Quadratura parabolae
Archimedes
Archimedes. Archimède, Volume 2. Mugler, Charles, editor. Paris: Les Belles Lettres, 1971.
Ἀρχιμήδης Δοσιθέῳ εὖ πράττειν.
Ἀκούσας Κόνωνα μὲν τετελευτηκέναι, ὃς ἧν οὐδὲν ἐπιλείπων ἁμῖν ἐν φιλίᾳ, τὶν δὲ Κόνωνος γνώριμον γεγενῆσθαι καὶ γεωμετρίας οἰκεῖον εἶμεν τοῦ μὲν τετελευτηκότος εἵνεκεν ἐλυπήθημες ὡς καὶ φίλου τοῦ ἀνδρὸς γεναμένου καὶ ἐν τοῖς μαθημάτεσσι θαυμαστοῦ τινος, ἐπροχειριξάμεθα δὲ ἀποστεῖλαί τοι γράψαντες, ὡς Κόνωνι γράφειν ἐγνωκότες ἧμες, γεωμετρικῶν θεωρημάτων, ὃ πρότερον μὲν οὐκ ἦν τεθεωρημένον, νῦν δὲ ὑφʼ ἁμῶν τεθεώρηται, πρότερον μὲν διὰ μηχανικῶν εὑρεθέν, ἔπειτα δὲ καὶ διὰ τῶν γεωμετρικῶν ἐπιδειχθέν, Τῶν μὲν οὖν πρότερον περὶ γεωμετρίαν πραγματευθέντων ἐπεχείρησάν τινες γράφειν ὡς δυνατὸν ἐὸν κύκλῳ τῷ δοθέντι καὶ κύκλου τμάματι τῷ δοθέντι χωρίον εὑρεῖν εὐθύγραμμον ἴσον, καὶ μετὰ ταῦτα τὸ περιεχόμενον χωρίον ὑπό τε τᾶς ὅλου τοῦ κώνου τομᾶς καὶ εὐθείας τετραγωνίζειν ἐπειρῶντο λαμβάνοντες οὐκ εὐπαραχώρητα λήμματα, διόπερ αὐτοῖς ὑπὸ τῶν πλείστων οὐχ εὑρισκόμενα ταῦτα κατεγνώσθεν, Τὸ δὲ ὑπʼ εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς τμᾶμα
Εἴ κα ᾖ ὀρθογωνίου κώνου τομά, ἐφʼ ἆς ἁ ΑΒΓ, ἁ δὲ Β△ παρὰ τὰν διάμετρον ἢ αὐτὰ διάμετρος, ἁ δὲ ΑΓ παρὰ τὰν κατὰ τὸ Β ἐπιψαύουσαν τᾶς τοῦ κώνου τομᾶς, ἴσα ἐσσεῖται ἁ Α△ τᾷ △Γ· κἂν ἴσα ᾖ ἁ Α△ τᾷ △Γ, παράλληλοι ἐσσοῦνται ἅ τε ΑΓ καὶ ἁ κατὰ τὸ Β ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς.
Εἴ κα ᾖ ὀρθογωνίου κώνου τομὰ ἁ ΑΒΓ, ᾖ δὲ ἁ μὲν Β△ παρὰ τὰν διάμετρον ἢ αὐτὰ διάμετρος, ἁ δὲ Α△Γ
Εἴ κα ᾖ ὀρθογωνίου κώνου τομὰ ἁ ΑΒΓ, ἁ δὲ Β△ παρὰ τὰν διάμετρον ἢ αὐτὰ διάμετρος, καὶ ἀχθέωντί τινες αἱ Α△, ΕΖ παρὰ τὰν κατὰ τὸ Β ἐπιψαύουσαν τᾶς τοῦ κώνου τομᾶς, ἐσσεῖται, ὡς ἁ Β△ ποτὶ τὰν ΒΖ, δυνάμει ἁ Α△ ποτὶ τὰν ΕΖ.
Ἀποδέδεικται δὲ ταῦτα ἐν τοῖς κωνικοῖς στοιχείοις.
Ἔστω τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς τὸ ΑΒΓ, ἁ δὲ Β△ ἀπὸ μέσας τᾶς ΑΓ παρὰ τὰν διάμετρον ἄχθω ἢ αὐτὰ διάμετρος ἔστω, καὶ ἁ ΒΓ εὐθεῖα ἐπιζευχθεῖσα ἐκβεβλήσθω. Εἰ δή κα ἀχθῇ τις ἄλλα ἁ ΖΘ παρὰ τὰν Β△ τέμνουσα τὰν διὰ τῶν Β, Γ εὐθεῖαν,
Ἄχθω γὰρ διὰ τοῦ Η παρὰ τὰν ΑΓ ἁ ΚΗ· ἔστιν ἄρα ὡς ἁ Β△ ποτὶ τὰν ΒΚ μάκει, οὕτως ἁ △Γ ποτὶ τὰν ΚΗ δυνάμει· ἀποδέδεικται γὰρ τοῦτο. Ἐσσεῖται ἄρα ὡς ἁ ΒΓ ποτὶ τὰν Βl μάκει, οὕτως ἁ ΒΓ ποτὶ τὰν ΒΘ δυνάμει· ἴσαι γὰρ αἱ △Ζ, ΚΗ· ἀνάλογον ἄρα ἐντὶ αἱ ΒΓ, ΒΘ, ΒΙ γραμμαί. Ὥστε τὸν αὐτὸν ἔχει λόγον ἁ ΒΓ ποτὶ τὰν ΒΘ, ὃν ἁ ΓΘ ποτὶ τὰν ΘΙ· ἔστιν ἄρα ὡς ἁ Γ△ ποτὶ τὰν △Ζ, οὕτως ἁ ΘΖ ποτὶ τὰν ΘΗ. Τᾷ δὲ △Γ ἴσα ἐστὶν ἁ △Α· δῆλον οὖν ὅτι τὸν αὐτὸν ἔχει λόγον ἁ △Α ποτὶ τὰν △Ζ, ὃν ἁ ΖΘ ποτὶ τὰν ΘΗ.