῆνον γὰρ ὑπολαμβάνομέν που μάλιστα ἂν δύνασθαι κατανοῆσαι ταῦτα καὶ τὴν ἁρμόζουσαν ὑπὲρ αὐτῶν ἀπόφασιν ποιήσασθαι· δοκιμάζοντες δὲ καλῶς ἔχειν μεταδιδόναι τοῖς οἰκείοις τῶν μαθημάτων ἀποστέλλομέν σοι τὰς ἀποδείξεις ἀναγράψαντες, ὑπὲρ ὧν ἐξέσται τοῖς περὶ τὰ μαθήματα ἀναστρεφομένοις ἐπισκέψασθαι. Ἐρρωμένως.

Γράφονται πρῶτον τά τε ἀξιώματα καὶ τὰ λαμβανόμενα εἰς τὰς ἀποδείξες αὐτῶν.

ΑΞΙΩΜΑΤΑ

α΄. Εἰσί τινες ἐν ἐπιπέδῳ καμπύλαι γραμμαὶ πεπερασμέναι, αἳ τῶν τὰ πέρατα ἐπιζευγνυουσῶν αὐτῶν εὐθειῶν ἤτοι ὅλαι ἐπὶ τὰ αὐτά εἰσιν ἢ οὐδὲν ἔχουσιν ἐπὶ τὰ ἕτερα.

β΄. Ἐπὶ τὰ αὐτὰ δὴ κοίλην καλῶ τὴν τοιαύτην γραμμήν, ἐν ᾗ ἐὰν δύο σημείων λαμβανομένων ὁποιωνοῦν αἱ μεταξὺ

10
τῶν σημείων εὐθεῖαι ἤτοι πᾶσαι ἐπὶ τὰ αὐτὰ πίπτουσιν τῆς γραμμῆς, ἢ τινὲς μὲν ἐπὶ τὰ αὐτά, τινὲς δὲ κατʼ αὐτῆς, ἐπὶ τὰ ἕτερα δὲ μηδεμία.

γ΄. Ὁμοίως δὲ καὶ ἐπιφάνειαί τινές εἰσιν πεπερασμέναι, αὐταὶ μὲν οὐκ ἐν ἐπιπέδῳ, τὰ δὲ πέρατα ἔχουσαι ἐν ἐπιπέδῳ, αἳ τοῦ ἐπιπέδου, ἐν ᾧ τὰ πέρατα ἔχουσιν, ἤτοι ὅλαι ἐπὶ τὰ αὐτὰ ἔσονται ἢ οὐδὲν ἔχουσιν ἐπὶ τὰ ἕτερα.

δ΄. Ἐπὶ τὰ αὐτὰ δὴ κοίλας καλῶ τὰς τοιαύτας ἐπιφανείας, ἐν αἷς ἂν δύο σημείων λαμβανομένων αἱ μεταξὺ τῶν σημείων εὐθεῖαι ἤτοι πᾶσαι ἐπὶ τὰ αὐτὰ πίπτουσιν τῆς ἐπιφανείας, ἢ τινὲς μὲν ἐπὶ τὰ αὐτά, τινὲς δὲ κατʼ αὐτῆς, ἐπὶ τὰ ἕτερα δὲ μηδεμία.

ε΄. Τομέα δὲ στερεὸν καλῶ, ἐπειδὰν σφαῖραν κῶνος τέμνῃ κορυφὴν ἔχων πρὸς τῷ κέντρῳ τῆς σφαίρας, τὸ ἐμπεριεχόμενον σχῆμα ὑπό τε τῆς ἐπιφανείας τοῦ κώνου καὶ τῆς ἐπιφανείας τῆς σφαίρας ἐντὸς τοῦ κώνου.

ϛ΄. Ῥόμβον δὲ καλῶ στερεόν, ἐπειδὰν δύο κῶνοι τὴν αὐτὴν βάσιν ἔχοντες τὰς κορυφὰς ἔχωσιν ἐφʼ ἑκάτερα τοῦ ἐπιπέδου τῆς βάσεως, ὅπως οἱ ἄξονες αὐτῶν ἐπʼ εὐθείας ὦσι κείμενοι, τὸ ἐξ ἀμφοῖν τοῖν κώνοιν συγκείμενον στερεὸν σχῆμα.

ΛΑΜΒΑΝΟΜΕΝΑ

Λαμβάνω δὲ ταῦτα·

α΄. Τῶν τὰ αὐτὰ πέρατα ἐχουσῶν γραμμῶν ἐλαχίστην εἶναι τὴν εὐθεῖαν.

β΄. Τῶν δὲ ἄλλων γραμμῶν, ἐὰν ἐν ἐπιπέδῳ οὖσαι τὰ αὐτὰ πέρατα ἔχωσιν, ἀνίσους εἶναι τὰς τοιαύτας,

11
ἐπειδὰν ὦσιν ἀμφότεραι ἐπὶ τὰ αὐτὰ κοῖλαι, καὶ ἤτοι ὅλη περιλαμβάνηται ἡ ἑτέρα αὐτῶν ὑπὸ τῆς ἑτέρας καὶ τῆς εὐθείας τῆς τὰ αὐτὰ πέρατα ἐχούσης αὐτῇ, ἢ τινὰ μὲν περιλαμβάνηται, τινὰ δὲ κοινὰ ἔχῃ, καὶ ἐλάσσονα εἶναι τὴν περιλαμβανομένην.

