De lineis spiralibus

Archimedes

Archimedes. Archimède, Volume 2. Mugler, Charles, editor. Paris: Les Belles Lettres, 1971.

Εἴ κα δύο σαμείων ἑκατέρου κατά τινος γραμμᾶς ἐνεχθέντος μὴ τᾶς αὐτᾶς ἰσοταχέως αὐτοῦ ἑαυτῷ φερομένου λαφθέωντι ἐν ἑκατέρᾳ τᾶν γραμμᾶν δύο γραμμαί, ἆν αἵ τε πρῶται ἐν ἴσοις χρόνοις ὑπὸ τῶν σαμείων διανυέσθων καὶ αἱ δεύτεραι, τὸν αὐτὸν ἑξοῦντι λόγον ποτʼ ἀλλάλας αἱ λαφθεῖσαι γραμμαί.

Ἔστω κατὰ τᾶς ΑΒ γραμμᾶς ἐνηνεγμένον τι σαμεῖον ἰσοταχέως αὐτὸ ἑαυτῷ καὶ ἄλλο κατὰ τᾶς ΚΛ, λελάφθωσαν δὲ ἐν τᾷ ΑΒ δύο αἱ Γ△, △Ε γραμμαί, καὶ ἐν τᾷ ΚΛ αἱ ΖΗ. ΗΘ, ἐν ἴσῳ δὲ χρόνῳ τὸ κατὰ τᾶς ΑΒ γραμμᾶς ἐνηνεγμένον σαμεῖον τὰν Γ△ γραμμὰν διαπορευέσθω, ἐν ὅσῳ τὸ ἕτερον κατὰ τᾶς ΚΛ ἐνηνεγμένον τὰν ΖΗ, ὁμοίως δὲ καὶ τὰν △Ε γραμμὰν ἐν ἴσῳ διαπορευέσθω τὸ σαμεῖον, ἐν ὅσῳ τὸ ἕτερον τὰν ΗΘ. Δεικτέον ὅτι τὸν αὐτὸν ἔχει λόγον ἁ Γ△ ποτὶ τὰν △Ε, ὃν ἁ ΖΗ ποτὶ τὰν ΗΘ.

Ἔστω δὴ ὁ χρόνος, ἐν ᾧ τὰν Γ△ γραμμὰν διεπορεύετο τὸ σαμεῖον, ὁ ΜΝ· ἐν τούτῳ δὴ τῷ χρόνῳ καὶ τὸ ἕτερον σαμεῖον διαπορεύεται τὰν ΖΗ. Πάλιν δὴ καὶ ἐν ᾧ τὰν

16
△Ε γραμμὰν διεπορεύετο τὸ σαμεῖον, ἔστω ὁ ΝΞ χρόνος ἐν τούτῳ δὴ καὶ τὸ ἕτερον σαμεῖον διαπορεύεται τὰν ΗΘ · τὸν αὐτὸν δὴ λόγον ἑξοῦντι ἅ τε Γ△ ποτὶ τὰν △Ε γραμμάν, ὃν ὁ χρόνος ὁ ΜΝ ποτὶ ΝΞ, καὶ ἁ ΖΗ ποτὶ τὰν ΗΘ, ὃν ὁ χρόνος ὁ ΜΝ ποτὶ τὸν ΝΞ. Δῆλον οὖν ὅτι τὸν αὐτὸν ἔχοντι λόγον ἁ Γ△ ποτὶ τὰν △Ε, ὃν ἁ ΖΗ ποτὶ τὰν ΗΘ.

Κύκλων δοθέντων ὁποσωνοῦν τῷ πλήθει δυνατόν ἐστιν εὐθεῖαν λαβεῖν μείζονα ἐοῦσαν τᾶν τῶν κύκλων περιφερειᾶν.

Περιγραφέντος γὰρ περὶ ἕκαστον τῶν κύκλων πολυγώνου δῆλον ὡς ἁ ἐκ πασᾶν συγκειμένα τᾶν περιμέτρων εὐθεῖα μείζων ἐσσεῖται πασᾶν τᾶν τῶν κύκλων περιφερειᾶν.

Δύο γραμμᾶν δοθεισᾶν ἀνισᾶν, εὐθείας τε καὶ κύκλου περιφερείας, δυνατόν ἐστι λαβεῖν εὐθεῖαν τᾶς μὲν μείζονος τᾶν δοθεισᾶν γραμμᾶν ἐλάσσονα, τᾶς δὲ ἐλάσσονος μείζονα.

