Quadratura parabolae
Archimedes
Archimedes. Archimède, Volume 2. Mugler, Charles, editor. Paris: Les Belles Lettres, 1971.
Ἔστω πάλιν τὸ ΒΘΓ τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, ἁ δὲ ΒΓ μὴ ἔστω ποτʼ ὀρθὰς τᾷ διαμέτρῳ ἀναγκαῖον δὴ ἤτοι τὰν ἀπὸ τοῦ Β σαμείου παρὰ τὰν διάμετρον ἀγμέναν ἐπὶ τὰ αὐτὰ τῷ τμάματι ἢ τὰν ἀπὸ τοῦ Γ ἀμβλεῖαν ποιεῖν γωνίαν ποτὶ τὰν ΒΓ, Ἔστω ἁ τὰν ἀμβλεῖαν ποιοῦσα ἁ ποτὶ τῷ Β, καὶ ἄχθω παρὰ τὰν διάμετρον ἀπὸ τοῦ Β ἁ Β△, καὶ ἀπὸ τοῦ Γ ἁ Γ△ ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς κατὰ τὸ Γ, καὶ διῃρήσθω ἁ ΒΓ εἰς τμάματα ἴσα ὁποσαοῦν τὰ ΒΕ, ΕΖ, ΖΗ, ΗΙ, ΙΓ, ἀπὸ δὲ τῶν Ε, Ζ, Η, Ι παρὰ τὰν διάμετρον ἄχθωσαν αἱ ΕΣ, ΖΤ, ΗΥ, ΙΞ, καὶ ἀπὸ τῶν σαμείων, καθʼ ἃ τέμνοντι αὗται τὰν τοῦ κώνου τομάν, ἐπεζεύχθωσαν ἐπὶ τὸ Γ καὶ ἐκβεβλήσθωσαν. Φαμὶ δὴ καὶ νῦν τὸ Β△Γ τρίγωνον τῶν μὲν τραπεζίων τῶν ΒΦ, ΛΖ, ΜΗ, ΝΙ καὶ τοῦ ΓΙΞ τριγώνου ἔλασσον εἶμεν ἢ τριπλάσιον, τῶν δὲ ΖΦ, ΗΘ, ΙΠ καὶ τοῦ ΓΟΙ τριγώνου μεῖζον ἢ τριπλάσιον. Ἐκβεβλήσθω ἁ △Β ἐπὶ θάτερα. Ἀγαγὼν οὖν κάθετον τὰν ΓΚ τᾷ ΓΚ ἴσαν ἀπέλαβον τὰν ΑΚ. Νοείσθω δὴ πάλιν ζύγιον τὸ ΑΓ, μέσον δὲ αὐτοῦ τὸ Κ, καὶ κρεμάσθω ἐκ τοῦ Κ, κρεμάσθω δὲ καὶ τὸ ΓΚ△ τρίγωνον ἐκ τοῦ ἡμίσεος τοῦ ζυγοῦ κατὰ τὰ Γ, Κ ἔχον ὡς νῦν κεῖται, καὶ ἐκ τοῦ θατέρου μέρεος τοῦ ζυγοῦ κρεμάσθωσαν κατὰ τὸ Α τὰ Ρ,
Ἔστω πάλιν τμᾶμα τὸ ΒΘΓ περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, καὶ ἄχθω διὰ μὲν τοῦ Β
Εἰ γὰρ μή ἐστιν ἴσον, ἤτοι μεῖζόν ἐστιν ἢ ἔλασσον. Ἔστω δὴ πρότερον, εἰ δυνατόν, μεῖζον· ἁ δὴ ὑπεροχά, ᾇ ὑπερέχει τὸ ΒΘΓ τμᾶμα τοῦ Ζ χωρίου, συντιθεμένα αὐτὰ ἑαυτᾷ ἐσσεῖται μείζων τοῦ ΒΓ△ τριγώνου. Δυνατὸν δὲ ἐστι λαβεῖν τι χωρίον ἔλασσον τᾶς ὑπεροχᾶς, ὃ ἐσσεῖται μέρος τοῦ Β△Γ τριγώνου. Ἔστω δὴ τὸ ΒΓΕ τρίγωνον ἔλασσόν τε τᾶς εἰρημένας ὑπεροχᾶς καὶ μέρος τοῦ Β△Γ τριγώνου ἐσσεῖται δὲ τὸ αὐτὸ ἁ ΒΕ μέρος τᾶς Β△. Διῃρήσθω οὖν ἁ Β△ ἐς τὰ μέρεα, καὶ ἔστω τὰ τῶν διαιρέσιων σαμεῖα τὰ Η, Ι, Κ, καὶ ἀπὸ τῶν Η, Ι, Κ σαμείων
Λέγω δὴ ὅτι οὐδὲ ἔλασσον. Ἔστω γάρ, εἰ δυνατόν, ἔλασσον. Πάλιν ἄρα ἁ ὑπεροχά, ᾇ ὑπερέχει τὸ Ζ χωρίον τοῦ ΒΘΓ τμάματος, αὐτὰ ἑαυτᾷ συντιθεμένα ὑπερέχει καὶ τοῦ Β△Γ τριγώνου. Δυνατὸν δὲ ἐστι λαβεῖν χωρίον ἔλασσον τᾶς ὑπεροχᾶς, ὃ ἐσσεῖται μέρος τοῦ Β△Γ τριγώνου. Ἔστω οὖν τὸ ΒΓΕ τρίγωνον ἔλασσον τᾶς ὑπεροχᾶς καὶ μέρος τοῦ Β△Γ τριγώνου, καὶ τὰ ἄλλα τὰ αὐτὰ κατεσκευάσθω. Ἐπεὶ οὖν ἐστι τὸ ΒΓΕ τρίγωνον ἔλασσον τᾶς
Τούτου δεδειγμένου φανερὸν ὅτι πᾶν τμᾶμα περιεχόμενον ὑπὸ εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς ἐπίτριτόν ἐστι τοῦ τριγώνου τοῦ ἔχοντος βάσιν τὰν αὐτὰν τῷ τμάματι καὶ ὕψος ἴσον.