γ΄. Ὁμοίως δὲ καὶ τῶν ἐπιφανειῶν τῶν τὰ αὐτὰ πέρατα ἐχουσῶν, ἐὰν ἐν ἐπιπέδῳ τὰ πέρατα ἔχωσιν, ἐλάσσονα εἶναι τὴν ἐπίπεδον.

δ΄. Τῶν δὲ ἄλλων ἐπιφανειῶν καὶ τὰ αὐτὰ πέρατα ἐχουσῶν, ἐὰν ἐν ἐπιπέδῳ τὰ πέρατα ᾖ, ἀνίσους εἶναι τὰς τοιαύτας, ἐπειδὰν ὦσιν ἀμφότεραι ἐπὶ τὰ αὐτὰ κοῖλαι, καὶ ἤτοι ὅλη περιλαμβάνηται ὑπὸ τῆς ἑτέρας ἡ ἑτέρα ἐπιφάνεια καὶ τῆς ἐπιπέδου τῆς τὰ αὐτὰ πέρατα ἐχούσης αὐτῇ, ἢ τινὰ μὲν περιλαμβάνηται, τινὰ δὲ κοινὰ ἔχῃ, καὶ ἐλάσσονα εἶναι τὴν περιλαμβανομένην.

ε΄. Ἔτι δὲ τῶν ἀνίσων γραμμῶν καὶ τῶν ἀνίσων ἐπιφανειῶν καὶ τῶν ἀνίσων στερεῶν τὸ μεῖζον τοῦ ἐλάσσονος ὑπερέχειν τοιούτῳ, ὃ συντιθέμενον αὐτὸ ἑαυτῷ δυνατόν ἐστιν ὑπερέχειν παντὸς τοῦ προτεθέντος τῶν πρὸς ἄλληλα λεγομένων.

Τούτων δὲ ὑποκειμένων, ἐὰν εἰς κύκλον πολύγωνον ἐγγραφῇ, φανερὸν ὅτι ἡ περίμετρος τοῦ ἐγγραφέντος πολυγώνου ἐλάσσων ἐστὶν τῆς τοῦ κύκλου περιφερείας ἑκάστη γὰρ τῶν τοῦ πολυγώνου πλευρῶν ἐλάσσων ἐστὶ τῆς τοῦ κύκλου περιφερείας τῆς ὑπὸ τῆς αὐτῆς ἀποτεμνομένης.

12

Ἐὰν περὶ κύκλον πολύγωνον περιγραφῇ, ἡ τοῦ περιγραφέντος πολυγώνου περίμετρος μείζων ἐστὶν τῆς περιμέτρου τοῦ κύκλου.

Περὶ γὰρ κύκλον πολύγωνον περιγεγράφθω τὸ ὑποκείμενον. Λέγω ὅτι ἡ περίμετρος τοῦ πολυγώνου μείζων ἐστὶν τῆς περιμέτρου τοῦ κύκλου.

Ἐπεὶ γὰρ συναμφότερος ἡ ΒΑΛ μείζων ἐστὶ τῆς ΒΛ περιφερείας διὰ τὸ τὰ αὐτὰ πέρατα ἔχουσαν περιλαμβάνειν τὴν περιφέρειαν, ὁμοίως δὲ καὶ συναμφότερος μὲν ἡ △Γ, ΓΒ τῆς △Β, συναμφότερος δὲ ἡ ΛΚ, ΚΘ τῆς ΛΘ, συναμφότερος δὲ ἡ ΖΗΘ τῆς ΖΘ, ἔτι δὲ συναμφότερος ἡ △Ε, ΕΖ τῆς △Ζ, ὅλη ἄρα ἡ περίμετρος τοῦ πολυγώνου μείζων ἐστὶ τῆς περιφερείας τοῦ κύκλου.

Δύο μεγεθῶν ἀνίσων δοθέντων δυνατόν ἐστιν εὑρεῖν δύο εὐθείας ἀνίσους, ὥστε τὴν μείζονα εὐθεῖαν πρὸς τὴν

13
ἐλάσσονα λόγον ἔχειν ἐλάσσονα ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλασσον.

Ἔστω δύο μεγέθη ἄνισα τὰ ΑΒ, △, καὶ ἔστω μεῖζον τὸ ΑΒ. Λέγω ὅτι δυνατόν ἐστι δύο εὐθείας ἀνίσους εὑρεῖν τὸ εἰρημένον ἐπίταγμα ποιούσας.