Ὁσάκις γὰρ ἁ ὑπεροχά, ᾇ ὑπερέχει ἁ μείζων γραμμὰ τᾶς ἐλάσσονος, αὐτὰ ἑαυτᾷ συντιθεμένα ὑπερέξει τᾶς εὐθείας, εἰς τοσαῦτα ἴσα διαιρεθείσας τᾶς εὐθείας τὸ ἓν τμᾶμα ἔλασσον ἐσσεῖται τᾶς ὑπεροχᾶς. Εἰ μὲν οὖν κα ᾖ ἁ περιφέρεια μείζων τᾶς εὐθείας, ἑνὸς τμάματος ποτιτεθέντος ποτὶ τὰν εὐθεῖαν τᾶς μὲν ἐλάσσονος τᾶν δοθεισᾶν δῆλον ὡς μείζων ἐσσεῖται, τᾶς δὲ μείζονος

17
ἐλάσσων · εἰ δέ κα ἐλάσσων, ἑνὸς τμάματος ποτιτεθέντος ποτὶ τὰν περιφέρειαν ὁμοίως τᾶς μὲν ἐλάσσονος μείζων ἐσσεῖται, τᾶς δὲ μείζονος ἐλάσσων καὶ γὰρ ἁ ποτικειμένα ἐλάσσων ἐστὶ τᾶς ὑπεροχᾶς.

Κύκλου δοθέντος καὶ εὐθείας ἐπιψαυούσας τοῦ κύκλου δυνατόν ἐστιν ἀπὸ τοῦ κέντρου τοῦ κύκλου ἀγαγεῖν εὐθεῖαν ἐπὶ τὰν ἐπιψαύουσαν, ὥστε τὰν μεταξὺ τᾶς ἐπιψαυούσας καὶ τᾶς τοῦ κύκλου περιφερείας εὐθεῖαν ποτὶ τὰν ἐκ τοῦ κέντρου ἐλάσσονα λόγον ἔχειν ἢ ἁ περιφέρεια τοῦ κύκλου ἁ μεταξὺ τᾶς ἁφᾶς καὶ τᾶς διαχθείσας ποτὶ τὰν δοθεῖσαν ὁποιανοῦν κύκλου περιφέρειαν.

Δεδόσθω κύκλος ὁ ΑΒΓ, κέντρον δὲ αὐτοῦ τὸ Κ, καὶ ἐπιψαυέτω τοῦ κύκλου ἁ △Ζ κατὰ τὸ Β, δεδόσθω δὲ καὶ κύκλου περιφέρεια ὁποιαοῦν δυνατὸν δέ ἐστι τᾶς δοθείσας περιφερείας λαζεῖν τινα εὐθεῖαν μείζονα, καὶ ἔστω ἁ Ε εὐθεῖα μείζων τᾶς δοθείσας περιφερείας · ἄχθῶ δὲ ἀπὸ τοῦ Κ κέντρου παρὰ τὰν △Ζ ἁ ΑΗ, καὶ κείσθω ἁ ΗΘ ἴσα τᾷ Ε νεύουσα ἐπὶ τὸ Β. Ἀπὸ δὴ τοῦ Κ κέντρου ἐπὶ τὸ Θ

18
ἐπιζευχθεῖσα ἐκβεβλήσθω · τὸν αὐτὸν δὴ λόγον ἔχει ἁ ΘΖ ποτὶ τὰν ΘΚ, ὃν ἁ ΒΘ ποτὶ τὰν ΘΗ. Ἁ ἄρα ΖΘ ποτὶ τὰν ΘΚ ἐλάσσονα λόγον ἔχει τοῦ ὃν ἁ ΒΘ περιφέρεια ποτὶ τὰν δοθεῖσαν περιφέρειαν, διότι ἁ μὲν ΒΘ εὐθεῖα ἐλάσσων ἐστὶ τᾶς ΒΘ περιφερείας, ἁ δὲ ΘΗ μείζων τᾶς δοθείσας περιφερείας · ἐλάσσονα οὖν λόγον ἔχει καὶ ἁ ΖΘ ποτὶ τὰν ἐκ τοῦ κέντρου ἢ ἁ ΒΘ περιφέρεια ποτὶ τὰν δοθεῖσαν περιφέρειαν.

