Data
Euclid
Euclid. Euclidis Opera Omnia, Volume 6. Menge, Heinrich; Heiberg, J.L, editors. Leipzig: Teubner, 1896.
Ἐὰν τρίγωνον μίαν ἔχῃ γωνίαν δεδομένην, αἱ δὲ περὶ τὴν δεδομένην γωνίαν πλευραὶ συναμφότεραι ὡς μία πρὸς τὴν λοιπὴν λόγον ἔχωσι δεδομένον, δέδοται τὸ τρίγωνον τῷ εἴδει.
ἔστω τρίγωνον τὸ ΑΒΓ μίαν γωνίαν δεδομένην ἔχον τὴν ὑπὸ τῶν ΒΑΓ, περὶ δὲ τὴν ὑπὸ ΒΑΓ γω- νίαν αἰ πλευραί, τουτέστι συναμφότερος ἡ ΒΑΓ ὡς μία πρὸς τὴν ΓΒ λόγον ἐχέτω δεδομένον· λέγω, ὅτι τὸ ΑΒΓ τρίγωνον δέδοται τῷ εἴδει.
τετμήσθω γὰρ ἡ ὑπὸ τῶν ΒΑΓ γωνία δίχα τῇ ΑΔ εὐθείᾳ· δοθεῖσα ἄρα ἐστὶν ἡ ὑπὸ τῶν ΒΑΔ γωνία. καὶ ἐπεί ἐστιν ὡς ἡ ΒΑ πρὸς τὴν ΑΓ, οὕτως ἡ ΒΔ πρὸς τὴν ΔΓ, ἐναλλὰξ ὡς ἡ ΑΒ πρὸς τὴν ΒΔ, οὕτως ἡ ΑΓ πρὸς τὴν ΓΔ· καὶ ὡς συναμφότερος ἄρα ἡ ΒΑΓ πρὸς τὴν ΒΓ, οὕτως ἡ ΑΒ πρὸς τὴν ΒΔ. λόγος δὲ συναμφοτέρου τῆς ΒΑΓ πρὸς τὴν ΒΓ δοθείς· λόγος ἄρα καὶ τῆς ΒΑ πρὸς τὴν ΒΔ δοθείς. καί ἐστι δο- [*](1. ΕB] ΒΕ v. 2. καὶ τῆς ΕΒ ἄρα] τῆς δὲ EΒ v. καί — 3 δοθεὶς] om. b. 5. BΓΕ] τῶν ΑΒΓ γωνία b. 6. τῶν BAΓ b. τῶν ΑBΓ b. 13. τό] corr. ex τῷ m. 2 v. 14. μίαν ἔχον γωνίαν δεδομένην b. 15 τῶν] om. b. ὑπὸ τῶν)
Ἐὰν τρίγωνον μίαν ἔχῃ γωνίαν δεδομένην, περὶ δὲ ἄλλην γωνίαν αἱ πλευραὶ συναμφότεραι ὡς μία πρὸς τὴν λοιπὴν λόγον ἔχωσι δεδομένον, δέδοται τὸ τρίγωνον τῷ εἴδει.
ἔστω τρίγωνον τὸ ΑΒΓ μίαν ἔχον γωνίαν δεδο- μένην τὴν ὑπὸ τῶν ΑΒΓ, περὶ δὲ ἄλλην γωνίαν τὴν ὑπὸ τῶν ΒΑΓ αἱ πλευραί, τουτέστι συναμφότερος ἡ ΒΑΓ πρὸς τὴν ΒΓ λόγον ἐχέτω δεδομένον· λέγω, ὅτι τὸ ΑΒΓ τρίγωνον δέδοται τῷ εἴδει.
τετμήσθω γὰρ ἡ ὑπὸ τῶν ΒΑΓ γωνία δίχα τῇ ΑΔ εὐθείᾳ· ἔστιν ἄρα ὡς συναμφότερος ἡ ΒΑΓ πρὸς τὴν ΓΒ, ἡ ΑΒ πρὸς τὴν ΒΔ. λόγος δὲ τοῦ συναμφοτέρου τῆς ΒΑΓ πρὸς τὴν ΓΒ δοθείς· λόγος ἄρα καὶ τῆς ΑΒ πρὸς τὴν ΒΔ δοθείς. καί ἐστι δοθεῖσα ἡ ὑπὸ τῶν ΑΒΔ γωνία· δέδοται ἄρα τὸ ΑΒΔ τρίγωνον τῷ εἴδει· δοθεῖσα ἄρα ἐστὶν ἡ ὑπὸ τῶν ΒΑΔ γωνία. καί ἐστιν αὐτῆς διπλασίων ἡ ὑπὸ ΒΑΓ· δοθεῖσα ἄρα ἐστὶ καὶ ἡ ὑπὸ τῶν ΒΑΓ. ἔστι δὲ καὶ ἡ ὑπὸ τῶν ΑΒΓ δοθεῖσα· καὶ λοιπὴ ἄρα ἡ ὑπὸ τῶν ΑΓΒ δοθεῖσά ἐστιν· δέδοται ἄρα τὸ ΑΒΓ τρίγωνον τῷ εἴδει.