Κείσθω διὰ τὸ β΄ τοῦ α΄ τῶν Εὐκλείδου τῷ △ ἴσον τὸ ΒΓ, καὶ κείσθω τις εὐθεῖα γραμμὴ ἡ ΖΗ· τὸ δὴ ΓΑ ἑαυτῷ ἐπισυντιθέμενον ὑπερέξει τοῦ △. Πεπολλαπλασιάσθω οὖν, καὶ ἔστω τὸ ΑΘ, καὶ ὁσαπλάσιόν ἐστι τὸ ΑΘ τοῦ ΑΓ, τοσαυταπλάσιος ἔστω ἡ ΖΗ τῆς ΗΕ· ἔστιν ἄρα, ὡς τὸ ΘΑ πρὸς ΑΓ, οὕτως ἡ ΖΗ πρὸς ΗΕ· καὶ ἀνάπαλίν ἐστιν, ὡς ἡ ΕΗ πρὸς ΗΖ, οὕτως τὸ ΑΓ πρὸς ΑΘ. Καὶ ἐπεὶ μεῖζόν ἐστιν τὸ ΑΘ τοῦ △, τουτέστι τοῦ ΓΒ, τὸ ἄρα ΓΑ πρὸς τὸ ΑΘ λόγον ἐλάσσονα ἔχει ἤπερ τὸ ΓΑ πρὸς ΓΒ. Ἀλλʼ ὡς τὸ ΓΑ πρὸς ΑΘ, οὕτως ἡ ΕΗ πρὸς ΗΖ ἡ ΕΗ ἄρα πρὸς ΗΖ ἐλάσσονα λόγον ἔχει ἤπερ τὸ ΓΑ πρὸς ΓΒ· καὶ συνθέντι ἡ ΕΖ ἄρα πρὸς ΖΗ ἐλάσσονα λόγον ἔχει ἤπερ τὸ ΑΒ πρὸς ΒΓ διὰ λῆμμα. Ἴσον δὲ τὸ ΒΓ τῷ △· ἡ ΕΖ ἄρα πρὸς ΖΗ ἐλάσσονα λόγον ἔχει ἤπερ τὸ ΑΒ πρὸς τὸ △.

Εὑρημέναι εἰσὶν ἄρα δύο εὐθεῖαι ἄνισοι ποιοῦσαι τὸ

14
εἰρημένον ἐπίταγμα τουτέστιν τὴν μείζονα πρὸς τὴν ἐλάσσονα λόγον ἔχειν ἐλάσσονα ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλασσον.

Δύο μεγεθῶν ἀνίσων δοθέντων καὶ κύκλου δυνατόν ἐστιν εἰς τὸν κύκλον πολύγωνον ἐγγράψαι καὶ ἄλλο περιγράψαι, ὅπως ἡ τοῦ περιγραφομένου πολυγώνου πλευρὰ πρὸς τὴν τοῦ ἐγγραφομένου πολυγώνου πλευρὰν ἐλάσσονα λόγον ἔχῃ ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλαττον.

Ἔστω τὰ δοθέντα δύο μεγέθη τὰ Α, Β, ὁ δὲ δοθεὶς κύκλος ὁ ὑποκείμενος. Λέγω οὖν ὅτι δυνατόν ἐστι ποιεῖν τὸ ἐπίταγμα.

Εὑρήσθωσαν γὰρ δύο εὐθεῖαι αἱ Θ, ΚΛ, ὧν μείζων ἔστω ἡ Θ, ὥστε τὴν Θ πρὸς τὴν ΚΛ ἐλάσσονα λόγον

15
ἔχειν ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλαττον, καὶ ἤχθω ἀπὸ τοῦ Λ τῇ ΛΚ πρὸς ὀρθὰς ἡ ΛΜ, καὶ ἀπὸ τοῦ Κ τῇ Θ ἴση κατήχθω ἡ ΚΜ δυνατὸν γὰρ τοῦτο, καὶ ἤχθωσαν τοῦ κύκλου δύο διάμετροι πρὸς ὀρθὰς ἀλλήλαις αἱ ΓΕ, △Ζ. Τέμνοντες οὖν τὴν ὑπὸ τῶν △ΗΓ γωνίαν δίχα καὶ τὴν ἡμίσειαν αὐτῆς δίχα καὶ αἰεὶ τοῦτο ποιοῦντες λείψομέν τινα γωνίαν ἐλάσσονα ἢ διπλασίαν τῆς ὑπὸ ΛΚΜ. Λελείφθω καὶ ἔστω ἡ ὑπὸ ΝΗΓ, καὶ ἐπεζεύχθω ἡ ΝΓ· ἡ ἄρα ΝΓ πολυγώνου ἐστὶ πλευρὰ ἰσοπλεύρου ἐπείπερ ἡ ὑπὸ ΝΗΓ γωνία μετρεῖ τὴν ὑπὸ △ΗΓ ὀρθὴν οὖσαν, καὶ ἡ ΝΓ ἄρα περιφέρεια μετρεῖ τὴν Γ△ τέταρτον οὖσαν κύκλου ὥστε καὶ τὸν κύκλον μετρεῖ, Πολυγώνου ἄρα ἐστὶ πλευρὰ ἰσοπλεύρου φανερὸν γάρ ἐστι τοῦτο, Καὶ τετμήσθω ἡ ὑπὸ ΓΗΝ γωνία δίχα τῇ ΗΞ εὐθείᾳ, καὶ ἀπὸ τοῦ Ξ ἐφαπτέσθω τοῦ κύκλου ἡ ΟΞΠ, καὶ ἐκβεβλήσθωσαν αἱ ΗΝΠ, ΗΓΟ· ὥστε καὶ ἡ ΠΟ πολυγώνου ἐστὶ πλευρὰ τοῦ περιγραφομένου περὶ τὸν κύκλον καὶ ἰσοπλεύρου φανερὸν ὅτι καὶ ὁμοίου τῷ ἐγγραφομένῳ, οὗ πλευρὰ ἡ ΝΓ. Ἐπεὶ δὲ ἐλάσσων ἐστὶν ἢ διπλασία ἡ ὑπὸ ΝΗΓ τῆς ὑπὸ ΛΚΜ, διπλασία δὲ τῆς ὑπὸ ΤΗΓ, ἐλάσσων ἄρα ἡ ὑπὸ ΤΗΓ τῆς ὑπὸ ΛΚΜ. Καί εἰσιν ὀρθαὶ αἱ πρὸς τοῖς Λ, Τ· ἡ ἄρα ΜΚ πρὸς ΛΚ μείζονα λόγον ἔχει ἤπερ ἡ ΓΗ πρὸς ΗΤ. Ἴση δὲ ἡ ΓΗ τῇ ΗΞ· ὥστε ἡ ΗΞ πρὸς ΗΤ ἐλάσσονα λόγον ἔχει, τουτέστιν ἡ ΠΟ πρὸς ΝΓ, ἤπερ ἡ ΜΚ πρὸς ΚΛ· ἔτι δὲ ἡ ΜΚ πρὸς ΚΛ ἐλάσσονα λόγον ἔχει ἤπερ τὸ Α πρὸς τὸ Β. Καί ἐστιν ἡ μὲν ΠΟ πλευρὰ τοῦ
16
περιγραφομένου πολυγώνου, ἡ δὲ ΓΝ τοῦ ἐγγραφομένου· ὅπερ προέκειτο εὑρεῖν.

