De lineis spiralibus

Archimedes

Archimedes. Archimède, Volume 2. Mugler, Charles, editor. Paris: Les Belles Lettres, 1971.

Κύκλου δοθέντος καὶ ἐν τῷ κύκλῳ γραμμᾶς ἐλάσσονος τᾶς διαμέτρου δυνατὸν ἀπὸ τοῦ κέντρου τοῦ κύκλου ποτὶ τὰν περιφέρειαν αὐτοῦ ποτιβαλεῖν εὐθεῖαν τέμνουσαν τὰν ἐν τῷ κύκλῳ δεδομέναν γραμμάν, ὥστε τὰν ἀπολαφθεῖσαν εὐθεῖαν μεταξὺ τᾶς περιφερείας καὶ τᾶς εὐθείας τᾶς ἐν τῷ κύκλῳ δεδομένας ποτὶ τὰν ἐπιζευχθεῖσαν ἀπὸ τοῦ πέρατος τᾶς ποτιπεσούσας τοῦ ἐπὶ τᾶς περιφερείας ποτὶ τὸ ἕτερον πέρας τᾶς ἐν τῷ κύκλῳ δεδομένας εὐθείας τὸν ταχθέντα λόγον ἔχειν, εἴ κα ὁ δοθεὶς λόγος ἐλάσσων ᾗ τοῦ ὃν ἔχει ἁ ἡμίσεια τᾶς ἐν τῷ κύκλῳ δεδομένας ποτὶ τὰν ἀπὸ τοῦ κέντρου κάθετον ἐπʼ αὐτὰν ἀγμέναν.

19

Δεδόσθω κύκλος ὁ ΑΒΓ, κέντρον δὲ αὐτοῦ τὸ Κ, καὶ ἐν αὐτῷ δεδόσθω εὐθεῖα ἐλάσσων τᾶς διαμέτρου ἁ ΓΑ, καὶ λόγος, ὃν ἔχει ἁ Ζ ποτὶ Η, ἐλάσσων τοῦ ὃν ἔχει ἁ ΓΘ ποτὶ τὰν ΚΘ, καθέτου ἐούσας τᾶς ΚΘ · ἀχθω δὲ ἀπὸ τοῦ κέντρου παρὰ τὰν ΑΓ ἁ ΚΝ καὶ τᾷ ΚΓ πρὸς ὀρθὰς ἁ ΓΛ · ὁμοῖα δή ἐστι τὰ ΓΘΚ, ΓΚΛ τρίγωνα. Ἔστιν οὖν ὡς ἁ ΓΘ ποτὶ τὰν ΘΚ οὕτως ἁ ΚΓ ποτὶ τὰν ΓΑ ἐλάσσονα ἄρα λόγον ἔχει ἁ Ζ ποτὶ τὰν Η ἢ ἁ ΚΓ ποτὶ τὰν ΓΛ. Ὃν δὴ λόγον ἔχει ἁ Ζ ποτὶ τὰν Η, τοῦτον ἐχέτω ἁ ΚΓ ποτὶ μείζονα τᾶς ΓΛ. Ἐχέτω ποτὶ τὰν ΒΝ, κείσθω δὲ ἁ ΒΝ μεταξὺ τᾶς περιφερείας καὶ τᾶς εὐθείας διὰ τοῦ Γ · δυνατὸν δὲ ἐστιν οὕτως τέμνειν καὶ πεσεῖται ἐκτός, ἐπεὶ μείζων ἐστὶν τᾶς ΓΛ. Ἐπεὶ οὖν ἁ ΚΒ ποτὶ ΒΝ τὸν αὐτὸν ἔχει λόγον ὃν ἁ Ζ ποτὶ Η, καὶ ἁ ΕΒ ποτὶ ΒΓ τὸν αὐτὸν ἕξει λόγον ὃν ἁ Ζ ποτὶ Η.

Τῶν αὐτῶν δεδομένων καὶ τᾶς ἐν τῷ κύκλῳ εὐθείας ἐκβεβλημένας δυνατόν ἐστιν ἀπὸ τοῦ κέντρου ποτιβαλεῖν ποτὶ τὰν ἐκβεβλημέναν, ὥστε τὰν μεταξὺ τᾶς περιφερείας καὶ τᾶς ἐκβεβλημένας ποτὶ τὰν ἐπιζευχθεῖσαν ἀπὸ τοῦ πέρατος τᾶς ἐναπολαφθείσας ποτὶ τὸ πέρας τᾶς ἐκβεβλημένας τὸν ταχθέντα λόγον ἔχειν, εἴ κα ὁ δοθεὶς λόγος μείζων ᾖ τοῦ ὃν ἔχει ἁ ἡμίσεια τᾶς ἐν τῷ κύκλῳ δεδομένας ποτὶ τὰν ἀπὸ τοῦ κέντρου κάθετον ἐπʼ αὐτὰν ἀγμέναν.

20

Δεδόσθω τὰ αὐτά, καὶ ἔστω ἁ ἐν τῷ κύκλῳ γραμμὰ ἐκβεβλημένα, ὁ δὲ δοθεὶς λόγος ἔστω, ὃν ἔχει ἁ Ζ ποτὶ τὰν Η, μείζων τοῦ ὃν ἔχει ἁ ΓΘ ποτὶ τὰν ΘΚ · μείζων οὖν ἐσσεῖται καὶ τοῦ ὃν ἔχει ἁ ΚΓ ποτὶ ΓΛ. Ὃν δὴ λόγον ἔχει ἁ Ζ ποτὶ Η, τοῦτον ἕξει ἁ ΚΓ ποτὶ ἐλάσσονα τᾶς ΓΛ. Ἐχέτω ποτὶ ΙΝ νεύουσαν ἐπὶ τὸ Γ · δυνατὸν δέ ἐστιν οὕτως τέμνειν καὶ πεσεῖται ἐντὸς τᾶς ΓΛ, ἐπειδὴ ἐλάσσων ἐστὶ τᾶς ΓΛ. Ἐπεὶ οὖν τὸν αὐτὸν ἔχει λόγον ἁ ΚΓ ποτὶ ΙΝ ὃν ἁ Ζ ποτὶ Η, καὶ ἁ ΕΙ ποτὶ ΙΓ τὸν αὐτὸν ἕξει λόγον ὃν ἁ Ζ ποτὶ τὰν Η.