Catoptrica (recensio Theonis?)

Euclid

Euclid. Euclidis Opera Omnia, Volume 7. Menge, Heinrich; Heiberg, J.L, editors. Leipzig: Teubner, 1895.

Ἐν τοῖς κυρτοῖς ἐνόπτροις τὸ εἴδωλον ἔλασσόν ἐστι τῶν ὁρωμένων.

ἔστω γὰρ κυρτὸν ἔνοπτρον τὸ ΑΟΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι αἱ ΒΑ, ΒΓ ἐπὶ τὰ ∠, Ε. οὐκοῦν [*](1. τά] m, τό V Mv. ὁρώμενον — ∠Ε] om. m. 2. Θ∠] Θ e corr. M m. 3. αἱ] αἱ ΒΓ, Β Α m. Ζ, Η] Η, Ζ m. 4. τοῦ] τό M. 5. τοῦ] τό V? 6. ὅτι] δὴ ὅτι m. μεῖζον v.) [*](7. Α] corr. ex m. ἐφαπτομένου M. περιφερείας] σφαίρας m. 8. Α Ε] Ε V. τὴν περιφέρειαν] τῇ περιφερείᾳ m.) [*](9. ποιοῦσιν V v. γωνίας ποιοῦσι m. 10 τεταγμένη v.) [*](τῶν] om. m. 11. ΕΑΖ] ΑΕΖ M. καί] ὑπὸ τῆς Κ εὐθείας m. ἐστιν — γωνία] δὲ ἡ ὑπὸ ΕΚΑ, ὀξεῖα δὲ ἡ ὑπὸ ΑΚΖ m. μεῖζον v. 12. μᾶλλον] ἄρα μείζων m. ΕΛ] corr. ex Ε∠ V. 13. ἔλαττον M. ΖΗ] ΖΝ v. 14. μεῖζον — Ε ∠] ἤπερ τὸ Ε∠ ὁρώμενον m. Post Ε∠ add ὡς ἐξῆς τοῦτο δείκνυται M v. 15. καʹ] κη΄ V v. 16. ἐν — 17. ὁρωμένων] καὶ ὁμοίως δειχθήσεται, ὅτι καὶ τὸ ∠ Ε ὁρώμενον μεῖζόν ἐστι τοῦ ΗΖ εἰδώλου m. 16. ἐστιν Vv. 19. ΒΑ, ΒΓ] ΒΓ, ΒΑ m.)

320
ἀπὸ τοῦ κυρτοῦ ἐνόπτρου θεωρεῖται τὸ Ε∠ ἐν γωνίᾳ τῇ ὑπὸ ΑΒΓ. παρακείσθω δὴ ἔνοπτρον ἐπίπεδον τὸ ΑΓ ἁπτόμενον τῶν ὄψεων κατὰ τὰ Α, Γ. οὐκοῦν ἡ ὄψις ἡ μέλλουσα ἰδεῖν τὸ Ε ἀπὸ τοῦ ἐπιπέδου ἐνόπτρου οὐκ ἔστιν ἡ ΒΑΕ· οὐ γὰρ ποιεῖ γωνίας ἴσας πρὸς τῷ ἐπιπέδῳ ἐνόπτρῳ. οὐδὲ μὴν κλασθήσεται μεταξὺ τῶν Α, Γ. κεκλάσθω γάρ, εἰ δυνατόν, καὶ ἔστω ἡ ΒΖΕ ὄψις. ἴση ἄρα ἡ Η γωνία τῇ Θ διὰ τὴν ἀνάκλασιν. ἡ δὲ Θ μείζων τῆς ΝΙ, ἡ δὲ Μ τῆς Η· ὥστε καὶ ἡ Μ τῆς ΝΙ μείζων ἐστίν· ὅπερ ἀδύνατον. αὐτὴ γὰρ ἡ Ι μείζων τῆς Μ ἐστιν· ἴση γάρ ἐστιν ὅλῃ τῇ πρὸς τῇ περιφερείᾳ. ἐκτὸς ἄρα ἀνακλασθήσεται τοῦ Α. κεκλάσθω καὶ ἔστω ἡ ΒΚΕ. ὁμοίως δὲ καὶ ἡ ΒΛ∠ πεσεῖται ἐκτός. τὸ ἄρα Ε∠ ὑπὸ μείζονος γωνίας θεωρεῖται ἀπὸ τοῦ ἐπιπέδου ἐνόπτρου τῆς περιεχομένης ὑπὸ ΚΒΛ ἤπερ ἀπὸ τοῦ κυρτοῦ. ἴσον δὲ ἐδείχθη φαινόμενον ἐν τῷ ἐπιπέδῳ ἐνόπτρῳ. φανερὸν οὖν, ὅτι ἀπὸ τοῦ κυρτοῦ ἐνόπτρου τὸ εἴδωλον ἔλασσον φαίνεται τοῦ ὁρωμένου.