Πάλιν δύο μεγεθῶν ἀνίσων ὄντων καὶ τομέως δυνατόν ἐστι περὶ τὸν τομεά πολύγωνον περιγράψαι καὶ ἄλλο ἐγγράψαι, ὥστε τὴν τοῦ περιγεγραμμένου πλευρὰν πρὸς τὴν τοῦ ἐγγεγραμμένου πλευρὰν ἐλάσσονα λόγον ἔχειν ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλασσον.

Ἔστω γὰρ πάλιν δύο μεγέθη ἄνισα τὰ Ε, Ζ, ὧν μεῖζον ἔστω τὸ Ε, κύκλος δὲ τις ὁ ΑΒΓ κέντρον ἔχων τὸ △, καὶ πρὸς τῷ △ τομεὺς συνεστάτω ὁ Α△Β· δεῖ δὴ περιγράψαι καὶ ἐγγράψαι πολύγωνον περὶ τὸν ΑΒ△ τομέα ἴσας ἔχον τὰς πλευρὰς χωρὶς τῶν Β△Α, ὅπως γένηται τὸ ἐπίταγμα.

Εὐρήσθωσαν γὰρ δύο εὐθεῖαι αἱ Η, ΘΚ ἄνισοι καὶ μείζων ἡ Η, ὥστε τὴν Η πρὸς τὴν ΘΚ ἐλάσσονα λόγον ἔχειν ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλασσον δυνατὸν γὰρ τοῦτο, καὶ ἀπὸ τοῦ Θ ὁμοίως ἀχθείσης πρὸς ὀρθὰς τῇ ΚΘ προσβεβλήσθω τῇ Η ἴση ἡ ΚΛ δυνατ γάρ, ἐπεὶ

17
μείζων ἐστὶν ἡ Η τῆς ΘΚ. Τεμνομένης δὴ τῆς ὑπὸ τῶν Α△Β γωνίας δίχα καὶ τῆς ἡμισείας δίχα καὶ ἀεὶ τούτου γινομένου λειφθήσεταί τις γωνία ἐλάσσων οὖσα ἢ διπλασία τῆς ὑπὸ ΛΚΘ. Λελείφθω οὖν ἡ ὑπὸ Α△Μ· ἡ ΑΜ οὖν γίνεται πολυγώνου πλευρὰ ἐγγραφομένου εἰς τὸν κύκλον. Καὶ ἐὰν τέμωμεν τὴν ὑπὸ Α△Μ γωνίαν δίχα τῇ △Ν καὶ ἀπὸ τοῦ Ν ἀγάγωμεν ἐφαπτομένην τοῦ κύκλου τὴν ΝΞΟ, αὕτη πλευρὰ ἔσται τοῦ πολυγώνου τοῦ περιγραφομένου περὶ τὸν αὐτὸν κύκλον ὁμοίου τῷ εἰρημένῳ καὶ ὁμοίως τοῖς προειρημένοις ἡ ΞΟ πρὸς τὴν ΑΜ ἐλάσσονα λόγον ἔχει ἤπερ τὸ Ε μέγεθος πρὸς τὸ Ζ.

Κύκλου δοθέντος καὶ δύο μεγεθῶν ἀνίσων περιγράψαι περὶ τὸν κύκλον πολύγωνον καὶ ἄλλο ἐγγράψαι ὥστε τὸ περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχειν ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλασσον.

Ἐκκείσθω κύκλος ὁ Α καὶ δύο μεγέθη ἄνισα τὰ Ε, Ζ, καὶ μεῖζον τὸ Ε· δεῖ οὖν πολύγωνον ἐγγράψαι εἰς τὸν κύκλον καὶ ἄλλο περιγράψαι, ἵνα γένηται τὸ ἐπιταχθέν.

