De lineis spiralibus

Archimedes

Archimedes. Archimède, Volume 2. Mugler, Charles, editor. Paris: Les Belles Lettres, 1971.

Εἴ κα γραμμαὶ ἑξῆς τεθέωντι ὁποσοιοῦν τῷ ἴσῳ ἀλλαλᾶν ὑπερέχουσαι, ᾖ δὲ ἁ ὑπεροχὰ ἴσα τᾷ ἐλαχίστᾳ, καὶ ἄλλαι γραμμαὶ τεθέωντι τῷ μὲν πλήθει ἴσαι ταύταις, τῷ δὲ μεγέθει ἑκάστα τᾷ μεγίστᾳ, τὰ τετράγωνα τὰ ἀπὸ τᾶν ἰσᾶν τᾷ μεγίστᾳ ποτιλαμβάνοντα τό τε ἀπὸ τᾶς μεγίστας τετράγωνον καὶ τὸ περιεχόμενον ὑπό τε τᾶς ἐλαχίστας καὶ τᾶς ἴσας πάσαις ταῖς τῷ ἴσῳ ἀλλαλᾶν ὑπερεχούσαις τριπλάσια ἐσσοῦνται τῶν τετραγώνων πάντων τῶν ἀπὸ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν.

24

Ἔστων γραμμαὶ ὁποσοιοῦν ἐφεξῆς κείμεναι τῷ ἴσῳ ἀλλαλᾶν ὑπερέχουσαι αἱ Α, Β, Γ, △, Ε, Ζ, Η, Θ, ἁ δὲ Θ ἴσα ἔστω τᾷ ὑπεροχᾷ, ποτικείσθω δὲ ποτὶ τὰν Β ἴσα τᾷ Θ ἁ Ι, ποτὶ δὲ τὰν Γ ἁ Κ ἴσα τᾷ Η, ποτὶ δε τὰν △ ἁ Λ ἴσα τᾷ Ζ, ποτὶ δὲ τὰν Ε ἁ Μ ἴσα τᾷ Ε, ποτὶ δὲ τὰν Ζ ἁ Ν ἴσα τᾷ △, ποτὶ δὲ τὰν Η ἁ Ξ ἴσα τᾷ Γ, ποτὶ δὲ τὰν Θ ἁ Ο ἴσα τᾷ Β ἐσσοῦνται δὴ αἱ γενόμεναι ἴσαι ἀλλάλαις καὶ τᾷ μεγίστᾳ. Δεικτέον οὖν ὅτι τὰ τετράγωνα τὰ ἀπὸ πασᾶν τᾶς τε Α καὶ τᾶν γενομενᾶν ποτιλαζόντα τό τε ἀπὸ τᾶς Α τεράγωνον καὶ τὸ περιεχόμενον ὑπό τε τᾶς Θ καὶ τᾶς ἴσας πάσαις ταῖς Α, Β, Γ, △, Ε, Ζ, Η, Θ τριπλάσιά ἐντι τῶν τετραγώνων πάντων τῶν ἀπὸ τᾶν Α, Β, Γ, △, Ε, Ζ, Η, Θ.

Ἔστιν δὴ τὸ μὲν ἀπὸ τᾶς ΒΙ τετράγωνον ἴσον τοῖς ἀπὸ τᾶν l, Β τετραγώνοις καὶ δύο τοῖς ὑπὸ τᾶν Β, l περιεχομένοις, τὸ δὲ ἀπὸ τᾶς ΚΓ ἴσον τοῖς ἀπὸ τᾶν Κ, Γ τετραγώνοις καὶ δύο τοῖς ὑπὸ τᾶν Κ, Γ περιεχομένοις ὁμοίως δὲ καὶ τὰ ἀπὸ τᾶν ἀλλᾶν τᾶν ἰσᾶν τᾷ Α τετράγωνα ἴσα ἐντὶ τοῖς ἀπὸ τῶν τμαμάτων τετραγώνοις καὶ δυσὶ τοῖς ὑπὸ τῶν τμαμάτων περιεχομένοις. Τὰ μὲν οὖν ἀπὸ

