Catoptrica (recensio Theonis?)
Euclid
Euclid. Euclidis Opera Omnia, Volume 7. Menge, Heinrich; Heiberg, J.L, editors. Leipzig: Teubner, 1895.
Τὰ ὕψη καὶ τὰ βάθη ἀπὸ τῶν κοίλων ἐνόπτρων, ὅσα μέν ἐστιν ἐντὸς τῆς συμπτώσεως τῶν ὄψεων, ἀνεστραμμένα φαίνεται καθάπερ ἐν τοῖς ἐπιπέδοις καὶ κυρτοῖς ἐνόπτροις, ὅσα δέ ἐστιν ἐκτὸς τῆς συμπτώσεως, καθάπερ ἔστιν, καὶ φαίνεται.
ἔστω κοῖλον ἔνοπτρον τὸ ΑΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι αἱ ΒΑ, ΒΓ, σύμπτωσις δὲ αὐτῶν ἐπὶ τὸ Ζ, ὕψη δὲ τό τε ∠Ε καὶ τὸ ΚΝ, καὶ τὸ μὲν ΚΝ ἐντὸς τῆς τοῦ Ζ συμπτώσεως, τὸ δὲ ∠Ε ἐκτὸς τῆς συμπτώσεως. οὐκοῦν ἐκβληθεισῶν τῶν ὄψεων καθάπερ ἐν τοῖς ἐπιπέδοις καὶ κυρτοῖς ἐνόπτροις φαίνεται τὸ [*](2. δὲ τό] δὲ ἐπίπεδον τό m. ἀνακλασθησῶν v. 7. τό (alt.)] τὸ δέ m. 9. ι΄] ιϚ΄ Vv. 12. ἔστω] ἔστω πλάγιον m.)
πάλιν βάθος μὲν τὸ ∠Ε καὶ ΚΘ, ἔνοπτρον δὲ κοῖλον τὸ ΑΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι καὶ συμπίπτουσαι κατὰ τὸ Ζ. οὐκοῦν ἐκβληθεισῶν τῶν ὄψεων ὁμοίως τὰ μὲν Κ, Θ φαίνεται ἀνεστραμμένα, τὸ μὲν Κ κατὰ τὸ Γ, τὸ δὲ Θ κατὰ τὸ Α, καθάπερ ἐν τοῖς ἐπιπέδοις καὶ κυρτοῖς ἐνόπτροις, τὰ δὲ ∠, Ε, καθάπερ καὶ ἔστιν, τὸ μὲν Ε κάτω κατὰ τὸ Α, τὸ δὲ ∠ ἄνω κατὰ τὸ Γ.
Τὰ πλάγια μήκη ἀπὸ τῶν κοίλων ἐνόπτρων, ὅσα μὲν ἐντὸς τῆς συμπτώσεως κεῖται τῶν ὄψεων, καθάπερ [*](1. τοῦ (utrumque)] τό M. ἀντεστραμμένα M. 3. τοῦ τό M. 4. τοῦ] τό M. ὡς] ὥστε ὡς m, ὡς οὖν M. οὕτως οὕτω m, οὕτω καί M. 5. ιη΄ Vv. πάλιν — 12. Γ] καὶ ἐπὶ τῶν βαθῶν ὁμοίως ἡ αὐτή ἐστιν ἀπόδειξις m. 6. ΑΓ] Α∠ M. 9. Γ] ∠ M. 11. ἔτι M. Α] Η M. 13. ιβ΄] ιθ΄ Vv. 15. κεῖται] θεωρεῖται M. τῶν ὄψεων κεῖται m.)
ἔστω γὰρ μήκη μὲν πλάγια τὰ Ε∠, ΘΚ, κοῖλον δὲ ἔνοπτρον τὸ ΑΓ, ὄμμα δὲ τὸ Β, ὄψεις δὲ ἀνακλώμεναι καὶ συμπίπτουσαι κατὰ Η τὸ αἱ ΒΑ∠, ΒΓΕ, καὶ τὸ μὲν ΘΚ πλάγιον μῆκος ἔστω ἐντὸς τῆς συμπτώσεως τῆς Η, τὸ δὲ ∠Ε ἐκτός. οὐκοῦν τὰ μὲν Θ, Κ κατὰ φύσιν φαίνεται, καθάπερ ἐν τοῖς ἐπιπέδοις καὶ κυρτοῖς ἐνόπτροις, τὰ δὲ Ε, ∠ ἀντεστραμμένα· τὸ μὲν γὰρ ∠ ἐπὶ τοῦ Α φαίνεται, τὸ δὲ Ε ἐπὶ τοῦ Γ.
