Conica
Apollonius of Perga
Apollonii Pergaei Quae Graece Exstant, Volume 2. Heiberg, J. L., editor. Leipzig: Teubner, 1893.
Ἐὰν ἔλλειψις ἐλλείψεως ἢ κύκλου περιφερείας κατὰ δύο σημεῖα ἐφάπτηται τὸ αὐτὸ κέντρον ἔχουσα, ἡ τὰς ἁφὰς ἐπιζευγνύουσα διὰ τοῦ κέντρου πεσεῖται.
ἐφαπτέσθωσαν γὰρ ἀλλήλων αἱ εἰρημέναι γραμμαὶ κατὰ τὰ Α, Β σημεῖα, καὶ ἐπεζεύχθω ἡ ΑΒ, καὶ διὰ τῶν Α, Β ἐφαπτόμεναι τῶν τομῶν ἤχθωσαν καί, εἰ δυνατόν, συμπιπτέτωσαν κατὰ τὸ Λ, καὶ ἡ ΑΒ δίχα τετμήσθω κατὰ τὸ Ζ, καὶ ἐπεζεύχθω ἡ ΛΖ· διάμετρος ἄρα ἐστὶν ἡ ΛΖ τῶν τομῶν.
ἔστω, εἰ δυνατόν, κέντρον τὸ Δ· ἔσται ἄρα τὸ ὑπὸ ΛΔΖ διὰ μὲν τὴν ἑτέραν τομὴν ἴσον τῷ ἀπὸ ΔΗ, διὰ δὲ τὴν ἑτέραν ἴσον τῷ ἀπὸ ΜΔ· ὥστε τὸ ἀπὸ ΗΔ ἴσον τῷ ἀπὸ ΔΜ· ὅπερ ἀδύνατον. οὐκ ἄρα αἱ
ἀπὸ τῶν Α, Β ἐφαπτόμεναι συμπεσοῦνται· παράλληλοι ἄρα εἰσίν, καὶ διὰ τοῦτο διάμετρός ἐστιν ἡ ΑΒ. ὥστε διὰ τοῦ κέντρου πίπτει· ὅπερ ἔδει δεῖξαι.Κώνου τομὴ ἢ κύκλου περιφέρεια κώνου τομῇ ἢ κύκλου περιφερείᾳ μὴ ἐπὶ τὰ αὐτὰ μέρη τὰ κυρτὰ ἔχουσα οὐ συμπεσεῖται κατὰ πλείονα σημεῖα ἢ δύο.
εἰ γὰρ δυνατόν, κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ κώνου τομῇ ἢ κύκλου περιφερείᾳ τῇ ΑΔΒΕΓ συμβαλλέτω κατὰ πλείονα σημεῖα ἢ δύο μὴ ἐπὶ τὰ αὐτὰ μέρη τὰ κυρτὰ ἔχουσα τὰ Α, Β, Γ.
καὶ ἐπεὶ ἐν τῇ ΑΒΓ γραμμῇ εἴληπται τρία σημεῖα τὰ Α, Β, Γ καὶ ἐπεζευγμέναι αἱ ΑΒ, ΒΓ, γωνίαν ἄρα περιέχουσιν ἐπὶ τὰ αὐτὰ τοῖς κοίλοις τῆς ΑΒΓ γραμμῆς. διὰ τὰ αὐτὰ δὴ αἱ ΑΒ Γ τὴν αὐτὴν γωνίαν περιέχουσιν ἐπὶ τὰ αὐτὰ τοῖς κοίλοις τῆς ΑΔΒΕΓ γραμμῆς. αἱ εἰρημέναι ἄρα γραμμαὶ ἐπὶ τὰ αὐτα μέρη ἔχουσι τὰ κοῖλα ἅμα καὶ τὰ κυρτά· ὅπερ ἀδύνατον.
Ἐὰν κώνου τομὴ ἢ κύκλου περιφέρεια συμπίπτῃ μιᾷ τῶν ἀντικειμένων κατὰ δύο σημεῖα, καὶ αἱ μεταξὺ τῶν συμπτώσεων γραμμαὶ ἐπὶ τὰ αὐτὰ μέρη τὰ κοῖλα ἔχωσι, προσεκβαλλομένη ἡ γραμμὴ κατὰ τὰς συμπτώσεις οὐ συμπεσεῖται τῇ ἑτέρᾳ τῶν ἀντικειμένων.
ἔστωσαν ἀντικείμεναι αἱ Δ, ΑΕΓΖ, καὶ ἔστω κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΖ συμπίπτουσα τῇ ἑτέρᾳ τῶν ἀντικειμένων κατὰ δύο σημεῖα τὰ Α, Ζ, καὶ ἐχέτωσαν αἱ ΑΒΖ, ΑΓΖ τομαὶ ἐπὶ τὰ αὐτὰ μέρη τὰ κοῖλα. λέγω, ὅτι ἡ ΑΒΖ γραμμὴ ἐκβαλλομένη οὐ συμπεσεῖται τῇ Δ.
ἐπεζεύχθω γὰρ ἡ ΑΖ. καὶ ἐπεὶ ἀντικείμεναί εἰσιν αἱ Δ, ΑΓΖ, καὶ ἡ ΑΖ εὐθεῖα κατὰ δύο τέμνει τὴν ὑπερβολήν, οὐ συμπεσεῖται ἐκβαλλομένη τῇ Δ ἀντικειμένῃ. οὐδὲ ἄρα ἡ ΑΒΖ γραμμὴ συμπεσεῖται τῇ Δ.