Κύκλου δοθέντος καὶ ἐν τῷ κύκλῳ γραμμᾶς ἐλάσσονος τᾶς διαμέτρου δυνατὸν ἀπὸ τοῦ κέντρου τοῦ κύκλου ποτὶ τὰν περιφέρειαν αὐτοῦ ποτιβαλεῖν εὐθεῖαν τέμνουσαν τὰν ἐν τῷ κύκλῳ δεδομέναν γραμμάν, ὥστε τὰν ἀπολαφθεῖσαν εὐθεῖαν μεταξὺ τᾶς περιφερείας καὶ τᾶς εὐθείας τᾶς ἐν τῷ κύκλῳ δεδομένας ποτὶ τὰν ἐπιζευχθεῖσαν ἀπὸ τοῦ πέρατος τᾶς ποτιπεσούσας τοῦ ἐπὶ τᾶς περιφερείας ποτὶ τὸ ἕτερον πέρας τᾶς ἐν τῷ κύκλῳ δεδομένας εὐθείας τὸν ταχθέντα λόγον ἔχειν, εἴ κα ὁ δοθεὶς λόγος ἐλάσσων ᾗ τοῦ ὃν ἔχει ἁ ἡμίσεια τᾶς ἐν τῷ κύκλῳ δεδομένας ποτὶ τὰν ἀπὸ τοῦ κέντρου κάθετον ἐπʼ αὐτὰν ἀγμέναν.

19

Δεδόσθω κύκλος ὁ ΑΒΓ, κέντρον δὲ αὐτοῦ τὸ Κ, καὶ ἐν αὐτῷ δεδόσθω εὐθεῖα ἐλάσσων τᾶς διαμέτρου ἁ ΓΑ, καὶ λόγος, ὃν ἔχει ἁ Ζ ποτὶ Η, ἐλάσσων τοῦ ὃν ἔχει ἁ ΓΘ ποτὶ τὰν ΚΘ, καθέτου ἐούσας τᾶς ΚΘ · ἀχθω δὲ ἀπὸ τοῦ κέντρου παρὰ τὰν ΑΓ ἁ ΚΝ καὶ τᾷ ΚΓ πρὸς ὀρθὰς ἁ ΓΛ · ὁμοῖα δή ἐστι τὰ ΓΘΚ, ΓΚΛ τρίγωνα. Ἔστιν οὖν ὡς ἁ ΓΘ ποτὶ τὰν ΘΚ οὕτως ἁ ΚΓ ποτὶ τὰν ΓΑ ἐλάσσονα ἄρα λόγον ἔχει ἁ Ζ ποτὶ τὰν Η ἢ ἁ ΚΓ ποτὶ τὰν ΓΛ. Ὃν δὴ λόγον ἔχει ἁ Ζ ποτὶ τὰν Η, τοῦτον ἐχέτω ἁ ΚΓ ποτὶ μείζονα τᾶς ΓΛ. Ἐχέτω ποτὶ τὰν ΒΝ, κείσθω δὲ ἁ ΒΝ μεταξὺ τᾶς περιφερείας καὶ τᾶς εὐθείας διὰ τοῦ Γ · δυνατὸν δὲ ἐστιν οὕτως τέμνειν καὶ πεσεῖται ἐκτός, ἐπεὶ μείζων ἐστὶν τᾶς ΓΛ. Ἐπεὶ οὖν ἁ ΚΒ ποτὶ ΒΝ τὸν αὐτὸν ἔχει λόγον ὃν ἁ Ζ ποτὶ Η, καὶ ἁ ΕΒ ποτὶ ΒΓ τὸν αὐτὸν ἕξει λόγον ὃν ἁ Ζ ποτὶ Η.

Τῶν αὐτῶν δεδομένων καὶ τᾶς ἐν τῷ κύκλῳ εὐθείας ἐκβεβλημένας δυνατόν ἐστιν ἀπὸ τοῦ κέντρου ποτιβαλεῖν ποτὶ τὰν ἐκβεβλημέναν, ὥστε τὰν μεταξὺ τᾶς περιφερείας καὶ τᾶς ἐκβεβλημένας ποτὶ τὰν ἐπιζευχθεῖσαν ἀπὸ τοῦ πέρατος τᾶς ἐναπολαφθείσας ποτὶ τὸ πέρας τᾶς ἐκβεβλημένας τὸν ταχθέντα λόγον ἔχειν, εἴ κα ὁ δοθεὶς λόγος μείζων ᾖ τοῦ ὃν ἔχει ἁ ἡμίσεια τᾶς ἐν τῷ κύκλῳ δεδομένας ποτὶ τὰν ἀπὸ τοῦ κέντρου κάθετον ἐπʼ αὐτὰν ἀγμέναν.