25
τᾶν Α, Β, Γ, △, Ε, Ζ, Η, Θ καὶ τὰ ἀπὸ τᾶν Ι, Κ, Λ, Μ, Ν, Ξ, Ο ποτιλαβόντα τὸ ἀπὸ τᾶς Α τετράγωνον διπλάσιά ἐντι τῶν ἀπὸ τᾶν Α, Β, Γ, △, Ε, Ζ, Η, Θ τετραγώνων λοιπὸν δὲ ἐπιδειξοῦμες ὅτι τὰ διπλάσια τῶν περιεχομένων ὑπὸ τῶν τμαμάτων τῶν ἐν ἑκάστᾳ γραμμᾷ τᾶν ἰσᾶν τᾷ Α ποτιλαζόντα τὸ περιεχόμενον ὑπό τε τᾶς Θ καὶ τᾶς ἴσας πάσαις ταῖς Α, Β, Γ, △, Ε, Ζ, Η, Θ ἴσα ἐντὶ τοῖς ἀπὸ τᾶν Α, Β, Γ, △, Ε, Ζ, Η, Θ. Καὶ ἐπεὶ δύο μὲν τὰ ὑπὸ Β, l περιεχόμενα ἴσα δυσὶ τοῖς ὑπὸ τᾶν Β, Θ περιεχομένοις, δύο δὲ τὰ ὑπὸ τᾶν Κ, Γ ἴσα τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς τετραπλασίας τᾶς Γ διὰ τὸ τὰν Κ διπλασίονα εἶμεν τᾶς Θ, δύο δὲ τὰ ὑπὸ τᾶν △, Λ ἴσα τῷ ὑπὸ τᾶς Θ καὶ τᾶς ἑξαπλασίας τᾶς △ διὰ τὸ τὰν Λ τριπλασίαν εἶμεν τᾶς Θ, ὁμοίως δὲ καὶ τὰ ἄλλα τὰ διπλάσια τὰ περιεχόμενα ὑπὸ τῶν τμαμάτων ἴσα ἐντὶ τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς πολλαπλασίας ἀεὶ κατὰ τοὺς ἑξῆς ἀριθμοὺς ἀρτίους τᾶς ἑπομένας γραμμᾶς, τὰ οὖν σύμπαντα ποτιλαβόντα τὸ περιεχόμενον ὑπό τε τᾶς Θ καὶ τᾶς ἴσας πάσαις ταῖς Α, Β, Γ, △, Ε, Ζ, Η, Θ ἐσσοῦνται ἴσα τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς ἴσας πάσαις τᾷ τε Α καὶ τᾷ τριπλασίᾳ τᾶς Β καὶ τᾷ πενταπλασίᾳ τᾶς Γ καὶ ἀεὶ τᾷ περισσᾷ κατὰ τοὺς ἑξῆς ἀριθμοὺς περισσοὺς πολλαπλασίᾳ τᾶς ἑπομένας γραμμᾶς. Ἐντὶ δὲ καὶ τὰ ἀπὸ τᾶν Α, Β, Γ, △, Ε, Ζ, Η, Θ τετράγωνα ἴσα τῷ περιεχομένῳ ὑπὸ τᾶν αὐτᾶν γραμμᾶν. Ἔστι γὰρ τὸ ἀπὸ τᾶς Α τετράγωνον ἴσον τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς ἴσας πάσαις τᾷ τε Α καὶ τᾷ ἴσᾳ ταῖς λοιπαῖς, ἆν ἑκάστα ἴσα τᾷ Α · ἰσάκις γὰρ μετρεῖ ἅ τε Θ τὰν Α καὶ ἁ Α τὰς ἴσας αὐτᾷ πάσας σὺν τᾷ Α ὥστε ἴσον ἐστὶ
26
τὸ ἀπὸ Α τετράγωνον τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς ἴσας τᾷ Α καὶ τᾷ διπλασίᾳ τᾶν Β, Γ, △, Ε, Ζ, Η, Θ · αἱ γὰρ ἴσαι τᾷ Α πᾶσαι χωρὶς τᾶς Α διπλάσιαί ἐντι τᾶν Β, Γ, △, Ε, Ζ, Η, Θ. Ὁμοίως δὲ καὶ τὸ ἀπὸ τᾶς Β τετράγωνον ἴσον ἐντὶ τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς ἴσας τᾷ τε Β καὶ τᾷ διπλασίᾳ τᾶν Γ, △, Ε, Ζ, Η, Θ, καὶ πάλιν τὸ ἀπὸ τᾶς Γ τετράγωνον ἴσον τῷ ὑπό τε τᾶς Θ καὶ τᾶς ἴσας τᾷ τε Γ καὶ τᾷ διπλασίᾳ τᾶν △, Ε, Ζ, Η, Θ, ὁμοίως δὲ καὶ τὰ ἀπὸ τᾶν ἀλλᾶν τετράγωνα ἴσα ἐντὶ τοῖς περιεχομένοις ὑπό τε τᾶς Θ καὶ τᾶς ἴσας αὐτᾷ τε καὶ τᾷ διπλασίᾳ τᾶν λοιπᾶν. Δῆλον οὖν ὅτι τὰ ἀπὸ πασᾶν τετράγωνα ἴσα ἐντὶ τῷ περιεχομένῳ ὑπό τε τᾶς Θ καὶ τᾶς ἴσας πάσαις τᾷ τε Α καὶ τᾷ τριπλασίᾳ τᾶς Β καὶ τᾷ πενταπλασίᾳ τᾶς Γ καὶ τᾷ κατὰ τοὺς ἑξῆς ἀριθμοὺς περισσοὺς πολλαπλασίᾳ τᾶς ἑπομένας.

