Commentarii in libros de sphaera et cylindro
Eutocius
Eutocius. ArchimeĢde, Volume 4. Mugler, Charles, editor. Paris: Les Belles Lettres, 1972.
Ἔστωσαν αἱ δοθεῖσαι δύο εὐθεῖαι αἱ ΑΒ, ΒΓ, ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν. Κείσθωσαν ὥστε ὀρθὴν γωνίαν περιέχειν τὴν πρὸς τῷ Β, καὶ συμπεπληρώσθω τὸ Β△ παραλληλόγραμμον, καὶ ἐπεζεύχθωσαν αἱ ΑΓ, Β△ φανερὸν δὴ ὅτι ἴσαι οὖσαι δίχα τέμνουσιν ἀλλήλας· ὁ γὰρ περὶ μίαν αὐτῶν γραφόμενος κύκλος ἥξει καὶ διὰ τῶν περάτων τῆς ἑτέρας διὰ τὸ ὀρθογώνιον εἶναι τὸ παραλληλόγραμμον. Ἐκβεβλήσθωσαν αἱ △Γ, △Α ἐπὶ τὰ Ζ, Η, καὶ νοείσθω κανόνιον ὡς τὸ ΖΒΗ κινούμενον περί τινα τύλον μένοντα πρὸς τῷ Β καὶ κινείσθω, ἕως ἀποτέμοις ἴσας τὰς ἀπὸ τοῦ Ε, τουτέστι τὰς ΕΗ, ΕΖ. Καὶ νοείσθω ἀποτεμὸν καὶ θέσιν ἔχον τὴν ΖΒΗ ἴσων,
Ἔστωσαν αἱ δοθεῖσαι δύο εὐθεῖαι αἱ ΑΒ, ΒΓ, ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν. Κείσθωσαν ὥστε ὀρθὴν γωνίαν περιέχειν τὴν πρὸς τῷ Β, καὶ ἐπιζευχθείσης τῆς ΑΓ γεγράφθω περὶ αὐτὴν ἡμικύκλιον τὸ ΑΒΕΓ, καὶ πρὸς ὀρθὰς ἤχθωσαν τῇ μὲν ΒΑ ἡ Α△, τῇ δε ΒΓ
Νενοήσθωσαν γὰρ ἐκβεβλημέναι αἱ △Α, ΖΓ καὶ συμπίπτουσαι κατὰ τὸ Θ· φανερὸν δὴ ὅτι παραλλήλων οὐσῶν τῶν ΒΑ, ΖΘ ἡ πρὸς τῷ Θ γωνία ὀρθή ἐστιν, καὶ ὁ ΑΕΓ κύκλος ἀναπληρούμενος ἥξει καὶ διὰ τοῦ Θ. Ἐπεὶ οὖν ἴση ἐστὶν ἡ △Β τῇ ΕΖ, καὶ τὸ ὑπὸ Ε△Β ἄρα ἴσον ἐστὶ τῷ ὑπὸ ΒΖΕ. Ἀλλὰ τὸ μὲν ὑπὸ Ε△Β ἴσον ἐστὶ τῷ ὑπὸ Θ△Α· ἑκάτερον γὰρ ἴσον ἐστὶν τῷ ἀπὸ τῆς ἐφαπτομένης ἀπὸ τοῦ △· τὸ δὲ ὑπὸ ΒΖΕ ἴσον τῷ ὑπὸ ΘΖΓ· ἑκάτερον γὰρ ὁμοίως ἴσον ἐστὶ τῷ ἀπὸ τῆς ἐφαπτομένης ἀπὸ τοῦ Ζ· ὥστε καὶ τὸ ὑπὸ Θ△Α ἴσον ἐστὶ τῷ ὑπὸ ΘΖΓ, καὶ διὰ τοῦτό ἐστιν ὡς ἡ △Θ πρὸς ΘΖ, οὕτως ἡ ΓΖ πρὸς △Α. Ἀλλ᾿ ὡς ἡ Θ△ πρὸς ΘΖ, οὕτως ἥ τε ΒΓ πρὸς ΓΖ καὶ ἡ △Α πρὸς ΑΒ· τριγώνου
Ἰστέον δὲ ὅτι ἡ τοιαύτη κατασκευὴ σχεδὸν ἡ αὐτή ἐστι τῇ ὑπὸ Ἥρωνος· τὸ γὰρ ΒΘ παραλληλόγραμμον τὸ αὐτό ἐστι τῷ ληφθέντι ἐπὶ τῆς Ἥρωνος κατασκευῆς καὶ αἱ προσεκβαλλόμεναι πλευραὶ αἱ ΘΑ, ΘΓ καὶ ὁ πρὸς τῷ Β κινούμενος κανών. Ταύτῃ δὲ μόνον διαφέρει, ὅτι ἐκεῖ μὲν μέχρι τοσούτου ἐκινοῦμεν περὶ τὸ Β τὸν κανόνα, ἄχρις ἂν αἱ ἀπὸ τῆς διχοτομίας τῆς ΑΓ, τουτέστι τοῦ Κ, ἴσαι ὑπʼ αὐτοῦ ἀπετέμνοντο πρὸς τὰς Θ△, ΘΖ προσπίπτουσαι, ὡς αἱ Κ△, ΚΖ, ἐνταῦθα δέ, ἄχρις ἂν ἡ △Β ἴση γένηται τῇ ΕΖ. Ἐφ᾿ ἑκατέρας δὲ κατασκευῆς τὸ αὐτὸ ἀκολουθεῖ, τὸ δὲ νῦν εἰρημένον πρὸς χρῆσιν εὐθετώτερον τὰς γὰρ △Β, ΕΖ ἴσας τηρεῖν ἐνδέχεται διῃρημένου τοῦ κανόνος εἰς ἴσα καὶ συνεχῆ πολύ γε εὐκολώτερον τοῦ καρκίνῳ διαπειράζειν τὰς ἀπὸ τοῦ Κ ἴσας πρὸς τὰ △, Ζ.