20

Δεδόσθω τὰ αὐτά, καὶ ἔστω ἁ ἐν τῷ κύκλῳ γραμμὰ ἐκβεβλημένα, ὁ δὲ δοθεὶς λόγος ἔστω, ὃν ἔχει ἁ Ζ ποτὶ τὰν Η, μείζων τοῦ ὃν ἔχει ἁ ΓΘ ποτὶ τὰν ΘΚ · μείζων οὖν ἐσσεῖται καὶ τοῦ ὃν ἔχει ἁ ΚΓ ποτὶ ΓΛ. Ὃν δὴ λόγον ἔχει ἁ Ζ ποτὶ Η, τοῦτον ἕξει ἁ ΚΓ ποτὶ ἐλάσσονα τᾶς ΓΛ. Ἐχέτω ποτὶ ΙΝ νεύουσαν ἐπὶ τὸ Γ · δυνατὸν δέ ἐστιν οὕτως τέμνειν καὶ πεσεῖται ἐντὸς τᾶς ΓΛ, ἐπειδὴ ἐλάσσων ἐστὶ τᾶς ΓΛ. Ἐπεὶ οὖν τὸν αὐτὸν ἔχει λόγον ἁ ΚΓ ποτὶ ΙΝ ὃν ἁ Ζ ποτὶ Η, καὶ ἁ ΕΙ ποτὶ ΙΓ τὸν αὐτὸν ἕξει λόγον ὃν ἁ Ζ ποτὶ τὰν Η.

Κύκλου δοθέντος καὶ ἐν τῷ κύκλῳ γραμμᾶς ἐλάσσονος τᾶς διαμέτρου καὶ ἄλλας ἐπιψαυούσας τοῦ κύκλου κατὰ τὸ πέρας τᾶς ἐν τῷ κύκλῳ δεδομένας δυνατὸν ἀπὸ τοῦ κέντρου τοῦ κύκλου ποτιζαλεῖν τινα εὐθεῖαν ποτὶ τὰν εὐθεῖαν, ὥστε τὰν ἀπολαφθεῖσαν ἀπʼ αὐτᾶς μεταξὺ τᾶς τοῦ κύκλου περιφερείας καὶ τᾶς ἐν τῷ κύκλῳ δεδομένας γραμμᾶς ποτὶ τὰν ἀπολαφθεῖσαν ἀπὸ τᾶς ἐπιψαυούσας τὸν ταχθέντα λόγον ἔχειν, εἴ κα ὁ δοθεὶς λόγος ἐλάσσων τοῦ ὃν ἔχει ἁ ἡμίσεια τᾶς ἐν τῷ κύκλῳ δεδομένας ποτὶ τὰν ἀπὸ τοῦ κέντρου τοῦ κύκλου κάθετον ἐπʼ αὐτὰν ἀγμέναν.

21

Ἔστω κύκλος δεδομένος ὁ ΑΒΓ△, καὶ ἐν τῷ κύκλῳ εὐθεῖα δεδόσθω ἐλάσσων τᾶς διαμέτρου ἁ ΓΑ, καὶ ἁ ΞΛ ἐπιψαυέτω τοῦ κύκλου κατὰ τὸ Γ, καὶ λόγος, ὃν ἔχει ἁ Ζ ποτὶ Η, ἐλάσσων τοῦ ὃν ἔχει ἁ ΓΘ ποτὶ ΘΚ ἐσσεῖται δὴ ἐλάσσων καὶ τοῦ ὃν ἔχει ἁ ΓΚ ποτὶ ΓΛ, εἴ κα παράλληλος ἀχθῇ ἁ ΚΛ τᾷ ΘΓ ἐχέτω δὴ ἁ ΚΓ ποτὶ ΓΞ τὸν αὐτὸν λόγον ὃν ἁ Ζ ποτὶ Η μείζων δή ἐστιν ἁ ΞΓ τᾶς ΓΛ. Γεγράφθω κύκλου περιφέρεια περὶ τὰ Κ, Λ, Ξ. Ἐπεὶ οὖν ἐστι μείζων ἁ ΞΓ τᾶς ΓΛ, καὶ ποτʼ ὀρθάς ἐντι ἀλλάλαις αἱ ΚΓ, ΞΛ, δυνατόν ἐστι τᾷ ΜΓ ἴσαν ἄλλαν θέμεν τὰν ΙΝ νεύουσαν ἐπὶ τὸ Κ. Τὸ δὴ περιεχόμενον ὑπὸ τᾶν ΞΙΛ ποτὶ τὸ ὑπὸ τᾶν ΚΕ, ΙΛ τὸν αὐτὸν ἔχει λόγον ὃν ἁ ΞΙ ποτὶ ΚΕ, καὶ τὸ ὑπὸ τᾶν ΚΙΝ ποτὶ τὸ ὑπὸ τᾶν ΚΙ, ΓΛ τὸν αὐτὸν ἔχει λόγον ὃν ἁ ΙΝ ποτὶ ΓΛ ὥστε καὶ ἁ ΙΝ ποτὶ ΓΛ ἐστὶν ὡς ἁ ΞΙ ποτὶ ΚΕ ὥστε καὶ ἁ ΓΜ ποτὶ ΓΛ καὶ ἁ ΞΓ ποτὶ ΚΓ καὶ ποτὶ ΚΒ ἐστὶν ὡς ἁ ΞΙ ποτὶ ΚΕ, καὶ λοιπὰ ἁ ΙΓ ποτὶ ΒΕ τὸν αὐτὸν ἔχει λόγον ὃν ἁ ΞΓ ποτὶ τὰν ΓΚ καὶ ὃν ἁ Η ποτὶ Ζ. Πέπτωκεν οὖν ἁ ΚΝ ποτὶ τὰν ἐπιψαύουσαν, καὶ ἔχει ἁ μεταξὺ τᾶς περιφερείας