ΠΟΡΙΣΜΑ

Ἐκ τούτου οὖν φανερὸν ὅτι τὰ τετράγωνα πάντα τὰ ἀπὸ τᾶν ἰσᾶν τᾷ μεγίστᾳ τῶν μὲν τετραγώνων τῶν ἀπὸ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν ἐλάσσονά ἐστιν ἢ τριπλάσια, ἐπειδὴ ποτιλαβόντα τινὰ τριπλάσιά ἐντι, τῶν δὲ λοιπῶν χωρὶς τοῦ ἀπὸ τᾶς μεγίστας τετραγώνου μείζονα ἢ τριπλάσια, ἐπειδὴ τὰ ποτιλαφθέντα ἐλάσσονά ἐντι ἢ τριπλάσια τοῦ ἀπὸ τᾶς μεγίστας τετραγώνου. Καὶ τοίνυν, εἴ κα ὁμοῖα εἴδεα ἀναγραφέωντι ἀπὸ πασᾶν, ἀπὸ τὲ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν καὶ ἀπὸ τᾶν ἰσᾶν τᾷ μεγίστᾳ, τὰ εἴδεα τὰ ἀπὸ τᾶν ἰσᾶν τᾷ μεγίστᾳ τῶν μὲν ἀπὸ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν εἰδέων

27
ἐλάσσονα ἐσσοῦνται ἢ τριπλάσια, τῶν δὲ λοιπῶν χωρὶς τοῦ ἀπὸ τᾶς μεγίστας εἴδεος μείζονα ἢ τριπλάσια τὸν γὰρ αὐτὸν ἑξοῦντι λόγον τὰ ὁμοῖα εἴδεα τοῖς τετραγώνοις.

Εἴ κα γραμμαὶ ἑξῆς τεθέωντι ὁποσαιοῦν τῷ ἴσῳ ἀλλαλᾶν ὑπερέχουσαι, καὶ ἄλλαι γραμμαὶ τεθέωντι τῷ μὲν πλήθει μιᾷ ἐλάσσονες τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν, τῷ δὲ μεγέθει ἑκάστα ἴσα τᾷ μεγίστᾳ, τὰ τετράγωνα πάντα τὰ ἀπὸ τᾶν ἰσᾶν τᾷ μεγίστᾳ ποτὶ μὲν τὰ τετράγωνα τὰ ἀπὸ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν χωρὶς τᾶς ἐλαχίστας ἐλάσσονα λόγον ἔχοντι ἢ τὸ τετράγωνον τὸ ἀπὸ τᾶς μεγίστας ποτὶ τὸ ἴσον ἀμφοτέροις ῷ τε περιεχομένῳ ὑπό τε τᾶς μεγίστας καὶ τᾶς ἐλαχίστας καὶ τῷ τρίτῳ μέρει τοῦ ἀπὸ τᾶς ὑπεροχᾶς τετραγώνου, ᾆ ὑπερέχει ἁ μεγίστα τᾶς ἐλαχίστας, ποτὶ δὲ τὰ τετράγωνα τὰ ἀπὸ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερχουσᾶν χωρὶς τοῦ ἀπὸ τᾶς μεγίστας τετραγώνου μείζονα τοῦ αὐτοῦ λόγου.