Ἔστω γὰρ τμᾶμα περιεχόμενον ὑπὸ εὐθείας τε καὶ ὀρθογωνίου κώνου τομᾶς, κορυφὰ δὲ αὐτοῦ ἔστω τὸ Θ σαμεῖον, καὶ ἐγγεγράφθω εἰς αὐτὸ τρίγωνον τὸ ΒΘΓ τὰν αὐτὰν βάσιν ἔχον τῷ τμάματι καὶ ὕψος ἴσον. Ἐπεὶ οὖν τὸ Θ σαμεῖον κορυφά ἐστι τοῦ τμάματος, ἁ ἀπὸ τοῦ Θ εὐθεῖα παρὰ τὰν διάμετρον ἀχθεῖσα δίχα τέμνει τὰν ΒΓ, καὶ ἁ ΒΓ ἐστὶ παρὰ τὰν ἐπιψαύουσαν τᾶς τομᾶς κατὰ τὸ Θ. Ἄχθω δὲ ἁ ΕΘ παρὰ τὰν διάμετρον, ἄχθω
Τῶν τμαμάτων τῶν περιεχομένων ὑπό τε εὐθείας καὶ καμπύλας γραμμᾶς βάσιν μὲν καλέω τὰν εὐθεῖαν, ὕψος δὲ τὰν μεγίσταν κάθετον ἀπὸ τᾶς καμπύλας γραμμᾶς ἀγομέναν ἐπὶ τὰν βάσιν τοῦ τμάματος, κορυφὰν δὲ τὸ σαμεῖον, ἀφʼ οὗ ἁ μεγίστα κάθετος ἄγεται.
Εἴ κα ἐν τμάματι, ὃ περιέχεται ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, ἀπὸ μέσας τᾶς βάσιος ἀχθῇ εὐθεῖα
Ἔστω γὰρ τμᾶμα τὸ ΑΒΓ περιεχόμενον ὑπό τε εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, καὶ ἀπὸ μέσας τᾶς ΑΓ ἄχθω ἁ △Β παρὰ τὰν διάμετρον. Ἐπεὶ οὖν ἐν ὀρθογωνίου κώνου τομᾷ ἁ Β△ ἆκται παρὰ τὰν διάμετρον, καὶ ἴσαι ἐντὶ αἱ Α△, △Γ, δῆλον ὡς παράλληλοί ἐντι ἅ τε ΑΓ καὶ ἁ κατὰ τὸ Β ἐπιψαύουσα τᾶς τοῦ κώνου τομᾶς, Φανερὸν οὖν ὅτι τᾶν ἀπὸ τᾶς τομᾶς ἐπὶ τὰν ΑΓ ἀγομενᾶν καθέτων μεγίστα ἐσσεῖται ἁ ἀπὸ τοῦ Β ἀγομένα κορυφὰ οὖν ἐστιν τοῦ τμάματος τὸ Β σαμεῖον.
Ἐν τμάματι περιεχομένῳ ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς ἁ ἀπὸ μέσας τᾶς βάσιος ἀχθεῖσα τᾶς ἀπὸ μέσας τᾶς ἡμισείας ἀγομένας ἐπίτριτος ἐσσεῖται μάκει.
Ἔστω γὰρ τὸ ΑΒΓ τμᾶμα περιεχόμενον ὑπὸ εὐθείας καὶ ὀρθογωνίου κώνου τομᾶς, καὶ ἄχθω παρὰ τὰν διάμετρον ἁ μὲν Β△ ἀπὸ μέσας τᾶς ΑΓ, ἁ δὲ ΕΖ ἀπὸ μέσας τᾶς Α△, ἄχθω δὲ καὶ ἁ ΖΘ παρὰ ΑΓ. Ἐπεὶ οὖν ἐν ὀρθογωνίου κώνου τομᾷ ἁ Β△ παρὰ τὰν διάμετρον ἆκται, καὶ αἱ Α△, ΖΘ παρὰ τὰν κατὰ τὸ Β ἐπιψαύουσάν ἐντι, δῆλον ὡς τὸν αὐτὸν ἔχει λόγον ἁ Β△ ποτὶ τὰν ΒΘ μάκει, ὃν ἁ Α△ ποτὶ τὰν ΖΘ δυνάμει· τετραπλασία ἄρα ἐστὶν καὶ ἁ Β△ τᾶς ΒΘ μάκει. Φανερὸν οὖν ὅτι ἐπίτριτός ἐστιν ἁ Β△ τᾶς ΕΖ μάκει.