[*](1. ἐνόπτρου] ἐνόπτρου τοῦ ΑΟΓ m. 2. ΑΕΓ] Α in ras. V. 3. τά] τὸ M. 4. ἡ (alt.)] om. V M v m. μέλλουσα] lacum. M. Ε] mut. in Ε∠ m. 2 V. 5. ἔστιν ἡ] ἔσται ἧ αὐτὴ τῇ m. 7. κεκλίσθω M m. 8. ἄρα] ἄρα ἐστίν m. Η] ὑπὸ ΒΖΓ m. Θ] ὑπὸ ΒΖΑ γωνίᾳ m. 9. Θ] ὑπὸ ΒΖΓ, postea add. γωνία, m. μεῖζον v, μείζων ἐστί m. ΝΙ] V v, ὑπὸ ΒΑΖ m, Ν M. ἡ δέ — 12. περιφερείᾳ] καὶ ἡ ὑπὸ ΒΖΑ ἄρα (supra scr. m. 1) γωνία μείζων ἐστὶ τῆς ὑπὸ ΒΑΖ· ὅπερ ἐστὶν ἀδύνατον m. 10. Η] Ν M v. ΝΙ] Ν V? M. μεῖζον v. 11. Ι] Ν M. μεῖζον v. τῆς] τοῦ M. 12. ἐκτός] ἐντός M. 14 ὁμοίως] μ V. δέ] om. M. ἐκτὸς πεσεῖται τοῦ Γ m. 16. τῆς — ΚΒΛ] om. m. 17. ἴσον — 18. ἐνόπτρῳ] μείζων γὰρ ἡ ὑπὸ ΚΒΛ τῆς ὑπὸ ΑΒΓ καί m.)
322

Ἐν τοῖς κυρτοῖς ἐνόπτροις ἀπὸ τῶν ἐλασσόνων ἐνόπτρων ἐλάσσονα φαίνεται τὰ εἴδωλα.

ἔστω σφαῖρα μείζων μὲν ἡ ΑΓ, ἐλάσσων δὲ ἡ ΕΛ περὶ τὸ αὐτὸ κέντρον τὸ Θ, ὄμμα δὲ τὸ Β, καὶ ἐπεζεύχθω ἡ ΒΑΘ, καὶ ἀπὸ τῆς σφαίρας ἀνακεκλάσθω ὄψις ἡ ΒΓ∠. λέγω, ὅτι ἡ ἀνακλασθησομένη ὄψις ἀπὸ τῆς ἐλάσσονος σφαίρας ἐπὶ τὸ ∠ οὔτε διὰ τοῦ Γ πεσεῖται οὔτε ἐκτὸς τοῦ πιπτέτω γὰρ πρότερον, εἰ δυνατόν, διὰ τοῦ Γ καὶ ἀνακεκλάσθω ἀπὸ τῆς ἐλάσσονος σφαίρας ἐπὶ τὸ ∠ καὶ ἔστω ἡ ΒΕ∠, καὶ ἐπεζεύχθω ἀπὸ τοῦ Θ ἐπὶ τὸ Γ καὶ ἐκβεβλήσθω ἐπὶ τὸ Κ. δίχα δὴ τεμεῖ ἡ ΘΓΚ τὴν ὑπὸ τῶν ΒΓ∠ γωνίαν διὰ τὸ τὴν ΒΓ∠ ἴσας ποιεῖν γωνίας πρὸς τῇ περιφερείᾳ διὰ τὴν ἀνάκλασιν. διὰ τὰ αὐτὰ δὲ καὶ ἡ ἀπὸ τοῦ Θ ἐπὶ τὸ Ε ἐπιζευγνυμένη καὶ ἐκβληθεῖσα δίχα τεμεῖ τὴν ὑπὸ ΒΕ∠. τεμνέτω καὶ ἔστω ἡ ΘΕΖ. ἐπεὶ μείζων ἐστὶν ἡ περιεχομένη ὑπὸ τῶν ΒΓ∠ τῆς ὑπὸ ΒΕ∠, καὶ ἡ ἡμίσεια τῆς ἡμισείας μείζων ἐστὶν ἡ ὑπὸ ΒΓΚ τῆς ὑπὸ ΒΕΖ. ἔστι δὲ καὶ ἐλάσσων· ὅπερ ἀδύνατον. οὐκ ἄρα ἥξει διὰ τοῦ Γ ἡ ἀνακλωμένη ὄψις ἀπὸ τῆς ἐλάσσονος σφαίρας.