22
καὶ τᾶς εὐθείας ἁ ΒΕ ποτὶ τὰν ἀπολαφθεῖσαν ἀπὸ τᾶς ἐπιψαυούσας τὸν αὐτὸν λόγον ὃν ἁ Ζ ποτὶ τὰν Η.

Τῶν αὐτῶν δεδομένων καὶ τᾶς ἐν τῷ κύκλῳ δεδομένας γραμμᾶς ἐκβεβλημένας δυνατὸν ἀπὸ τοῦ κέντρου τοῦ κύκλου ποτιβαλεῖν ποτὶ τὰν ἐκβεβλημέναν εὐθεῖαν, ὥστε τὰν μεταξὺ τᾶς περιφερείας καὶ τᾶς ἐκβεβλημένας ποτὶ τὰν ἀπολαφθεῖσαν ἀπὸ τᾶς ἐπιψαυούσας ποτὶ τὰν ἁφὰν τὸν ταχθέντα λόγον ἔχειν, εἴ κα ὁ δοθεὶς λόγος μείζων ᾖ τοῦ ὃν ἔχει ἁ ἡμίσεια τᾶς ἐν τῷ κύκλῳ δεδομένας ποτὶ τὰν ἀπὸ τοῦ κέντρου κάθετον ἐπʼ αὐτὰν ἀγομέναν.

Δεδόσθω κύκλος ὁ ΑΒΓ△, καὶ ἐν τῷ κύκλῳ εὐθεῖα ἐλάσσων τᾶς διαμέτρου ἁ ΓΑ διάχθω, καὶ ἐπιψαυέτω τοῦ κύκλου ἁ ΞΓ κατὰ τὸ Γ, καὶ λόγος, ὃν ἔχει ἁ Ζ ποτὶ τὰν Η, μείζων τοῦ ὃν ἔχει ἁ ΓΘ ποτὶ τὰν ΘΚ · ἐσσεῖται δὴ μείζων καὶ τοῦ ὃν ἔχει ἁ ΚΓ ποτὶ τὰν ΓΛ. Ἐχέτω οὖν ἁ ΚΓ ποτὶ τὰν ΓΞ τὸν αὐτὸν λόγον ὃν ἁ Ζ ποτὶ τὰν Η ἐλάσσων ἄρα ἐστὶν οὕτα τᾶς ΓΛ.

