Catoptrica (recensio Theonis?)
Euclid
Euclid. Euclidis Opera Omnia, Volume 7. Menge, Heinrich; Heiberg, J.L, editors. Leipzig: Teubner, 1895.
Ἐν τοῖς κυρτοῖς ἐνόπτροις τὰ ἀριστερὰ δεξιὰ φαίνεται καὶ τὰ δεξιὰ ἀριστερά, καὶ τὸ ἀπόστημα ἀπὸ τοῦ ἐνόπτρου τὸ εἴδωλον ἔλασσον ἔχει.
ἔστω ἔνοπτρον κυρτὸν τὸ ΑΓ, κέντρον δὲ τῆς σφαίρας τὸ Θ, ὄμμα δὲ τὸ Β, ὄψεῖς δὲ αἱ ΒΑ, ΒΓ [*](2. ὁρώμενον — 3. Ε∠] om. m. 4. κάθετος V, corr. m. 2. 5. ΒΓ, ΒΑ] ΕΖ, ΒΓ, Β M. 6. ταῖς] τοῖς M, ταῖς ∠Λ, ΕΚ m. 10. τῶν ΚΓΖ] ΓΚΖ m. τῶν (alt.)] om. m.) [*](ΖΓΕ| corr. ex ΞΓΕ v; ΒΑΕ, supra scr. ΓΖ, M. 11. τῷ] τό v. ἴση] ἴση ἄρα M v m. ἂν εἴη] ἔσται m. 12. καί] δὴ καί m. ΘΛ] corr. ex ΘΑ m. 2 V, corr. ex ∠Λ M. 13. ὅ (alt.)] ᾧ v m supra scr. m. rec. V. 14. τό (quart.)] τῷ M, V, sed corr. 15. εἰδώλῳ] ὁρωμένῳ M. 16. ∠Θ] Θ∠ m.) [*](18. κʹ] κζ΄ V. 20. ἀπό — 21. ἔχει] ὃ ἀπέχει τὸ εἴδωλοι ἀπὸ τοῦ ἐνόπτρου, ἔλασσόν ἐστι τοῦ ἀποστήματος, οὗ ἀπέχει τί.)
Ἐν τοῖς κυρτοῖς ἐνόπτροις τὸ εἴδωλον ἔλασσόν ἐστι τῶν ὁρωμένων.
ἔστω γὰρ κυρτὸν ἔνοπτρον τὸ ΑΟΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι αἱ ΒΑ, ΒΓ ἐπὶ τὰ ∠, Ε. οὐκοῦν [*](1. τά] m, τό V Mv. ὁρώμενον — ∠Ε] om. m. 2. Θ∠] Θ e corr. M m. 3. αἱ] αἱ ΒΓ, Β Α m. Ζ, Η] Η, Ζ m. 4. τοῦ] τό M. 5. τοῦ] τό V? 6. ὅτι] δὴ ὅτι m. μεῖζον v.) [*](7. Α] corr. ex m. ἐφαπτομένου M. περιφερείας] σφαίρας m. 8. Α Ε] Ε V. τὴν περιφέρειαν] τῇ περιφερείᾳ m.) [*](9. ποιοῦσιν V v. γωνίας ποιοῦσι m. 10 τεταγμένη v.) [*](τῶν] om. m. 11. ΕΑΖ] ΑΕΖ M. καί] ὑπὸ τῆς Κ εὐθείας m. ἐστιν — γωνία] δὲ ἡ ὑπὸ ΕΚΑ, ὀξεῖα δὲ ἡ ὑπὸ ΑΚΖ m. μεῖζον v. 12. μᾶλλον] ἄρα μείζων m. ΕΛ] corr. ex Ε∠ V. 13. ἔλαττον M. ΖΗ] ΖΝ v. 14. μεῖζον — Ε ∠] ἤπερ τὸ Ε∠ ὁρώμενον m. Post Ε∠ add ὡς ἐξῆς τοῦτο δείκνυται M v. 15. καʹ] κη΄ V v. 16. ἐν — 17. ὁρωμένων] καὶ ὁμοίως δειχθήσεται, ὅτι καὶ τὸ ∠ Ε ὁρώμενον μεῖζόν ἐστι τοῦ ΗΖ εἰδώλου m. 16. ἐστιν Vv. 19. ΒΑ, ΒΓ] ΒΓ, ΒΑ m.)
Ἐν τοῖς κυρτοῖς ἐνόπτροις ἀπὸ τῶν ἐλασσόνων ἐνόπτρων ἐλάσσονα φαίνεται τὰ εἴδωλα.