Δυνατόν ἐστι διὰ πλειόνων ἐνόπτρων ἐπιπέδων ἰδεῖν τὸ αὐτό.
ἔστω, ὃ δεῖ ὀφθῆναι, τὸ Α, ὄμμα δὲ τὸ Β, ἔνοπτρα δὲ τρία τὰ Γ∠, ∠Ε, ΕΖ. ἤχθω δὴ κάθετος ἀπὸ τοῦ Β ἐπὶ τὸ Γ∠ ἔνοπτρον ἡ ΒΓ, ἴση δὲ ἡ ΒΓ τῇ ΓΣ. καὶ πάλιν ἀπὸ τοῦ Α ἐπὶ τὸ ΕΖ κάθετος ἡ ΑΖ, καὶ τῇ ΑΖ ἴση ἡ ΖΘ, καὶ ἀπὸ τοῦ Θ ἐπὶ τὸ ∠Ε ἔνοπτρον κάθετος ἤχθω ἡ ΘΚ, καὶ ἔστω τῇ ΘΚ ἴση ἡ ΚΛ, καὶ ἀπὸ τοῦ Λ ἐπὶ τὸ Σ ἐπεζεύχθω ἡ ΛΜΞΣ, ἀπὸ δὲ τοῦ Μ ἐπὶ τὸ Θ ἡ ΜΡΘ, ἐπεζεύχθωσαν δὲ καὶ αἱ ΑΡ, ΒΞ. ἐπεὶ οὖν ἴση ἐστὶν ἡ ΒΓ τῇ ΓΣ, καὶ ὀρθαὶ αἱ πρὸς τῷ Γ γωνίαι, δύο δὴ αἰ ΒΓ, ΓΦ δυσὶ [*](5. Η] Ν v. ΒΑ∠] ΑΒ, Α∠ M. 7. τά] τό m. 9. τά] φαίνεται γὰρ τὸ μὲν Θ κατὰ τὸ Α, τὸ δὲ Κ κατὰ τὸ Γ, τό m.) [*](ἀντεστραμμένον m. 11. ιγʹ] κ΄ V v. 12. ἐστιν v. 16. ἴση — τῇ] καὶ τῇ ΒΓ ἴση ἔστω ἡ m. 17. ἀπό] ἐπί v. τοῦ] corr. ex τό v. Α] postea ins. m. τό] τήν M. ΕΖ] ΖΕ ἔνοπτρον m. κάθετος ἤχθω m. 18. ἴση ἔστω m. ∠Ε] in ras. m. 19. ἔστω] om. m. ἡ (alt.)| ἔστω ἡ m, τῇ v.) [*](20. ἐπιζεύχθω M. ΛΜΞΣ] ΛΜΣΞ M. 21. τό] τόν M v,)
Ἔστι δὲ καί, διʼ ὅσων ἄν τις ἐπιτάξῃ ἐνόπτρων ἐπιπέδων, ἰδεῖν τὸ αὐτό· δεῖ δὲ κατὰ τὸν ἀριθμὸν τῶν ἐνόπτρων πολύγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον συνίστασθαι δυσὶ πλείους ἔχον πλευρὰς τῶν ἐνόπτρων.
ἔστω γάρ, ὃ μὲν ὀφθῆναι δεῖ, τὸ Α, ὄμμα δὲ τὸ Β, καὶ ἐπεζεύχθω ἡ ΑΒ, καὶ ἀπὸ τῆς ΑΒ ἀναγεγράφθω πολύγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον δύο πλευρὰς, [*](1. ΣΓ, ΓΦ] ΓΣ, ΣΦ M. ΓΦ] ΓΞ m. 2. ΒΓΦ] ΒΓΞ m. ὀρθή ὀρθῇ] ante θ ras. 1 litt V. ΣΓΦ] ΣΓΞ m. 3. ἐστί M m γωνίαι] γωνίαις M 4. ὑποτίνουσιν V. 5. τῷ (pr.)] corr. ex τό m, τό v. τῷ (alt.)] τό v.) [*](6. Ξ] Φ m. Τ (alt.) — ἴση] Τ γωνία τῇ Ν ἴση ἐστί m.) [*](7. ἐστίν Vv. Ξ] Φ m. 9 δέ] om. m. 10. τῷ] τό v. Κ] Κ γωνίαι m. 11 ΒΞΜ] ΒΞ M. 14 Β] e corr m. τριῶν] M. 16. ιδʹ] κα΄ Vv. 17 ἔπτιν V. ἐπιτάξῃ)