23

Πάλιν δὴ γεγράφθω κύκλος διὰ τῶν Ξ, Κ, Λ σαμείων. Ἐπεὶ οὖν ἐλάσσων ἐστὶν ἁ ΞΓ τᾶς ΓΛ, καὶ ποτʼ ὀρθάς ἐντι ἀλλάλαις αἱ ΚΜ, ΞΓ, δυνατὸν τᾷ ΓΜ ἴσαν θέμεν τὰν ΙΝ νεύουσαν ἐπὶ τὸ Κ. Ἐπεὶ οὖν τὸ ὑπὸ τᾶν ΞΙΛ ποτὶ τὸ ὑπὸ τᾶν ΛΙ, ΚΕ ἐστὶν ὡς ἁ ΞΙ ποτὶ ΚΕ, ἀλλὰ τῷ μὲν ὑπὸ τᾶν ΞΙΛ ἴσον ἐστὶ τὸ ὑπὸ τᾶν ΚΙΝ, τῷ δὲ ὑπὸ τᾶν ΛΙ, ΚΕ ἴσον ἐστὶ τὸ ὑπὸ τᾶν ΚΙ, ΓΛ διὰ τὸ εἶμεν ὡς τὰν ΚΕ ποτὶ ΙΚ οὕτως τὰν ΛΓ ποτὶ Λl, καὶ ὡς ἄρα ἁ ΞΙ ποτὶ ΚΕ, οὕτως τὸ ὑπὸ τᾶν ΚΙΝ ποτὶ τὸ ὑπὸ τᾶν ΚΙ, ΓΛ, τουτέστιν ὡς ἁ ΝΙ ποτὶ ΓΛ, τουτέστιν ἁ ΓΜ ποτὶ ΓΛ, Ἔστιν δὲ καὶ, ὡς ἁ ΓΜ ποτὶ ΓΛ, ἁ ΞΓ ποτὶ ΚΓ, τουτέστι ποτὶ ΚΒ ἔστιν ἄρα, ὡς ἁ ΞΙ ποτὶ ΚΕ, ἁ ΞΓ ποτὶ ΚΒ, καὶ λοιπὰ ἁ ΙΓ ποτὶ λοιπὰν τὰν ΒΕ ἐστὶν ὡς ἁ ΞΓ ποτὶ ΓΚ. Ὃν δὲ λόγον ἔχει ἁ ΞΓ ποτὶ ΓΚ, τοῦτον ἔχει ἁ Η ποτὶ Ζ ποτίπέπτωκεν δὴ ἁ ΚΕ ποτὶ τὰν ἐκβεβλημέναν, καὶ ἁ μεταξὺ τᾶς ἐκβεβλημένας καὶ τᾶς περιφερείας ἁ ΒΕ ποτὶ τὰν ΓΙ τὰν ἀπὸ τᾶς ἐπιψαυούσας ἀπολαφθεῖσαν τὸν αὐτὸν ἔχει λόγον ὃν ἁ Ζ ποτὶ τὰν Η.

Εἴ κα γραμμαὶ ἑξῆς τεθέωντι ὁποσοιοῦν τῷ ἴσῳ ἀλλαλᾶν ὑπερέχουσαι, ᾖ δὲ ἁ ὑπεροχὰ ἴσα τᾷ ἐλαχίστᾳ, καὶ ἄλλαι γραμμαὶ τεθέωντι τῷ μὲν πλήθει ἴσαι ταύταις, τῷ δὲ μεγέθει ἑκάστα τᾷ μεγίστᾳ, τὰ τετράγωνα τὰ ἀπὸ τᾶν ἰσᾶν τᾷ μεγίστᾳ ποτιλαμβάνοντα τό τε ἀπὸ τᾶς μεγίστας τετράγωνον καὶ τὸ περιεχόμενον ὑπό τε τᾶς ἐλαχίστας καὶ τᾶς ἴσας πάσαις ταῖς τῷ ἴσῳ ἀλλαλᾶν ὑπερεχούσαις τριπλάσια ἐσσοῦνται τῶν τετραγώνων πάντων τῶν ἀπὸ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν.

24

Ἔστων γραμμαὶ ὁποσοιοῦν ἐφεξῆς κείμεναι τῷ ἴσῳ ἀλλαλᾶν ὑπερέχουσαι αἱ Α, Β, Γ, △, Ε, Ζ, Η, Θ, ἁ δὲ Θ ἴσα ἔστω τᾷ ὑπεροχᾷ, ποτικείσθω δὲ ποτὶ τὰν Β ἴσα τᾷ Θ ἁ Ι, ποτὶ δὲ τὰν Γ ἁ Κ ἴσα τᾷ Η, ποτὶ δε τὰν △ ἁ Λ ἴσα τᾷ Ζ, ποτὶ δὲ τὰν Ε ἁ Μ ἴσα τᾷ Ε, ποτὶ δὲ τὰν Ζ ἁ Ν ἴσα τᾷ △, ποτὶ δὲ τὰν Η ἁ Ξ ἴσα τᾷ Γ, ποτὶ δὲ τὰν Θ ἁ Ο ἴσα τᾷ Β ἐσσοῦνται δὴ αἱ γενόμεναι ἴσαι ἀλλάλαις καὶ τᾷ μεγίστᾳ. Δεικτέον οὖν ὅτι τὰ τετράγωνα τὰ ἀπὸ πασᾶν τᾶς τε Α καὶ τᾶν γενομενᾶν ποτιλαζόντα τό τε ἀπὸ τᾶς Α τεράγωνον καὶ τὸ περιεχόμενον ὑπό τε τᾶς Θ καὶ τᾶς ἴσας πάσαις ταῖς Α, Β, Γ, △, Ε, Ζ, Η, Θ τριπλάσιά ἐντι τῶν τετραγώνων πάντων τῶν ἀπὸ τᾶν Α, Β, Γ, △, Ε, Ζ, Η, Θ.