ἔστω σφαῖρα μείζων μὲν ἡ ΑΓ, ἐλάσσων δὲ ἡ ΕΛ περὶ τὸ αὐτὸ κέντρον τὸ Θ, ὄμμα δὲ τὸ Β, καὶ ἐπεζεύχθω ἡ ΒΑΘ, καὶ ἀπὸ τῆς σφαίρας ἀνακεκλάσθω ὄψις ἡ ΒΓ∠. λέγω, ὅτι ἡ ἀνακλασθησομένη ὄψις ἀπὸ τῆς ἐλάσσονος σφαίρας ἐπὶ τὸ ∠ οὔτε διὰ τοῦ Γ πεσεῖται οὔτε ἐκτὸς τοῦ πιπτέτω γὰρ πρότερον, εἰ δυνατόν, διὰ τοῦ Γ καὶ ἀνακεκλάσθω ἀπὸ τῆς ἐλάσσονος σφαίρας ἐπὶ τὸ ∠ καὶ ἔστω ἡ ΒΕ∠, καὶ ἐπεζεύχθω ἀπὸ τοῦ Θ ἐπὶ τὸ Γ καὶ ἐκβεβλήσθω ἐπὶ τὸ Κ. δίχα δὴ τεμεῖ ἡ ΘΓΚ τὴν ὑπὸ τῶν ΒΓ∠ γωνίαν διὰ τὸ τὴν ΒΓ∠ ἴσας ποιεῖν γωνίας πρὸς τῇ περιφερείᾳ διὰ τὴν ἀνάκλασιν. διὰ τὰ αὐτὰ δὲ καὶ ἡ ἀπὸ τοῦ Θ ἐπὶ τὸ Ε ἐπιζευγνυμένη καὶ ἐκβληθεῖσα δίχα τεμεῖ τὴν ὑπὸ ΒΕ∠. τεμνέτω καὶ ἔστω ἡ ΘΕΖ. ἐπεὶ μείζων ἐστὶν ἡ περιεχομένη ὑπὸ τῶν ΒΓ∠ τῆς ὑπὸ ΒΕ∠, καὶ ἡ ἡμίσεια τῆς ἡμισείας μείζων ἐστὶν ἡ ὑπὸ ΒΓΚ τῆς ὑπὸ ΒΕΖ. ἔστι δὲ καὶ ἐλάσσων· ὅπερ ἀδύνατον. οὐκ ἄρα ἥξει διὰ τοῦ Γ ἡ ἀνακλωμένη ὄψις ἀπὸ τῆς ἐλάσσονος σφαίρας.
[*](1. κβʹ] κθ΄ V v. 4. μείζων v. 6. Β ΑΘ] B e corr. m, ΒΘ M. τῆς] τῆς Α m. 8. τῆς] om. M. ἐλάττονος M, λε m. 9. γάρ] supra scr. m. 10. ἐλάσσονος] ελ m. 11 ἐπεζεύχθω — 12. Γ] ἐπιζευχθεῖσα (-α e corr.) ἡ ΒΓ m. 12 καί] om. m. 13. τῶν] om. M m. 14. τό] supra scr. m.)[*](ΒΓ∠ ὄψιν m. 15 δέ] δή M. 16. καί] εὐθεῖα καί m.)[*](ἐκβληθεῖσα] ἐκβαλλομέμη m. 17. ἐπεί] καὶ ἐπεί m. μεῖζον v. 18. περιεχομένη] om. m. τῶν] om. m. ΒΓ∠ γωνία m. 19. ἡ ὑπὸ ΒΓΚ τῆς ἡμισείας τῆς ὑπὸ ΒΕΖ m. ἡ (alt.) — 20. ΒΕΖ] om. m. 20. ἔστιν V v. ἐλάττων M.)ὑποκείσθω δὲ πάλιν τὰ αὐτά, καὶ ἡ ἀπὸ τῆς ἐλάσσονος σφαίρας ἀνακλωμένη ὄψις ἡ ΒΕ∠ ἐκτὸς πιπτέτω τοῦ Γ, καὶ τεμνέτω ἡ ΒΕ τὴν μείζονα σφαῖραν κατὰ τὸ Ζ. ἡ δὴ ἀπὸ τοῦ Ζ ἀνακλωμένη ὄψις ἡ ΒΖΚ οὐ συμπεσεῖται τῇ Γ∠ τοῦτο γὰρ δέδεικται. τῇ ἄρα Ε∠ συμπιπτέτω κατὰ τὸ Κ. ἡ ἄρα ΒΖΚ ὄψις ἀνακλωμένη ἀπὸ τοῦ μείζονος ἐνόπτρου ὁρᾷ τὸ Κ, καὶ ἡ αὐτὴ ἡ ΒΕΚ ἀνακλωμένη ἀπὸ τοῦ ἐλάσσονος ἐνόπτρου ὁρᾷ τὸ αὐτὸ Κ· τοῦτο δὲ ἐπάνω ἐδείχθηἀδύνατον. μεταξὺ ἄρα πεσεῖται τῶν Γ Α ἡ ἀνακλωμένη ὄψις ἀπὸ τοῦ ἐλάσσονος ἐνόπτρου ἐπὶ τὸ ∠. ὁμοίως δὲ δειχθήσεται καὶ ἡ ἀπὸ τοῦ ἑτέρου μέρους τὸ αὐτὸ ποιοῦσα. ὑπὸ ἐλάσσονος ἄρα γωνίας θεωρεῖται τῆς πρὸς τῷ Β γιγνονένης ἀπὸ τοῦ ἐλάσσονος ἐνόπτρου ἤπερ ἀπὸ τοῦ μείζονος. ἔλασσον ἄρα φαίνεται τὸ εἴδωλον ἀπὸ τοῦ ἐλάσσονος ἐνόπτρου.
