Catoptrica (recensio Theonis?)
Euclid
Euclid. Euclidis Opera Omnia, Volume 7. Menge, Heinrich; Heiberg, J.L, editors. Leipzig: Teubner, 1895.
Πρὸς ὁποῖον ἂν τῶν ἐνόπτρων προσπίπτουσα ὄψις ἀνίσους ποιῇ γωνίας, οὔτε διʼ ἑαυτῆς ἀνακλασθήσεται οὔτε ἐπὶ τῆς ἐλάσσονος γωνίας.
ἔστω ἐπίπεδον ἔνοπτρον τὸ ΑΚΗΓ, ὄψις δὲ ἡ ΒΚ προσπιπτέτω μείζονα ποιοῦσα γωνίαν τὴν Ζ τῆς Θ, Λ. λέγω, ὅτι ἡ ΒΚ ἀνακλωμένη οὔτε αὐτὴ διʼ ἑαυτῆς ἀνακλασθήσεται οὔτε ἐπὶ τὴν Θ, Λ γωνίαν. εἰ μὲν [*](1. β΄] δ΄ Vv. 2 προσπέσοι M. Dein add. ἡ m, m. rec. V. 6. τήν — Θ] τὰς ὑπὸ ΑΚΒ, ΓΚΒ m, m. rec V.) [*](ΒΚ] ΒΕ M. 8. ἡκέτω] ἱκέτω M. ὄψις v, corr. m. 2.) [*](9. Ε] ὑπὸ ΑΚ∠ m, m. rec V. Θ] ὑπὸ ΓΚΒ m, m. rec. V.) [*](10. Ε, Ζ (pr.) — Θ] ὑπὸ ΑΚΒ τῇ ὑπὸ ΓΚΒ m, m. rec. V.) [*](Ε, Ζ (alt.)] ὑπὸ ΑΚΒ m, m. rec. V. 11. Ε] ὑπὸ ΑΚ∠ m, m. rec. V. γωνία ἔσται] ἐστιν m, m. rec. V. ἐλάττονι M.) [*](12. ἐστίν] om. M. ΒΚ] ΒΕ M. διʼ αὑτῆς] ὄψις ἐφʼ ἑαυτῆς m, m. rec. V αὑτῆς] mut. in ἑαυτῆς m. 2 v 13. ἁρμόσειεν] ἁρμόσειε καί m, m. rec. V. ἄν] M, om. Vmv.)
Αἱ ὄψεις ἐπὶ τῶν ἐπιπέδων ἐνόπτρων καὶ κυρτῶν ἀνακλώμεναι οὔτε συμπεσοῦνται ἀλλήλαις οὔτε παράλληλοι ἔσονται.
ἔστω ἐπίπεδον ἔνοπτρον τὸ ΑΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι αἱ ΒΓ∠, ΒΑΕ. λέγω, ὅτι αἱ Γ∠, ΑΕ οὔτε παράλληλοί εἰσιν οὔτε συμπεσοῦνται ἐπὶ τὰ ∠, Ε. ἐπεὶ γὰρ ἴση ἐστὶν ἡ γωνία τῇ Θ, ἡ δὲ Κ τῇ Μ, μείζων δὲ ἡ Ζ τῆς Κ διὸ τὸ ἐκτὸς εἶναι ἐν τῷ ΒΑΓ τριγώνῳ, μείζων ἂν εἴη καὶ ἡ Θ τῆς Μ. οὐκ ἄρα παράλληλος ἡ Γ∠ τῇ ΑΕ ἐστιν, οὐδὲ συμπίπτουσιν ἐπὶ τὰ Ε, ∠.