Ἔστιν δὴ τὸ μὲν ἀπὸ τᾶς ΒΙ τετράγωνον ἴσον τοῖς ἀπὸ τᾶν l, Β τετραγώνοις καὶ δύο τοῖς ὑπὸ τᾶν Β, l περιεχομένοις, τὸ δὲ ἀπὸ τᾶς ΚΓ ἴσον τοῖς ἀπὸ τᾶν Κ, Γ τετραγώνοις καὶ δύο τοῖς ὑπὸ τᾶν Κ, Γ περιεχομένοις ὁμοίως δὲ καὶ τὰ ἀπὸ τᾶν ἀλλᾶν τᾶν ἰσᾶν τᾷ Α τετράγωνα ἴσα ἐντὶ τοῖς ἀπὸ τῶν τμαμάτων τετραγώνοις καὶ δυσὶ τοῖς ὑπὸ τῶν τμαμάτων περιεχομένοις. Τὰ μὲν οὖν ἀπὸ

25
τᾶν Α, Β, Γ, △, Ε, Ζ, Η, Θ καὶ τὰ ἀπὸ τᾶν Ι, Κ, Λ, Μ, Ν, Ξ, Ο ποτιλαβόντα τὸ ἀπὸ τᾶς Α τετράγωνον διπλάσιά ἐντι τῶν ἀπὸ τᾶν Α, Β, Γ, △, Ε, Ζ, Η, Θ τετραγώνων λοιπὸν δὲ ἐπιδειξοῦμες ὅτι τὰ διπλάσια τῶν περιεχομένων ὑπὸ τῶν τμαμάτων τῶν ἐν ἑκάστᾳ γραμμᾷ τᾶν ἰσᾶν τᾷ Α ποτιλαζόντα τὸ περιεχόμενον ὑπό τε τᾶς Θ καὶ τᾶς ἴσας πάσαις ταῖς Α, Β, Γ, △, Ε, Ζ, Η, Θ ἴσα ἐντὶ τοῖς ἀπὸ τᾶν Α, Β, Γ, △, Ε, Ζ, Η, Θ. Καὶ ἐπεὶ δύο μὲν τὰ ὑπὸ Β, l περιεχόμενα ἴσα δυσὶ τοῖς ὑπὸ τᾶν Β, Θ περιεχομένοις, δύο δὲ τὰ ὑπὸ τᾶν Κ, Γ ἴσα τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς τετραπλασίας τᾶς Γ διὰ τὸ τὰν Κ διπλασίονα εἶμεν τᾶς Θ, δύο δὲ τὰ ὑπὸ τᾶν △, Λ ἴσα τῷ ὑπὸ τᾶς Θ καὶ τᾶς ἑξαπλασίας τᾶς △ διὰ τὸ τὰν Λ τριπλασίαν εἶμεν τᾶς Θ, ὁμοίως δὲ καὶ τὰ ἄλλα τὰ διπλάσια τὰ περιεχόμενα ὑπὸ τῶν τμαμάτων ἴσα ἐντὶ τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς πολλαπλασίας ἀεὶ κατὰ τοὺς ἑξῆς ἀριθμοὺς ἀρτίους τᾶς ἑπομένας γραμμᾶς, τὰ οὖν σύμπαντα ποτιλαβόντα τὸ περιεχόμενον ὑπό τε τᾶς Θ καὶ τᾶς ἴσας πάσαις ταῖς Α, Β, Γ, △, Ε, Ζ, Η, Θ ἐσσοῦνται ἴσα τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς ἴσας πάσαις τᾷ τε Α καὶ τᾷ τριπλασίᾳ τᾶς Β καὶ τᾷ πενταπλασίᾳ τᾶς Γ καὶ ἀεὶ τᾷ περισσᾷ κατὰ τοὺς ἑξῆς ἀριθμοὺς περισσοὺς πολλαπλασίᾳ τᾶς ἑπομένας γραμμᾶς. Ἐντὶ δὲ καὶ τὰ ἀπὸ τᾶν Α, Β, Γ, △, Ε, Ζ, Η, Θ τετράγωνα ἴσα τῷ περιεχομένῳ ὑπὸ τᾶν αὐτᾶν γραμμᾶν. Ἔστι γὰρ τὸ ἀπὸ τᾶς Α τετράγωνον ἴσον τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς ἴσας πάσαις τᾷ τε Α καὶ τᾷ ἴσᾳ ταῖς λοιπαῖς, ἆν ἑκάστα ἴσα τᾷ Α · ἰσάκις γὰρ μετρεῖ ἅ τε Θ τὰν Α καὶ ἁ Α τὰς ἴσας αὐτᾷ πάσας σὺν τᾷ Α ὥστε ἴσον ἐστὶ
26
τὸ ἀπὸ Α τετράγωνον τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς ἴσας τᾷ Α καὶ τᾷ διπλασίᾳ τᾶν Β, Γ, △, Ε, Ζ, Η, Θ · αἱ γὰρ ἴσαι τᾷ Α πᾶσαι χωρὶς τᾶς Α διπλάσιαί ἐντι τᾶν Β, Γ, △, Ε, Ζ, Η, Θ. Ὁμοίως δὲ καὶ τὸ ἀπὸ τᾶς Β τετράγωνον ἴσον ἐντὶ τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς ἴσας τᾷ τε Β καὶ τᾷ διπλασίᾳ τᾶν Γ, △, Ε, Ζ, Η, Θ, καὶ πάλιν τὸ ἀπὸ τᾶς Γ τετράγωνον ἴσον τῷ ὑπό τε τᾶς Θ καὶ τᾶς ἴσας τᾷ τε Γ καὶ τᾷ διπλασίᾳ τᾶν △, Ε, Ζ, Η, Θ, ὁμοίως δὲ καὶ τὰ ἀπὸ τᾶν ἀλλᾶν τετράγωνα ἴσα ἐντὶ τοῖς περιεχομένοις ὑπό τε τᾶς Θ καὶ τᾶς ἴσας αὐτᾷ τε καὶ τᾷ διπλασίᾳ τᾶν λοιπᾶν. Δῆλον οὖν ὅτι τὰ ἀπὸ πασᾶν τετράγωνα ἴσα ἐντὶ τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς ἴσας πάσαις τᾷ τε Α καὶ τᾷ τριπλασίᾳ τᾶς Β καὶ τᾷ πενταπλασίᾳ τᾶς Γ καὶ τᾷ κατὰ τοὺς ἑξῆς ἀριθμοὺς περισσοὺς πολλαπλασίᾳ τᾶς ἑπομένας.