Ἐν τοῖς κυρτοῖς ἐνόπτροις τὰ εἴδωλα κυρτὰ φαόνεται.
[*](1. δέ] δή m. ἐλάττονος M, ελ m. 3. μείζονα] ΑΓ m.)[*](4. Ζ (utrumque)] Ν m. 5. ΒΖΚ| ΒΖΕ M, ΒΝΞ m. 8 Ε∠] corr. ex ΕΛ m. 2 V, Ε∠ συμπεσεῖται ἡ ΝΞ m. 9. Κ])ἔστω κυρτὸν ἔνοπτρον τὸ ΑΓ, ὄμμα δὲ τὸ Ε, ὄψεις δὲ ἀνακλώμεναι αἱ ΕΑ, ΕΓ ἐπὶ τὰ ∠, Β, ἡ δὲ ΖΕ ἀνακλωμένη διʼ ἑαυτῆς ἐπὶ τὸ Ε. οὐκοῦν τῶν ὄψεων μέγισται μέν εἰσι τῷ μήκει αἱ πορρωτάτω, ἐλάχισται δὲ αἱ κατὰ μέσον, ὥσπερ ἡ ΕΖ. φαίνεται ἄρα τοῦ ἐνόπτρου ἔγγιον μᾶλλον τὸ Ε, πορρωτάτω δὲ τὸ Β καὶ τὸ ∠. ὥστε ὅλον κυρτὸν φαίνεται.
Ἐν τοῖς κοίλοις ἐνόπτροις ἐὰν ἐπὶ τοῦ κέντρου τὸ ὄμμα τεθῇ, αὐτὸ μόνον φαίνεται τὸ ὄμμα. ἔστω κοῖλον ἔνοπτρον τὸ ΑΓ ∠, κέντρον δὲ αὐτοῦ τὸ Β, ὄψεις δὲ αἱ ΒΑ, ΒΓ, Β∠. οὐκοῦν ἴση ἡ Ε γωνία τῇ Ζ. ἥξει ἄρα ἀνακλωμένη ἡ ΒΓ ὄψις ἐπὶ τὸ Β. ὁμοίως δὲ καὶ αἱ λοιπαί. αὐτὸ μόνον ἄρα ὁρᾶται τὸ Β.
Ἐν τοῖς κοίλοις ἐνόπτροις ἐὰν ἐπὶ τῆς περιφερείας θῇς τὸ ὄμμα ἢ ἔξω τῆς περιφερείας, οὐ φαίνεται τὸ ὄμμα.
ἔστω κοῖλον ἔνοπτρον τὸ ΑΓΒ, καὶ τὸ ὄμμα κείσθω ἐπὶ τῆς περιφερείας αὐτοῦ τὸ Β, ὄψεις δὲ προσπιπτέτωσαν αἱ ΒΑ, ΒΓ καὶ ἀνακεκλάσθωσαν. οὐκοῦν μείζων ἐστὶν ἡ μὲν ΜΘ γωνία τῆς Κ, ἡ δὲ ΕΛ τῆς Ζ. [*](2. ΕΑ] ΕΛ M. 3. ἑαυτῆς] αὐτῆς M. 4. εἰσιν V v. αἱ] corr. ex ε v. πορρωτάτω τοῦ μέσου m. 5. κατά] κατὰ τό m.) [*](ἡ ΕΖ] corr. ex ἡ ΕΞ v, ἐνταῦθα μέγισται μέν εἰσιν αἱ ∠Α, ΒΓ ἐλαχίστη δὲ ἡ ΕΖ m. 8. κδʹ] λα΄ V v. 9. τοῦ κέντρου] τὸ κέντρον M. 12. ἴση] ἴση ἐστίν m. 14 λοιπαί] Β Α καὶ B∠ ὄψεις ἐπὶ τὸ B ἥξουσιν m. 16. κεʹ] λβ΄ V v. 18 θῇς])
Ἐν τοῖς κοίλοις ἐνόπτροις ἐὰν ἐκβαλὼν διάμετρον τῆς σφαίρας ἐκ τοῦ κέντρου πρὸς ὀρθὰς ἀναγάγῃς καὶ εἰς τὸ ἕτερον μέρος θῇς τὸ ὄμμα, οὐδὲν τῶν ἐν τῷ αὐτῷ μέρει, ἐν τὸ ὄμμα ἐστίν, ὀφθήσεται, τουτέστιν οὔτε τῶν ἐπὶ τῆς διαμέτρου οὔτε τῶν ἐκτὸς τῆς διαμέτρου.