[*](3. ΒΑΓ] ΑΒ, ΑΓ b. 4. ΑΓΒ] ΑΓΔ b. 5 Seq. de- monstr. altera, u. app 6. μςʹ] om. b (non β) 8. συν- αμφότεραι] om b. 11. ἔχων b. 13. τουτέστιν codd. 14. ΒΑΓ] BΑΓ ὡς μία b. ΒΓ] ΓΒ b. 18. ἡ] οὕτως ἡ b.)Τὰ δεδομένα εὐθύγραμμα τῷ εἴδει εἰς δεδομένα τρίγωνα διαιρεῖται τῷ εἴδει.
ἔστω δεδομένον εὐθύγραμμον τῷ εἴδει τὸ ΑΒΓΔΕ· λέγω, ὅτι τὸ ΑΒΓΔΕ εὐθύγραμμον εἰς δεδομένα τρί- γωνα διαιρεῖται τῷ εἴδει.
ἐπεζεύχθωσαν γὰρ αἱ ΒΕ, ΕΓ. ἐπεὶ δέδοται τὸ ΑΒΓΔΕ εὐθύγραμμον τῷ εἴδει, δοθεῖσα ἄρα ἐστὶν ἡ ὑπὸ τῶν ΒΑΕ γωνία. καί ἐστι λόγος τῆς ΒΑ πρὸς τὴν ΕΑ δοθείς. ἐπεὶ οὖν δοθεῖσά ἐστιν ἡ ὑπὸ τῶν ΒΑΕ γωνία καί ἐστι λόγος τῆς ΒΑ πρὸς τὴν ΕΑ δοθείς, δέδοται ἄρα τὸ ΒΑΕ τρίγωνον τῷ εἴδει· δο- θεῖσα ἄρα ἐστὶν ἡ ὑπὸ τῶν ΑΒΕ γωνία. ἔστι δὲ καὶ ὅλη ἡ ὑπὸ τῶν ΑΒΓ γωνία δοθεῖσα· καὶ λοιπὴ ἄρα ἡ ὑπὸ τῶν ΕΒΓ δοθεῖσά ἐστιν. καί ἐστι λόγος τῆς ΑΒ πρὸς τὴν ΒΕ δοθείς, τῆς δὲ ΑΒ πρὸς τὴν ΒΓ λόγος ἐστὶ δοθείς· καὶ τῆς ΕΒ ἄρα πρὸς τὴν ΒΓ λόγος ἐστὶ δοθείς. καί ἐστι δοθεῖσα ἡ ὑπὸ τῶν ΓΒΕ γωνία· δέδοται ἄρα τὸ ΒΓΕ τρίγωνον τῷ εἴδει. διὰ τὰ αὐτὰ δὴ καὶ τὸ ΓΔΕ τρίγωνον τῷ εἴδει δέδοται· τὰ ἄρα δεδομένα εὐθύγραμμα τῷ εἴδει εἰς δεδομένα τρίγωνα διαιρεῖται τῷ εἴδει.
Ἐὰν ἀπὸ τῆς αὐτῆς εὐθείας δύο τρίγωνα ἀναγραφῇ δεδομένα τῷ εἴδει, λόγον ἕξει πρὸς ἄλληλα δεδομένον.
ἀπὸ γὰρ τῆς αὐτῆς εὐθείας τῆς ΑΒ δύο τρίγωνα [*](2. εἰς δεδομένα τῷ εἴδει τρίγωνα διαιρεῖται b, item lin. 5. 7. ΒE] ΑΒE b. 10. EΑ ] ΑΕ b, item lin. 11. ἐπεί — 12. δοθείς] nescio an interpolata sint. 13. ἔστιν v. 15. τῶν] om. b. ἐστιν] ἐστι v. 17. ΕΒ] ΓΒ b. τήν] om b.)