18

Λαμβάνω γὰρ δύο εὐθείας ἀνίσους τὰς Γ, △, ὧν μείζων ἔστω ἡ Γ, ὥστε τὴν Γ πρὸς τὴν △ ἐλάσσονα λόγον ἔχειν ἢ τὴν Ε πρὸς τὴν Ζ· καὶ τῶν Γ, △ μέσης ἀνάλογον ληφθείσης τῆς Η μείζων ἄρα καὶ ἡ Γ τῆς Η. Περιγεγράφθω δὴ περὶ κύκλον πολύγωνον καὶ ἄλλο ἐγγεγράφθω, ὥστε τὴν τοῦ περιγραφέντος πολυγώνου πλευρὰν πρὸς τὴν τοῦ ἐγγραφέντος ἐλάσσονα λόγον ἔχειν ἢ τὴν Γ πρὸς τὴν Η καθώς ἐμάθομεν· διὰ τοῦτο δὴ καὶ ὁ διπλάσιος λόγος τοῦ διπλασίου ἐλάσσων ἐστί. Καὶ τοῦ μὲν τῆς πλευρᾶς πρὸς τὴν πλευρὰν διπλάσιός ἐστι ὁ τοῦ πολυγώνου πρὸς τὸ πολύγωνον ὅμοια γάρ, τῆς δὲ Γ πρὸς τὴν Η ὁ τῆς Γ πρὸς τὴν △· καὶ τὸ περιγραφὲν ἄρα πολύγωνον πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχει ἤπερ ἡ Γ πρὸς τὴν △· πολλῷ ἄρα τὸ περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχει ἤπερ τὸ Ε πρὸς τὸ Ζ.

Ὁμοίως δὴ δείξομεν ὅτι δύο μεγεθῶν ἀνίσων δοθέντων καὶ τομέως δυνατόν ἐστιν περὶ τὸν τομέα πολύγωνον περιγράψαι καὶ ἄλλο ἐγγράψαι ὅμοιον αὐτῷ, ἵνα τὸ περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχῃ ἢ τὸ μεῖζον μέγεθος πρὸς τὸ ἔλασσον.

Φανερὸν δὲ καὶ τοῦτο ὅτι, ἐὰν δοθῇ κύκλος ἢ τομεὺς καὶ χωρίον τι, δυνατόν ἐστιν ἐγγράφοντα εἰς τὸν κύκλον

19
ἢ τὸν τομέα πολύγωνα ἰσόπλευρα καὶ ἔτι ἀεὶ εἰς τὰ περιλειπόμενα τμήματα λείπειν τινὰ τμήματα τοῦ κύκλου ἢ τομέως, ἅπερ ἔσται ἐλάσσονα τοῦ προκειμένου χωρίου· ταῦτα γὰρ ἐν τῇ Στοιχειώσει παραδέδοται.

Δεικτέον δὲ ὅτι καὶ κύκλου δοθέντος ἢ τομέως καὶ χωρίου δυνατόν ἐστι περιγράψαι πολύγωνον περὶ τὸν κύκλον ἢ τὸν τομέα, ὥστε τὰ περιλειπόμενα τῆς περιγραφῆς τμήματα ἐλάσσονα εἶναι τοῦ δοθέντος χωρίου ἔσται γὰρ ἐπὶ κύκλου δείξαντα μεταγαγεῖν τὸν ὅμοιον λόγον καὶ ἐπὶ τοῦ τομέως.

Δεδόσθω κύκλος ὁ Α καὶ χωρίον τι τὸ Β. Δυνατὸν δὴ περιγράψαι περὶ τὸν κύκλον πολύγωνον, ὥστε τὰ ἀπολειφθέντα τμήματα μεταξὺ τοῦ κύκλου καὶ τοῦ πολυγώνου ἐλάσσοναι εἶναι τοῦ Β χωρίου· καὶ γὰρ ὄντων δύο μεγεθῶν ἀνίσων, μείζονος μὲν συναμφοτέρου τοῦ τε χωρίου καὶ τοῦ κύκλου, ἐλάσσονος δὲ τοῦ κύκλου, περιγεγράφθω περὶ τὸν κύκλον πολύγωνον καὶ ἄλλο ἐγγεγράφθω, ὥστε τὸ περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχειν

20
ἢ τὸ εἰρημένον μεῖζον μέγεθος πρὸς τὸ ἔλασσον. Τοῦτο δὴ τὸ περιγραφόμενον πολύγωνόν ἐστιν, οὗ τὰ περιλείμματα ἔσται ἐλάσσονα τοῦ προτεθέντος χωρίου τοῦ Β.

Εἰ γὰρ τὸ περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχει ἢ τὸ συναμφότερον ὅ τε κύκλος καὶ τὸ Β χωρίον πρὸς αὐτὸν τὸν κύκλον, τοῦ δὲ ἐγγραφομένου μείζων ὁ κύκλος, πολλῷ μᾶλλον τὸ περιγραφὲν πρὸς τὸν κύκλον ἐλάσσονα λόγον ἔχει ἢ τὸ συναμφότερον ὅ τε κύκλος καὶ τὸ Β χωρίον πρὸς αὐτὸν τὸν κύκλον· καὶ διελόντι ἄρα τα ἀπολείμματα τοῦ περιγεγραμμένου πολυγώνου πρὸς τὸν κύκλον ἐλάσσονα λόγον ἔχει ἤπερ τὸ Β χωρίον πρὸς τὸν κύκλον· ἐλάσσονα ἄρα τὰ ἀπολείμματα τοῦ περιγεγραμμένου πολυγώνου τοῦ Β χωρίου. Ἢ οὕτως· ἐπεὶ τὸ περιγραφὲν πρὸς τὸν κύκλον ἐλάσσονα λόγον ἔχει ἢ τὸ συναμφότερον ὅ τε κύκλος καὶ τὸ Β χωρίον πρὸς τὸν κύκλον, διὰ τοῦτο δὴ ἔλασσον ἔσται τὸ περιγραφὲν συναμφοτέρου· ὥστε καὶ ὅλα τὰ περιλείμματα ἐλάσσονα ἔσται τοῦ χωρίου τοῦ Β.