ἔστω κοῖλον ἔνοπτρον τὸ ΑΓ∠, διάμετρος δὲ ἔστω τῆς σφαίρας ἡ Α∠, καὶ τῇ Α∠ πρὸς ὀρθὰς ἀνεστάτω ἀπὸ τοῦ κέντρου τοῦ Ζ ἡ ΖΓ, ὄμμα δὲ ἔστω τὸ Β, ὄψις δὲ ἡ ΒΕ. οὐκοῦν ἡ ΒΕ ἀνακλωμένη οὐχ ἥξει οὔτε ἐπὶ τὸ Β οὔτε ἐπὶ τὸ Ζ· ἐν γὰρ ἴσαις γωνίαις ἀνακλᾶται. ἥξει ἄρα ὡς ἡ ΕΘ. ὁμοίως δὲ καὶ ἐὰν ἐντὸς ἐμπέσῃ τὸ ὄμμα, ὅπου τὸ Θ, ἢ ἐπὶ τῆς διαμέτρου, ὅπου τὸ Μ, ἀνακλώμεναι αἱ ὄψεις αἱ ΘΚ, ΜΝ ἥξουσιν ὡς αἱ ΚΛ, ΝΞ. οὐκ ἄρα ὁρᾶται οὐδὲν τῶν ἐν [*](1. ὄψεις] om. m. 2. εἰς — εἰ] εἰ γὰρ εἰς τὸ ὄμμα m.) [*](δέ] scr. γάρ. ἄν] om. V M v. αἱ] om. M. αἱ — 3. ἐγίγνοντο] ἐγίγνοντο αἱ πρὸς τοῖς Α, Γ σημείοις γωνίαι· οὐκ εἰσὶ δὲ ἴσαι. οὐδʼ ἄρα αἱ ΒΑ, BΓ ὄψεις ἐπὶ τὸ Β ὄμμα ἀνακλῶνται m. 4. γένηται] τεθῇ m. 5. τουτέστιν V v. διά — 6. αὐτό] ὑπὸ πασῶν τῶν ἀνακλωμένων ὄψεων εἰ μὴ ὑπὸ μόνης τῆς διὰ τοῦ κέντρου ἠγμένης m. 6. γίνεσθαι M. 7. κϚʹ] λγ΄ V v. 10. εἰς] mut. in ἐπί M. 12. οὔτε (pr.)] οὔτε τι m.) [*](διαμέτρου] o ÷ ο M, ut saepe. 15. καί] κέντρον δὲ τὸ Ζ, καὶ ἀπὸ τοῦ m. 16. ἀπό — Ζ] om. m. 17. ὄψεις V, V, sed corr. m. 2. 20. ἐμπέσει v, τεθῇ m.)
Ἐν τοῖς κοίλοις ἐνόπτροις ἐὰν ἐπὶ τῆς διαμέτρου τεθῇ τὰ ὄμματα ἴσον ἀπέχοντα τοῦ κέντρου, οὐδέτερον τῶν ὀμμάτων ὀφθήσεται.