ἤχθωσαν ἀπὸ τῶν Α, Β σημείων τῇ ΑΒ εὐθείᾳ πρὸς ὀρθὰς αἱ AΕ, ΗΒ καὶ ἐκβεβλήσθωσαν ἐπὶ τὰ Ζ,Θ. καὶ διὰ τῶν Γ Δ σημείων τῇ ΑΒ εὐθείᾳ παράλληλοι ῆχθωσαν αἱ ΕΓΗ, ΖΔΘ. ἐπεὶ δέδοται τὸ ΑΒΓ τρί- γωνον τῷ εἴδει, λόγος ἐστὶ τῆς ΓΑ πρὸς τὴν ΒΑ δο- θείς. ἐπεὶ οὖν δοθεῖσά ἐστιν ἡ ὑπὸ τῶν ΓΑΒ γωνία, ἔστι δὲ καὶ ἡ ὑπὸ τῶν ΕΑΒ δοθεῖσα, καὶ λοιπὴ ἄρα ἡ ὑπὸ τῶν ΕΑΓ ἐστι δοθεῖσα. ἔστι δὲ καὶ ἡ ὑπὸ τῶν ΑΕΓ γωνία δοθεῖσα· καὶ λοιπὴ ἄρα ἡ ὑπὸ τῶν ΕΓΑ δοθεῖσά ἐστιν· δέδοται ἄρα τὸ ΑΕΓ τρίγωνον τῷ εἴδει· λόγος ἄρα τῆς ΕΑ πρὸς τὴν ΑΓ δοθείς. τῆς δὲ ΓΑ πρὸς τὴν ΑΒ λόγος ἐστὶ δοθείς· καὶ τῆς ΕΑ ἄρα πρὸς τὴν ΑΒ λόγος ἐστὶ δοθείς. διὰ τὰ αὐτὰ δὴ καὶ τῆς ΖΑ πρὸς τὴν ΑΒ λόγος ἐστὶ δοθείς· ὥστε καὶ τῆς ΕΑ πρὸς τὴν ΑΖ λόγος ἐστὶ δοθείς. καί ἐστιν ὡς ἡ ΑΕ πρὸς τὴν ΑΖ, οὕτως τὸ ΑΗ πρὸς τὸ ΘΑ· ὥστε καὶ τοῦ ΑΗ πρὸς τὸ ΑΘ λόγος ἐστὶ δοθείς. καί ἐστι τοῦ μὲν ΑΗ ἥμισυ τὸ ΑΒΓ, τοῦ δὲ ΑΘ ἥμισυ τὸ ΑΔΒ· καὶ τοῦ ΑΒΓ ἄρα πρὸς τὸ ΑΔΒ λόγος ἐστὶ δοθείς.
Ἐὰν ἀπὸ τῆς αὐτῆς εὐθείας δύο εὐθύγραμμα, ἃ ἔτυχεν, ἀναγραφῇ δεδομένα τῷ εἴδει, λόγον ἕξει πρὸς ἄλληλα δεδομένον.
[*](1. ΑΔΒ] ΑΒΔ Vat. b. 2. ΑΓΒ] ΑΒΓ vb. ΑΔΒ] ΑBΔ vb. 6. εὐθεῖαι αἱ b. 7. Post εἴδει hab. δοθεῖσά ἐστι ἡ ὁπὸ Β γωνία b. 9. καί( alt.)] om. Vat. 10 ΕΑΓ] ΑΓΕ γωνία b. ἐστι δοθεῖσα] δοθεῖσά ἐστι b. ἔστι] ἔστιν v. 11. τῶν (pr.)] om. b. γωνία] om. b. 12. ἐστι codd. 13. ΕΑ] ΑE v. ΑΓ] ΓΑ b. 15. EΑ] ΑE b. ἄρα] om. b.)ἀπὸ γὰρ τῆς αὐτῆς εὐθείας τῆς ΑΒ δύο εὐθύ- γραμμα, ἅ ἔτυχεν, δεδομένα τῷ εἴδει ἀναγεγράφθω τὰ ΑΕΓΖΒ, ΑΔΒ· λέγω, ὅτι λόγος ἐστὶ τοῦ ΑΕΓΖΒ πρὸς ΑΔΒ δοθείς.
ἐπεζεύχθωσαν γὰρ αἱ ΑΖ, ΖE· δέδοται ἄρα ἕκα- στον τῶν ΕΓΖ, ΕΖΑ, ΖΑΒ τριγώνων τῷ εἴδει. καὶ ἐπεὶ ἀπὸ τῆς αὐτῆς εὐθείας τῆς ΕΖ δύο τρίγωνα δεδο- μένα τῷ εἴδει ἀναγέγραπται τὰ ΕΖΓ, EΖΑ, λόγος ἄρα ἐστὶ τοῦ ΓΕΖ πρὸς τὸ ΖΕΑ δοθείς· καὶ συν- θέντι ἄρα λόγος ἐστὶ τοῦ ΓΕΑΖ πρὸς τὸ ΖEΑ δο- θείς. τοῦ δὲ ΖΕΑ πρὸς τὸ ΖΑΒ λόγος ἐστὶ δοθείς, ἐπειδήπερ ἀπὸ τῆς αὐτῆς εὐθείας τῆς ΑΖ ἀναγέγραπται· καὶ τοῦ ΓEΑΖ ἄρα πρὸς τὸ ΖΑΒ λόγος ἐστὶ δοθείς· καὶ συνθέντι τοῦ ΓΕΒΖΑ πρὸς τὸ ΖΒΑ λόγος ἐστὶ δοθείς. τοῦ δὲ ΖΑΒ πρὸς τὸ ΑΔΒ λόγος ἐστὶ δο- θείς· καὶ τοῦ ΓEΑΒΖ ἄρα πρὸς τὸ ΑΔΒ λόγος ἐστὶ δοθείς.