Ὁμοίως δὲ καὶ ἐπὶ τοῦ τομέως.

Ἐὰν ἐν ἰσοσκελεῖ κώνῳ πυραμὶς ἐγγραφῇ ἰσόπλευρον ἔχουσα βάσιν, ἡ ἐπιφάνεια αὐτῆς χωρὶς τῆς βάσεως ἴση ἐστι τριγώνῳ βάσιν μὲν ἔχοντι ἴσην τῇ περιμέτρῳ τῆς βάσεως, ὕψος δὲ τὴν ἀπὸ τῆς κορυφῆς ἐπὶ μίαν πλευρὰν τῆς βάσεως κάθετον ἀγομένην.

Ἔστω κῶνος ἰσοσκελής, οὗ βάσις ὁ ΑΒΓ κύκλος, καὶ εἰς αὐτὸν ἐγγεγράφθω πυραμὶς ἰσόπλευρον ἔχουσα βάσιν τὸ ΑΒΓ· λέγω ὅτι ἡ ἐπιφάνεια αὐτῆς χωρὶς τῆς βάσεως ἴση ἐστὶ τῷ εἰρημένῳ τριγώνῳ.

21

Ἐπεὶ γὰρ ἰσοσκελὴς ὁ κῶνος, καὶ ἰσόπλευρος ἡ βάσις τῆς πυραμίδος, τὰ ὕψη τῶν περιεχόντων τριγώνων τὴν πυραμίδα ἴσα ἐστὶν ἀλλήλοις. Καὶ βάσιν μὲν ἔχει τὰ τρίγωνα τὰς ΑΒ, ΒΓ, ΓΑ, ὕψος δὲ τὸ εἰρημένον· ὥστε τὰ τρίγωνα ἴσα ἐστὶ τριγώνῳ βάσιν μὲν ἔχοντι τὴν ἴσην ταῖς ΑΒ, ΒΓ, ΓΑ, ὕψος δὲ τὴν εἰρημένην εὐθεῖαν τουτέστιν ἡ ἐπιφάνεια τῆς πυραμίδος χωρὶς τοῦ ΑΒΓ τριγώνου.

Σαφέστερον ἄλλως ἡ δεῖξις.

Ἔστω κῶνος ἰσοσκελής, οὗ βάσις μὲν ὁ ΑΒΓ κύκλος, κορυφὴ δὲ τὸ △ σημεῖον, καὶ ἐγγεγράφθω εἰς τὸν κῶνον πυραμὶς βάσιν μὲν ἔχουσα ἰσόπλευρον τρίγωνον τὸ ΑΒΓ, καὶ ἐπεζεύχθωσαν αἱ △Α, △Γ, △Β· λέγω ὅτι τὰ Α△Β, Α△Γ, Β△Γ τρίγωνα ἴσα ἐστὶ τριγώνῳ, οὗ ἡ μὲν βάσις ἴση ἐστὶ τῇ περιμέτρῳ τοῦ ΑΒΓ τριγώνου, ἡ δὲ ἀπὸ τῆς κορυφῆς ἐπὶ τὴν βάσιν κάθετος ἴση τῇ καθέτῳ τῇ ἀπὸ τοῦ △ ἐπὶ τὴν ΒΓ ἀγομένῃ.

Ἤχθωσαν γὰρ κάθετοι αἱ △Κ, △Λ, △Μ· αὗται ἄρα ἴσαι ἀλλήλαις εἰσίν. Καὶ κείσθω τρίγωνον τὸ ΕΖΗ ἔχον τὴν μὲν ΕΖ βάσιν τῇ περιμέτρῳ τοῦ ΑΒΓ τριγώνου ἴσην, τὴν δὲ

22
ΗΘ κάθετον τῇ △Λ ἴσην. Ἐπεὶ οὖν τὸ ὑπὸ τῶν ΒΓ, △Λ διπλάσιόν ἐστι τοῦ △ΒΓ τριγώνου, ἔστιν δὲ καὶ τὸ μὲν ὑπὸ τῶν ΑΒ, △Κ διπλάσιον τοῦ ΑΒ△ τριγώνου, τὸ δὲ ὑπὸ ΑΓ, △Μ διπλάσιον τοῦ Α△Γ τριγώνου, τὸ ἄρα ὑπὸ τῆς περιμέτρου τοῦ ΑΒΓ τριγώνου, τουτέστι τῆς ΕΖ, καὶ τῆς △Λ, τουτέστι τῆς ΗΘ, διπλάσιόν ἐστι τῶν Α△Β, Β△Γ, Α△Γ τριγώνων. Ἔστι δὲ καὶ τὸ ὑπὸ ΕΖ, ΗΘ διπλάσιον τοῦ ΕΖΗ τριγώνου ἴσον ἄρα τὸ ΕΖΗ τρίγωνον τοῖς Α△Β, Β△Γ, Α△Γ τριγώνοις.