ἔστω κοῖλον ἔνοπτρον τὸ ΑΓ∠, διάμετρος δὲ ἡ Α∠, κέντρον δὲ τὸ Ζ, πρὸς ὀρθὰς δὲ ἡ ΖΓ, ὄμματα δὲ τὰ Β, Ε ἴσον ἀπέχοντα τοῦ κέντρου, ὄψις δὲ ἡ ΒΓ. οὐκοῦν ἀνακλωμένη ἥξει ἐπὶ τὸ Ε· ἐν ἴσαις γὰρ γωνίαις ἀνακλᾶται. ἄλλη δὲ οὐδεμία ἥξει ἀνακλωμένη ἀπὸ τοῦ Β ἐπὶ τὸ Ε. εἰ γὰρ ἥξει ὡς ἡ ΒΘ, ἐπεζεύχθωσαν αἱ ΘΕ, ΘΖ· δίχα ἄρα τμηθήσεται ἡ ὑπὸ ΒΘΕ ὑπὸ τῆς ΖΘ, καὶ ἀνάλογον ἔσται ὡς ἡ ΒΘ πρὸς ΘΕ, ἡ ΒΖ πρὸς ΖΕ· ὅπερ ἀδύνατον· ἡ μὲν γὰρ ΒΘ μείζων ἐστὶ τῆς ΘΕ, ἡ δὲ ΒΖ ἴση τῇ ΖΕ. οὐδεμία ἄρα ἥξει ἀνακλωμένη ἀπὸ τοῦ Β ἐπὶ τὸ Ε. μία ἄρα ὄψις μόνον ἀνακλασθήσεται ἐφʼ ἑκατέρου τῶν Β, Ε ὀμμάτων, καὶ οὐκ ὀφθήσεται τὸ Ε· οὐ γὰρ συμπεσεῖται ἡ ΒΓ ἐκβαλλομένη τῇ Β∠ ἐπὶ τὰ Γ, ∠ μέρη, ἐφαίνετο δὲ ἕκαστον κατὰ τὴν συμβολὴν μόνον τῶν ὁρωμένων· οὐδὲ ἡ ΕΓ οὐ μὴ συμπέσῃ τῇ ΕΑ ἐπὶ τὰ Γ, Α μέρη· ἐν γὰρ τοῖς κοίλοις ἐνόπτροις ἕκαστον τῶν ὁρωμένων κατὰ τὴν ἀπὸ τοῦ ὁρωμένου εἰς τὸ κέντρον τῆς σφαίρας ἀγομένην εὐθεῖαν ὁρᾶται.
[*](1. ἐστίν V. v. οὔτε] οὔτε τι m. 3. κζ΄] λδ΄ V v. 5. τὰ ὄμματα] τὸ ὄμμα M. 9. τὰ Β] e corr. M. τοῦ] τοῦ Z m.)[*](11. ἀνακλωμένη — 12. ἥξει] om. M v m. 12. ἡ] postea add. m. 14. BΘΕ] ΒΘΕ γωνία m. ΖΘ] ΖΘ εὐθείας m.)[*](ἔσται] ἐστιν M. 15. ΘΕ] τὴν ΘΕ M m. ΖΕ] τὴν ΖΕ M m. 16. ἐστίν V. ΖΕ] ΕΖ M. 18. μόνον] om. Mm.)Ἐν τοῖς κοίλοις ἐνόπτροις ἐὰν τὴν ἐκ τοῦ κέντρου δίχα τεμὼν καὶ πρὸς ὀρθὰς ἀγαγὼν θῇς τὰ ὄμματα ἴσον ἀπέχοντα τῆς ἐκ τοῦ κέντρου, θῇς δὲ ἢ ἀνὰ μέσον τῆς διαμέτρου καὶ τῆς πρὸς ὀρθὰς ἢ ἐπʼ αὐτῆς τῆς πρὸς ὀρθάς, οὐδέτερον τῶν ὀμμάτων φαίνεται.
ἔστω κοῖλον ἔνοπτρον τὸ ΑΓ∠, διάμετρος δὲ ἡ Α∠, κέντρον δὲ τὸ Κ, καὶ ἡ πρὸς ὀρθὰς ἡ ΚΓ δίχα τετμήσθω κατὰ τὸ Π, πρὸς ὀρθὰς δὲ αὐτῇ ἔστω ἡ ΕΠΖ, καὶ ὄμματα τὰ Β, Θ μεταξὺ κείμενα τῆς τε διαμέτρου τῆς Α∠ καὶ τῆς ΕΖ ἐν παραλλήλοις ταῖς ΕΖ, ΒΘ ἴσον ἀπέχοντα τῆς ΚΓ, ὄψις δὲ ἔστω ἡ ΒΓ ἀνακλωμένη ἐπὶ τὸ Θ ἴσας γὰρ ποιεῖ γωνίας πρὸς τῇ περιφερείᾳ διὰ τὸ παράλληλον εἶναι τὴν ΖΕ τῇ ΒΘ καὶ ἴσην τὴν ΒΝ τῇ ΝΘ. καὶ ἐπιζευχθεῖσαι αἱ ΚΒ, ΚΘ ἐκβεβλήσθωσαν, ἐκβεβλήσθω δὲ καὶ ἡ ΓΒ ἐπὶ τὸ Φ. καὶ ἐπεὶ μείζων ἐστὶν ἡ ΒΓ τῆς Β Κ, μείζων ἐστὶν ἡ Ρ γωνία τῆς Ι. ὥστε καὶ ἡ ὑπὸ ΓΒΘ μείζων τῆς ὑπὸ ΘΒΚ, τουτέστι τῆς ὑπὸ ΒΘΚ. οὐκ ἄρα συμπεσεῖται ἡ ΒΓ τῇ ΚΘ. οὐκ ἄρα ὀφθήσεται τὸ Θ κατὰ γὰρ τὴν συμβολὴν φαίνεται τῶν ΒΓ, ΚΘ.