ἔστω πάλιν κυρτὸν ἔνοπτρον τὸ ΑΖΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι αἱ ΒΖ∠, ΒΗΕ. λέγω, ὅτι αἱ Ζ∠, ΕΗ οὔτε παράλληλοί εἰσιν οὔτε συμ- [*](1. Β, ἔσται] Β α V m. 1, β ἔσται m, m. rec. V; ΒΕ e corr. M, ΒΚ v. Ζ] ὑπὸ ΑΚΒ m, m. rec. V. Θ, Λ] ὑπὸ ΓΚΒ m, m. rec. V. 2 εἰ δέ — 3. μείζων] om M. 3. ἔστι] ἔστιν Vv. 4. ΒΚ] ΒΕ M. τὴν μείζονα — Ζ] τῆς μείζονος γωνίας τῆς ὑπὸ ΑΚΒ m, m. rec. V. 5 ἴσην] ἴσον v, et V, corr. m. rec. 6 ἔστιν Vv. 8. δ΄] ϛ΄ v et in ras. V.) [*](15. Ζ] μὲν ὑπὸ ΒΓΖ m, m. rec. V. Θ] ὑπὸ ∠ΓΑ m, m. rec. V. Κ] ὑπὸ ΒΙΓ m, m. rec. V. 16 Μ] ὑπὸ ΕΑΗ m, m. rec. V. μείζων] e corr. v. Ζ] ὑπὸ ΒΓΖ m, m. rec. V. Κ] ὑπὸ ΒΑΓ m, m. rec. V. ἐν τῷ] τοῦ m,)
Ἐν τοῖς κοίλοις ἐνόπτροις ἐὰν ἢ ἐπὶ τὸ κέντρον ἢ ἐπὶ τῆς περιφερείας ἢ ἐκτὸς τῆς περιφερείας θῇς τὸ ὄμμα, τουτέστι μεταξὺ τοῦ κέντρου καὶ τῆς περιφερείας, αἱ ὄψεις ἀνακλώμεναι συμπεσοῦνται.
ἔστω κοῖλον ἔνοπτρον τὸ ΑΓ∠, κέντρον δὲ τῆς σφαίρας τὸ Β, καὶ κείσθω τὸ ὄμμα ἐπὶ τοῦ Β, καὶ προσπιπτέτωσαν ἀπὸ τοῦ Β ὄψεις πρὸς τὴν περιφέρειαν αἱ ΒΑ, ΒΓ, Β∠. ἴσαι ἄρα εἰσὶν αἱ πρὸς τοῖς σημείοις τοῖς Α, ∠, Γ γωνίαι· ἡμικυκλίου γάρ εἰσιν. αἱ ἄρα ὄψεις ἀνακλώμεναι διʼ ἑαυτῶν ἀνακλασθήσονται αἱ ΒΑ, ΒΓ, Β∠ τοῦτο γὰρ δέδεικται. ὥστε συμπεσοῦνται κατὰ τὸ Β.
ἔστω πάλιν κοῖλον ἔνοπτρον τὸ ΑΓΒ, ὄμμα δὲ τὸ Β, [*](1. ΗΖ] Ζ M. 2. Post ἑκάτερα add. κατὰ τὰ Θ, Κ σημεῖα καί m, m. rec V. Post ἴση ras. 1 litt. V. Κ — 3. Λ] μὲν ὑπὸ ΒΖΘ γωνία (om. V) τῇ ὑπὸ ∠ΖΚ, ἡ δὲ ὑπὸ ΒΗΘ τῇ ὑπὸ ΕΗΚ m, m. rec V. 3. εἴη — 7. ἐστίν] μείζων δὲ ἡ ὑπὸ ΒΖΘ γωνία τῆς ὑπὸ (ΒΖΘ — ὑπό postea add. m) ΒΗΘ, εἴη ἂν καὶ ἡ ὑπὸ ∠ΖΚ μείζων τῆς ὑπὸ ΕΗΚ m, m. rec V.) [*](4. ἐστιν v. 5. μεῖζον v, corr. m. 2. ἐστίν V v. 6 μείζονα v, corr. m. 2. 8. Ζ ∠] ∠Ζ m. 9 ε΄] η΄ Vv. 10. τὸ κέντρον] τοῦ κέντρου m, m. rec. V. 11 θῇς] θεῖς V,)