[*](1. κβʹ] κθ΄ V v. 4. μείζων v. 6. Β ΑΘ] B e corr. m, ΒΘ M. τῆς] τῆς Α m. 8. τῆς] om. M. ἐλάττονος M, λε m. 9. γάρ] supra scr. m. 10. ἐλάσσονος] ελ m. 11 ἐπεζεύχθω — 12. Γ] ἐπιζευχθεῖσα (-α e corr.) ἡ ΒΓ m. 12 καί] om. m. 13. τῶν] om. M m. 14. τό] supra scr. m.)[*](ΒΓ∠ ὄψιν m. 15 δέ] δή M. 16. καί] εὐθεῖα καί m.)[*](ἐκβληθεῖσα] ἐκβαλλομέμη m. 17. ἐπεί] καὶ ἐπεί m. μεῖζον v. 18. περιεχομένη] om. m. τῶν] om. m. ΒΓ∠ γωνία m. 19. ἡ ὑπὸ ΒΓΚ τῆς ἡμισείας τῆς ὑπὸ ΒΕΖ m. ἡ (alt.) — 20. ΒΕΖ] om. m. 20. ἔστιν V v. ἐλάττων M.)
324

ὑποκείσθω δὲ πάλιν τὰ αὐτά, καὶ ἡ ἀπὸ τῆς ἐλάσσονος σφαίρας ἀνακλωμένη ὄψις ἡ ΒΕ∠ ἐκτὸς πιπτέτω τοῦ Γ, καὶ τεμνέτω ἡ ΒΕ τὴν μείζονα σφαῖραν κατὰ τὸ Ζ. ἡ δὴ ἀπὸ τοῦ Ζ ἀνακλωμένη ὄψις ἡ ΒΖΚ οὐ συμπεσεῖται τῇ Γ∠ τοῦτο γὰρ δέδεικται. τῇ ἄρα Ε∠ συμπιπτέτω κατὰ τὸ Κ. ἡ ἄρα ΒΖΚ ὄψις ἀνακλωμένη ἀπὸ τοῦ μείζονος ἐνόπτρου ὁρᾷ τὸ Κ, καὶ ἡ αὐτὴ ἡ ΒΕΚ ἀνακλωμένη ἀπὸ τοῦ ἐλάσσονος ἐνόπτρου ὁρᾷ τὸ αὐτὸ Κ· τοῦτο δὲ ἐπάνω ἐδείχθηἀδύνατον. μεταξὺ ἄρα πεσεῖται τῶν Γ Α ἡ ἀνακλωμένη ὄψις ἀπὸ τοῦ ἐλάσσονος ἐνόπτρου ἐπὶ τὸ ∠. ὁμοίως δὲ δειχθήσεται καὶ ἡ ἀπὸ τοῦ ἑτέρου μέρους τὸ αὐτὸ ποιοῦσα. ὑπὸ ἐλάσσονος ἄρα γωνίας θεωρεῖται τῆς πρὸς τῷ Β γιγνονένης ἀπὸ τοῦ ἐλάσσονος ἐνόπτρου ἤπερ ἀπὸ τοῦ μείζονος. ἔλασσον ἄρα φαίνεται τὸ εἴδωλον ἀπὸ τοῦ ἐλάσσονος ἐνόπτρου.

Ἐν τοῖς κυρτοῖς ἐνόπτροις τὰ εἴδωλα κυρτὰ φαόνεται.

[*](1. δέ] δή m. ἐλάττονος M, ελ m. 3. μείζονα] ΑΓ m.)[*](4. Ζ (utrumque)] Ν m. 5. ΒΖΚ| ΒΖΕ M, ΒΝΞ m. 8 Ε∠] corr. ex ΕΛ m. 2 V, Ε∠ συμπεσεῖται ἡ ΝΞ m. 9. Κ])
326

ἔστω κυρτὸν ἔνοπτρον τὸ ΑΓ, ὄμμα δὲ τὸ Ε, ὄψεις δὲ ἀνακλώμεναι αἱ ΕΑ, ΕΓ ἐπὶ τὰ ∠, Β, ἡ δὲ ΖΕ ἀνακλωμένη διʼ ἑαυτῆς ἐπὶ τὸ Ε. οὐκοῦν τῶν ὄψεων μέγισται μέν εἰσι τῷ μήκει αἱ πορρωτάτω, ἐλάχισται δὲ αἱ κατὰ μέσον, ὥσπερ ἡ ΕΖ. φαίνεται ἄρα τοῦ ἐνόπτρου ἔγγιον μᾶλλον τὸ Ε, πορρωτάτω δὲ τὸ Β καὶ τὸ ∠. ὥστε ὅλον κυρτὸν φαίνεται.