ἔστω πάλιν τὰ αὐτὰ τῇ ἐπάνω, τὰ δὲ Β, Θ ὄμματα ἔστωσαν ἐπὶ τῆς δίχα καὶ πρὸς ὀρθὰς τεμνούσης τὴν [*](1. κηʹ] λε΄ Vv. 3. δίχα] πρὸς ὀρθὰς οὖσαν τῇ διαμέτρῳ δίχα m. ἀγαγών] ἀγαγὼν εὐθεῖαν m. τά] corr. ex τό m. 1 M. 4. ἴσον] μεταξὺ τῆς τε διαχθείσης καὶ τοῦ κέντρου ἴσον m. θῇς — 5. ὀρθάς] om. m. 6. πρὸς ὀρθάς] διαχθείσης m. φαίνεται] φανεῖται m. 8. ἡ (pr.)] om. m. ἡ ΚΓ δίχα] τῇ Α∠ ἡ ΚΓ καί m. 9. κατά] ἡ ΚΓ δίχα κατά m.) [*](πρός — ἔστω] καὶ διὰ τοῦ Π διήχθω τῇ ΚΓ πρὸς ὀρθάς m.) [*](αὐτῇ] αὐτῆς M v. 10. κείμενα] κείσθω m, ἠγμένα M. διαμέτρου — 11. ΕΖ (pr.)] ΕΖ καὶ τοῦ Κ κέντρου m. 13. ἴσας] corr. ex ἴας m. 2 V. 14. εἶναι] om. M. 15. ΒΝ] BΗ m.)
ἔστω πάλιν τὰ αὐτά, τῆς δὲ διχοτομίας ἀνωτέρω κείσθω τὰ ὄμματα τὰ Β, Γ ἴσον ἀπέχοντα τῆς ἐκ τοῦ κέντρου τῆς Ζ Α. φημὶ δὴ φαίνεσθαι τὰ Β, Γ καὶ τὰ δεξιὰ ἀριστερὰ καὶ τὰ ἀριστερὰ δεξιὰ καὶ τὸ εἴδωλον μεῖζον τοῦ προσώπου καὶ τὸ ἀπόστημα ἀπὸ τοῦ ἐνόπτρου ἔχον μεῖζον τὸ εἴδωλον. ἔστω γὰρ ἡ ΒΑ ὄψις ἀνακλωμένη, καὶ ἐπεζεύχθωσαν ἀπὸ τοῦ κέντρου ἐπὶ τὸ Β, Γ αἱ ΖΒ, ΖΓ, καὶ ἐκβεβλήσθω ἡ ΒΑ. ἐπεὶ οὖν διχοτομία ἐστὶ τὸ Ν, μείζων ἐστὶν ἡ ΒΖ τῆς ΒΑ καὶ ἡ Κ γωνία τῆς Ε. ἴση δὲ ἡ Κ τῇ ∠· μείζων ἄρα καὶ ἡ ∠ τῆς Ε. συμπεσοῦνται ἄρα αἱ ΖΒ, ΓΑ ἐκβληθεῖσαι. συμπιπτέτωσαν κατὰ τὸ Π. διὰ τὰ αὐτὰ δὴ καὶ αἱ ΒΑ, ΖΓ συμπεσοῦνται κατὰ τὸ Θ. ὀφθήσεται ἄρα τὸ μὲν Γ ἐπὶ τοῦ Θ, τὸ δὲ Β ἐπὶ τοῦ Π, καὶ φαίνεται τὰ μὲν δεξιὰ ἀριστερά, τὰ δὲ ἀριστερὰ δεξιά. ἀλλὰ μὴν καὶ μείζων ἡ ΘΠ τῆς ΒΙ παράλληλοι γάρ [*](1. ἐπί] om. m. τῆς] τά M. ἴση] ἴση ἐστίν m. 2. τῇ (utr.)] τῆς M. Post δέ del. τό v. ΖΘ] ΓΖ m. 4. τουτέστιν V, comp. v ΖΘ] ΖΘΕ M. 6 τῶν] corr. ex τω m. 1 V. 7. κθ΄ m, λζ΄ V v. 11 ἀπό] ὃ ἀπέχει τὸ εἴδωλον m. 12. ἔχον] corr. ex ἔχων v, om. m. τὸ εἴδωλον] τοῦ ἀποστήματος, οὗ ἀπέχει τὸ πρόσωπον m. 15. ἐστί] ἐστίν V v.) [*](Ν] M v m. μεῖζον v. ΒΖ] ΖΒ M m. 16. Κ (pr.)] ὑπὸ Β Α Ζ m. Ε] ὑπὸ ΒΖ m. ἡ Κ (alt.) — 17. Ε] τῇ μὲν ὑπὸ Β ΑΖ ἡ ὑπὸ ΓΑΖ, τῇ δὲ ὑπὸ ΒΖΑ ἡ ὑπὸ ΓΖΑ, ὅλη ἄρα ἡ ὑπὸ Β ΑΓ ὅλης τῆς ὑπὸ ΒΖΓ μείζων ἐστί m. 16. τῇ] corr.)