Ἔστωσαν αἱ δοθεῖσαι δύο εὐθεῖαι, ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν, αἱ ΒΑΓ ὀρθὴν περιέχουσαι γωνίαν τὴν πρὸς τῷ Α, καὶ κέντρῳ μὲν τῷ Β, διαστήματι δὲ τῷ ΑΓ, κύκλου περιφέρεια γεγράφθω ἡ ΚΘΛ, καὶ πάλιν κέντρῳ τῷ καὶ διαστήματι τῷ ΑΒ κύκλου περιφέρεια γεγράφθω ἡ ΜΘΝ καὶ τεμνέτω τὴν ΚΘΛ κατὰ τὸ Θ, καὶ ἐπεζεύχθωσαν αἱ ΘΑ, ΘΒ, ΘΓ· παραλληλόγραμμον ἄρα ἐστὶν τὸ ΒΓ, διάμετρος δὲ αὐτοῦ ἡ ΘΑ. Τετμήσθω
Τούτου γὰρ γενομένου ἔσται τὸ ζητούμενον· ἡ γὰρ αὐτὴ κατασκευή ἐστι τῇ τε ὑπὸ Ἥρωνος καὶ φίλωνος γεγραμμένῃ, καὶ δῆλον ὅτι ἡ ἀπόδειξις ἡ αὐτὴ ἁρμόσει.
Ἐν κύκλῳ διήχθωσαν δύο διάμετροι πρὸς ὀρθὰς αἱ ΑΒ, Γ△, καὶ δύο περιφέρειαι ἴσαι ἀπειλήφθωσαν ἐφ᾿ ἑκάτερα τοῦ Β αἱ ΕΒ, ΒΖ, καὶ διὰ τοῦ Ζ παράλληλος τῇ ΑΒ ἤχθω ἡ ΖΗ, καὶ ἐπεζεύχθω ἡ △Ε. Λέγω ὅτι τῶν ΓΗ, ΗΘ δύο μέσαι ἀνάλογόν εἰσιν αἱ ΖΗ, Η△.
Ἤχθω γὰρ διὰ τοῦ Ε τῇ ΑΒ παράλληλος ἡ ΕΚ· ἴση ἄρα ἐστὶν ἡ μὲν ΕΚ τῇ ΖΗ, ἡ δὲ ΚΓ τῇ Η△. Ἔσται γὰρ τοῦτο δῆλον ἀπὸ τοῦ Λ ἐπὶ τὰ Ε, Ζ ἐπιζευχθεισῶν εὐθειῶν· ἴσαι γὰρ γίνονται αἱ ὑπὸ ΓΛΕ, ΖΛ△, καὶ ὀρθαὶ αἱ πρὸς τοῖς Κ, Η· καὶ πάντα ἄρα πᾶσιν διὰ τὸ τὴν ΛΕ τῇ ΛΖ
Τούτων προκατεσκευασμένων ἔστωσαν αἱ δοθεῖσαι δύο εὐθεῖαι, ὧν δεῖ δύο μέσας ἀνάλογον εὑρεῖν, αἱ Α, Β, καὶ ἔστω κύκλος, ἐν ᾧ δύο διάμετροι πρὸς ὀρθὰς ἀλλήλαις αἱ Γ△, ΕΖ, καὶ γεγράφθω ἐν αὐτῷ ἡ διὰ τῶν συνεχῶν σημείων γραμμή, ὡς προείρηται, ἡ △ΘΖ, καὶ γεγονέτω ὡς ἡ Α πρὸς τὴν Β, ἡ ΓΗ πρὸς ΗΚ, καὶ ἐπιζευχθεῖσα ἡ ΓΚ καὶ ἐκβληθεῖσα τεμνέτω τὴν γραμμὴν κατὰ τὸ Θ, καὶ διὰ τοῦ Θ τῇ ΕΖ παράλληλος ἤχθω ἡ ΛΜ· διὰ ἄρα τὰ προγεγραμμένα τῶν ΓΛ, ΛΘ μέσαι ἀνάλογόν εἰσιν αἱ ΜΛ, Λ△. Καὶ ἐπεί ἐστιν ὡς ἡ ΓΛ πρὸς ΛΘ, οὕτως ἡ ΓΗ πρὸς ΗΚ, ὡς δὲ ἡ ΓΗ πρὸς ΗΚ, οὕτως ἡ Α πρὸς τὴν Β, ἐὰν ἐν τῷ αὐτῷ λόγῳ ταῖς ΓΛ, ΛΜ, Λ△, ΛΘ παρεμβάλωμεν μέσας τῶν Α, Β, ὡς τὰς Ν, Ξ, ἔσονται εἰλημμέναι τῶν Α, Β μέσαι ἀνάλογον αἱ Ν, Ξ· ὅπερ ἕδει εὑρεῖν.