ΠΟΡΙΣΜΑ

Ἐκ τούτου οὖν φανερὸν ὅτι τὰ τετράγωνα πάντα τὰ ἀπὸ τᾶν ἰσᾶν τᾷ μεγίστᾳ τῶν μὲν τετραγώνων τῶν ἀπὸ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν ἐλάσσονά ἐστιν ἢ τριπλάσια, ἐπειδὴ ποτιλαβόντα τινὰ τριπλάσιά ἐντι, τῶν δὲ λοιπῶν χωρὶς τοῦ ἀπὸ τᾶς μεγίστας τετραγώνου μείζονα ἢ τριπλάσια, ἐπειδὴ τὰ ποτιλαφθέντα ἐλάσσονά ἐντι ἢ τριπλάσια τοῦ ἀπὸ τᾶς μεγίστας τετραγώνου. Καὶ τοίνυν, εἴ κα ὁμοῖα εἴδεα ἀναγραφέωντι ἀπὸ πασᾶν, ἀπὸ τὲ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν καὶ ἀπὸ τᾶν ἰσᾶν τᾷ μεγίστᾳ, τὰ εἴδεα τὰ ἀπὸ τᾶν ἰσᾶν τᾷ μεγίστᾳ τῶν μὲν ἀπὸ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν εἰδέων

27
ἐλάσσονα ἐσσοῦνται ἢ τριπλάσια, τῶν δὲ λοιπῶν χωρὶς τοῦ ἀπὸ τᾶς μεγίστας εἴδεος μείζονα ἢ τριπλάσια τὸν γὰρ αὐτὸν ἑξοῦντι λόγον τὰ ὁμοῖα εἴδεα τοῖς τετραγώνοις.