ἐὰν δὲ ἔξω τῆς διαμέτρου τεθῇ τὰ ὄμματα, τὰ δεξιὰ φαίνεται δεξιὰ καὶ τὰ ἀριστερὰ ἀριστερὰ καὶ τὸ εἴδωλον ἔλασσον τοῦ προσώπου καὶ ἐν τῷ ἀνὰ μέσον τοῦ προσώπου καὶ τοῦ ἐνόπτρου.
ἔστω γὰρ ὄμματα τὰ Β, Γ, κέντρον δὲ τὸ Ζ τοῦ ἐνόπτρου, καὶ τῇ διαμέτρῳ πρὸς ὀρθὰς ἔστω ἡ Α Ζ ∠, καὶ ταύτῃ πρὸς ὀρθὰς ἡ ΒΓ, καὶ ἴση τῇ ΒΑ ἔστω ἡ ΑΓ. καὶ ὄψις ἡ Β∠ ἀνακλωμένη ἐπὶ τὸ Γ καὶ διὰ τοῦ κέντρου αἱ ΒΖΚ, ΓΖΕ, καὶ ἀπὸ τῶν Ε, Κ ἡ ΚΕ ἐπεζεύχθω. οὐκοῦν τὸ μὲν Β ἐπὶ τοῦ Κ φαίνεται, τὸ δὲ Γ ἐπὶ τοῦ Ε. τὰ ἄρα δεξιὰ δεξιὰ καὶ τὰ ἀριστερὰ ἀριστερὰ φαίνεται καὶ τὸ ΕΚ εἴδωλον ἔλασσον τοῦ ΒΓ προσώπου· παράλληλος γάρ ἐστιν ἡ ΕΚ τῇ ΒΓ· καὶ ἀνὰ μέσον τοῦ ἐνόπτρου καὶ τοῦ προσώπου φαίνεται τὸ εἴδωλον.
ἀναγομένου δὲ τοῦ προσώπου ἔτι ἔλασσον φαίνεται τὸ εἴδωλον. ἔστω γὰρ τὸ ΜΝ πρόσωπον τὸ αὐτὸ τῷ ΒΓ ἀφεστηκὸς ἀπὸ τοῦ ΒΓ κείμενον ὁμοίως. οὐκοῦν [*](1. εἰσι M m. 2. μεῖζον v. 3. λ΄ m, λη΄ V v. 4 δεξιὰ φαίνεται m. 5. ἔλαττον M. μέσον μέσῳ V v.) [*](7. τοῦ ἐνόπτρου τὸ Ζ m. 8. Α Ζ ∠] Α∠ V, sed corr. m. 1. 9. τῇ Β ἴση m. 11. BΖΚ] ΒΖΕ M. ἀπό — ΚΕ] om. m. ἐπεζεύχθω ἡ ΕΚ m. 12. Β] Γ m.) [*](τοῦ] corr. ex τό M. Κ] Ε 15. 13. Γ] Β m. καί] φαίνεται καί m. 14. φαίνεται] om. m. 18. ἔλαττον M. 20. BΓ (alt.)] ΒΓ καί m. οὐκοῦν] ὀκοῦν V, corr.)