Ἐὰν περὶ κῶνον ἰσοσκελῆ πυραμὶς περιγραφῇ, ἡ ἐπιφάνεια τῆς πυραμίδος χωρὶς τῆς βάσεως ἴση ἐστὶν

23
τριγώνῳ βάσιν μὲν ἔχοντι τὴν ἴσην τῇ περιμέτρῳ τῆς βάσεως, ὕψος δὲ τὴν πλευρὰν τοῦ κώνου.

Ἔστω κῶνος, οὗ βάσις ὁ ΑΒΓ κύκλος, καὶ πυραμὶς περιγεγράφθω, ὥστε τὴν βάσιν αὐτῆς, τουτέστι τὸ △ΕΖ πολύγωνον, περιγεγραμμένον περὶ τὸν ΑΒΓ κύκλον εἶναι· λέγω ὅτι ἡ ἐπιφάνεια τῆς πυραμίδος χωρὶς τῆς βάσεως ἴση ἐστὶ τῷ εἰρημένῳ τριγώνῳ.

Ἐπεὶ γὰρ ὁ ἄξων τοῦ κώνου ὀρθός ἐστι πρὸς τὴν βάσιν, τουτέστι πρὸς τὸν ΑΒΓ κύκλον, καὶ αἱ ἀπὸ τοῦ κέντρου τοῦ κύκλου ἐπὶ τὰς ἁφὰς ἐπιζευγνύμεναι εὐθεῖαι κάθετοί εἰσιν ἐπὶ τὰς ἐφαπτομένας, ἔσονται ἄρα καὶ αἱ ἀπὸ τῆς κορυφῆς τοῦ κώνου ἐπὶ τὰς ἁφὰς ἐπιζευγνύμεναι κάθετοι ἐπὶ τὰς △Ε, ΖΕ, Ζ△. Αἱ ΗΑ, ΗΒ, ΗΓ ἄρα αἱ εἰρημέναι

24
κάθετοι ἴσαι εἰσὶν ἀλλήλαις· πλευραὶ γάρ εἰσιν τοῦ κώνου. Κείσθω δὴ τὸ τρίγωνον τὸ ΘΚΛ ἴσην ἔχον τὴν μὲν ΘΚ τῇ περιμέτρῳ τοῦ △ΕΖ τριγώνου, τὴν δὲ ΛΜ κάθετον ἴσην τῇ ΗΑ. Ἐπεὶ οὖν τὸ μὲν ὑπὸ △Ε, ΑΗ διπλάσιόν ἐστι τοῦ Ε△Η τριγώνου, τὸ δὲ ὑπὸ △Ζ, ΗΒ διπλάσιόν ἐστι τοῦ △ΖΗ τριγώνου, τὸ δὲ ὑπὸ ΕΖ, ΓΗ διπλάσιόν ἐστιν τοῦ ΕΗΖ τριγώνου, ἔστιν ἄρα τὸ ὑπὸ τῆς ΘΚ καὶ τῆς ΑΗ, τουτέστι τῆς ΜΛ, διπλάσιον τῶν Ε△Η, Ζ△Η, ΕΗΖ τριγώνων. Ἔστιν δὲ καὶ τὸ ὑπὸ τῶν ΘΚ, ΛΜ διπλάσιον τοῦ ΛΚΘ τριγώνου διὰ τοῦτο δὴ ἴση ἐστὶν ἡ ἐπιφάνεια τῆς πυραμίδος χωρὶς τῆς βάσεως τριγώνῳ βάσιν μὲν ἔχοντι ἴσην τῇ περιμέτρῳ τοῦ △ΕΖ, ὕψος δὲ τὴν πλευρὰν τοῦ κώνου.

Ἐὰν κώνου τινὸς ἰσοπλεύρου εἰς τὸν κύκλον, ὅς ἐστι βάσις τοῦ κώνου, εὐθεῖα γραμμὴ ἐμπέσῃ, ἀπὸ δὲ τῶν περάτων αὐτῆς εὐθεῖαι γραμμαὶ ἀχθῶσιν ἐπὶ τὴν κορυφὴν τοῦ κώνου, τὸ περιληφθὲν τρίγωνον ὑπό τε τῆς ἐμπεσούσης καὶ τῶν ἐπιζευχθεισῶν ἐπὶ τὴν κορυφὴν ἔλασσον ἔσται τῆς ἐπιφανείας τοῦ κώνου τῆς μεταξὺ τῶν ἐπὶ τὴν κορυφὴν ἐπιζευχθεισῶν.

Ἔστω κώνου ἰσοσκελοῦς βάσις ὁ ΑΒΓ κύκλος, κορυφὴ δὲ τὸ △, καὶ διήχθω τις εἰς αὐτὸν εὐθεῖα ἡ ΑΓ, καὶ ἀπὸ τῆς κορυφῆς ἐπὶ τὰ Α, Γ ἐπεζεύχθωσαν αἱ Α△, △Γ· λέγω ὅτι τὸ Α△Γ τρίγωνον ἔλασσόν ἐστιν τῆς ἐπιφανείας τῆς κωνικῆς τῆς μεταξὺ τῶν Α△Γ.