Δυνατόν ἐστιν ἔνοπτρον κατασκευασθῆναι ὥστε ἐν τῷ αὐτῷ φαίνεσθαι πλείω πρόσωπα, τὰ μὲν μείζονα, τὰ δὲ ἐλάσσονα, καὶ τὰ μὲν ἔγγιον, τὰ δὲ πορρώτερον, καὶ τῶν μὲν τὰ δεξιὰ δεξιά, τὰ δὲ ἀριστερὰ ἀριστερά, τῶν δὲ τὰ ἀριστερὰ δεξιά, τὰ δὲ δεξιὰ ἀριστερά. ἔστω γὰρ ἐπίπεδον τὸ ΑΜ. οὐκοῦν ἐν τούτῳ γένοιτʼ ἂν κυρτὰ μὲν ἔνοπτρα οἷα τὰ ΑΟΓ, ΘΡΚ, κοῖλα δὲ οἷα τὰ Γ∠Ε, ΖΗΘ, ἐπίπεδα δὲ οἷα τὰ ΕΖ, ΛΜ. τεθέντος οὖν τοῦ προσώπου, ὅπου τὸ Ν, φαίνεται ἀπὸ μὲν τῶν ἐπιπέδων ἴσα τὰ εἴδωλα καὶ ἴσον ἀπέχοντα, ἀπὸ δὲ τῶν κυρτῶν ἐλάσσονα καὶ ἔλασσον ἀπέχοντα, ἀπὸ δὲ τῶν κοίλων παντοδαπῶς, καθάπερ δέδεικται.
[*](2. ὡς τό] ἕως τοῦ m. Λ] om. M lac. rel. 3. Ν] E Μ. ὡς] ἕως V M v m. τὸ (alt.)] V. v seq. ras.;)Ἐκ τῶν κοίλων ἐνόπτρων πρὸς τὸν ἥλιον τεθέντων πῦρ ἐξάπτεται.
ἔστω κοῖλον ἔνοπτρον τὸ ΑΒΓ, ἥλιος δὲ ὁ ΕΖ, κέντρον δὲ τοῦ κατόπτρου τὸ Θ, καὶ ἀπό τινος σημείου τοῦ ∠ ἐπιζευχθεῖσα μὲν ἐπὶ τὸ Θ κέντρον ἡ ∠Θ ἐκβεβλήσθω ἐπὶ τὸ Β, προσπεπτωκέτω δὲ ἡ ∠Γ ἀκτὶς καὶ ἀνακεκλάσθω ἐπὶ τὸ Κ. ἀνακλασθήσεται δὴ ἐπάνω τοῦ Θ κέντρου· ἡ γὰρ γωνία ἡ πρὸς τῇ περιφερείᾳ ἡ Π ἐλάσσων ἐστὶ τῆς πρὸς τῇ περιφερείᾳ λοιπῆς τῆς ὑπὸ ΒΓ∠. καὶ ἔστω ἡ Α Β περιφέρεια ἴση τῇ ΒΓ, καὶ ἀπὸ τοῦ ∠ ἄλλη τις ἀκτὶς προσπιπτέτω ἡ ∠Α. φανερὸν οὖν, ὅτι ἀνακλωμένη ἡ Α ∠ ἀκτὶς πεσεῖται ἐπὶ τὸ Κ διὰ τὸ ἴσην εἶναι τὴν ΑΒ περιφέρειαν τῇ ΒΓ. ὁμοίως δὲ δειχθήσεται, ὅτι πᾶσαι αἱ ἀπὸ τοῦ ∠ προσπίπτουσαι πρὸς τὸ ἔνοπτρον καὶ ἴσας ἀπολαμβάνουσαι εἰς τὸ αὐτὸ συμπεσοῦνται τῇ Θ ἀνώτερον τοῦ Θ.
ἔστω πάλιν κοῖλον ἔνοπτρον τὸ ΑΒΓ, ἥλιος δὲ ὁ ∠ΕΖ, καὶ ἀπό τινος σημείου τοῦ Ε διὰ τοῦ Θ κέντρου ἔστω ἡ ΕΘΒ, καὶ ἀπʼ ἄλλων [διὰ] τῶν ∠, Ζ αἱ ∠ΘΓ ΖΘΑ. οὐκοῦν προδεδείχαμεν, ὅτι αἱ ἀπὸ τοῦ Ε ἀκτῖνες συμπεσοῦνται εἰς ἑαυτὰς διὰ τὰς Π, Ρ γωνίας ἴσας οὔσας· διάμετροι γάρ εἰσιν· αἰ δὲ ἀπὸ τοῦ Ζ διὰ τὰς [*](1. λ΄] μ΄ V v, λβʹ m. 7. προσπεπτωκέτο v. ∠Γ] ∠ΓΚ V. 8. δή] δέ M. 10. ἐλάττων M. ἐστίν V v.) [*](τῆς (pr.)] τῇ V. τῆς λοιπῆς τῆς V. 13. Α∠] ∠Α m. πεσεῖται] προσπεσεῖται M. 15. ὁμοίως] Μ V. 16. πρός ἀκτῖνες πρός m. ἴσας περιφερείας ἀπολαμβάνουσαι ἑκατέρωθεν τοῦ Β m. 17. αὐτό] om. M lac rel. 19. μα΄ V v.)