25

Τετμήσθω ἡ ΑΒΓ περιφέρεια δίχα κατὰ τὸ Β, καὶ ἐπεζεύχθωσαν αἱ ΑΒ, ΓΒ, △Β· ἔσται δὴ τὰ ΑΒ△, ΒΓ△ τρίγωνα μείζονα τοῦ Α△Γ τριγώνου. Ὧι δὴ ὑπερέχει τὰ εἰρημένα τρίγωνα τοῦ Α△Γ τριγώνου, ἔστω τὸ Θ. Τὸ δὴ Θ ἤτοι τῶν ΑΒ, ΒΓ τμημάτων ἔλασσόν ἐστι ἢ οὔ.

Ἔστω μὴ ἔλασσον πρότερον. Ἐπεὶ οὖν δύο εἰσὶν ἐπιφάνειαι ἥ τε κωνικὴ ἡ μεταξὺ τῶν Α△Β μετὰ τοῦ ΑΕΒ τμήματος καὶ ἡ τοῦ Α△Β τριγώνου τὸ αὐτὸ πέρας ἔχουσαι τὴν περίμετρον τοῦ τριγώνου τοῦ Α△Β, μείζων ἔσται ἡ περιλαμβάνουσα τῆς περιλαμβανομένης· μείζων ἄρα ἐστὶν ἡ κωνικὴ ἐπιφάνεια ἡ μεταξὺ τῶν Α△Β μετὰ τοῦ ΑΕΒ τμήματος τοῦ ΑΒ△ τριγώνου. Ὁμοίως δὲ καὶ ἡ μεταξὺ τῶν Β△Γ μετὰ τοῦ ΓΖΒ τμήματος μείζων ἐστὶν τοῦ Β△Γ τριγώνου· ὅλη ἄρα ἡ κωνικὴ ἐπιφάνεια μετὰ τοῦ Θ χωρίου μείζων ἐστὶ τῶν εἰρημένων τριγώνων. Τὰ δὲ εἰρημένα τρίγωνα ἴσα ἐστὶν τῷ τε Α△Γ τριγώνῳ καὶ τῷ Θ χωρίῳ. Κοινὸν ἀφῃρήσθω τὸ Θ χωρίον· λοιπὴ ἄρα ἡ

26
κωνικὴ ἐπιφάνεια ἡ μεταξὺ τῶν Α△Γ μείζων ἐστὶν τοῦ Α△Γ τριγώνου.

Ἔστω δὴ τὸ Θ ἔλασσον τῶν ΑΒ, ΒΓ τμημάτων. Τέμνοντες δὴ τὰς ΑΒ, ΒΓ περιφερείας δίχα καὶ τὰς ἡμισείας αὐτῶν δίχα λείψομεν τμήματα ἐλάσσονα ὄντα τοῦ Θ χωρίου. Λελείφθω τὰ ἐπὶ τῶν ΑΕ, ΕΒ, ΒΖ, ΖΓ εὐθειῶν, καὶ ἐπεζεύχθωσαν αἱ △Ε, △Ζ. Πάλιν τοίνυν κατὰ τὰ αὐτὰ ἡ μὲν ἐπιφάνεια τοῦ κώνου ἡ μεταξὺ τῶν Α△Ε μετὰ τοῦ ἐπὶ τῆς ΑΕ τμήματος μείζων ἐστὶν τοῦ Α△Ε τριγώνου, ἡ δὲ μεταξὺ τῶν Ε△Β μετὰ τοῦ ἐπὶ τῆς ΕΒ τμήματος μείζων ἐστὶν τοῦ Ε△Β τριγώνου· ἡ ἄρα ἐπιφάνεια ἡ μεταξὺ τῶν Α△Β μετὰ τῶν ἐπὶ τῶν ΑΕ, ΕΒ τμημάτων μείζων ἐστὶν τῶν Α△Ε, ΕΒ△ τριγώνων. Ἐπεὶ δὲ τὰ ΑΕ△, △ΕΒ τρίγωνα μείζονά ἐστιν τοῦ ΑΒ△ τριγώνου, καθὼς δέδεικται, πολλῷ ἄρα ἡ ἐπιφάνεια τοῦ κώνου ἡ μεταξὺ τῶν Α△Β μετὰ τῶν ἐπὶ τῶν ΑΕ, ΕΒ τμημάτων μείζων ἐστὶ τοῦ Α△Β τριγώνου. Διὰ τὰ αὐτὰ δὴ καὶ ἡ ἐπιφάνεια ἡ μεταξὺ τῶν Β△Γ μετὰ τῶν ἐπὶ τῶν ΒΖ, ΖΓ τμημάτων μείζων ἐστὶν τοῦ Β△Γ τριγώνου· ὅλη ἄρα ἡ ἐπιφάνεια ἡ μεταξὺ τῶν Α△Γ μετὰ τῶν εἰρημένων τμημάτων μείζων ἐστὶ τῶν ΑΒ△, △ΒΓ τριγώνων. Ταῦτα δέ ἐστιν ἴσα τῷ Α△Γ τριγώνῳ καὶ τῷ Θ χωρίῳ ὧν τὰ εἰρημένα τμήματα ἐλάσσονα τοῦ Θ χωρίου λοιπὴ ἄρα ἡ ἐπιφάνεια ἡ μεταξὺ τῶν Α△Γ μείζων ἐστὶν τοῦ Α△Γ τριγώνου.