28

Ἔστωσαν γὰρ γραμμαὶ ὁποσοιοῦν τῷ ἴσῳ ἀλλαλᾶν ὑπερέχουσαι ἑξῆς κείμεναι, ἁ μὲν ΑΒ τᾶς Γ△, ἁ δὲ Γ△ τᾶς ΕΖ, ἁ δὲ ΕΖ τᾶς ΗΘ, ἁ δὲ ΗΘ τᾶς ΙΚ, ἁ δὲ ΙΚ τᾶς ΛΜ, ἁ δὲ ΛΜ τᾶς ΝΞ, ποτικείσθω δὲ ποτὶ μὲν τὰν Γ△ ἴσα μιᾷ ὑπεροχᾷ ἁ ΓΟ, ποτὶ δὲ τὰν ΕΖ ἴσα δυσὶν ὑπεροχαῖς ἁ ΕΠ, ποτὶ δὲ τὰν ΗΘ ἴσα τρισὶν ὑπεροχαῖς ἁ ΗΡ, καὶ ποτὶ τὰς ἄλλας τὸν αὐτὸν τρόπον ἐσσοῦνται δὴ αἱ γενόμεναι ἀλλάλαις ἴσαι καὶ ἑκάστα τᾷ μεγίστᾳ. Δεικτέον οὖν ὅτι τὰ ἀπὸ πασᾶν τᾶν γενομενᾶν τετράγωνα ποτὶ μὲν πάντα τὰ τετράγωνα τὰ ἀπὸ πασᾶν τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν χωρὶς τοῦ ἀπὸ τᾶς ΝΞ τετραγώνου ἐλάσσονα λόγον ἔχει ἢ τὸ ἀπὸ τᾶς ΑΒ τετράγωνον ποτὶ τὸ ἴσον ἀμφοτέροις τῷ τε περιεχομένῳ ὑπὸ τᾶν ΑΒ, ΝΞ καὶ τῷ τρίτῳ μέρει τοῦ ἀπὸ τᾶς ΝΥ τετραγώνου, ποτὶ δὲ τὰ τετράγωνα τὰ ἀπὸ τᾶν αὐτᾶν χωρὶς τοῦ ἀπὸ τᾶς ΑΒ τετραγώνου μείζονα λόγον ἔχει τοῦ αὐτοῦ λόγου.

Ἀπολελάφθω ἀφʼ ἑκάστας τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν ἴσα τᾷ ὑπεροχᾷ ὃν δὴ λόγον ἔχει τὸ ἀπὸ τᾶς ΑΒ ποτὶ συναμφότερα τό τε ὑπὸ τᾶν ΑΒ, ΦΒ περιεχόμένον καὶ τὸ τρίτον μέρος τοῦ ἀπὸ τᾶς ΑΦ τετραγώνου, τοῦτον ἔχει τὸν λόγον τό τε ἀπὸ τᾶς Ο△ τετράγωνον ποτί τε τὸ περιεχόμενον ὑπὸ τᾶν Ο△, △Χ καὶ τὸ τρίτον μέρος τοῦ ἀπὸ τᾶς ΧΟ τετραγώνου καὶ τὸ τετράγωνον τὸ ἀπὸ τᾶς ΠΖ ποτὶ τὸ περιεχόμενον ὑπὸ τᾶν ΠΖ, ΨΖ καὶ τὸ τρίτον μέρος τοῦ ἀπὸ τᾶς ΨΠ τετραγώνου καὶ τὰ ἀπὸ τᾶν ἀλλᾶν τετράγωνα ποτὶ τὰ ὁμοίως λαμβανόμενα χωρία καὶ τὰ πάντα δὴ τὰ ἀπὸ πασᾶν τᾶν Ο△, ΠΖ, ΡΘ, ΣΚ, ΤΜ, ΥΞ ποτί τε πάντα τὰ περιεχόμενα ὑπό τε τᾶς ΝΞ καὶ τᾶς ἴσας πάσαις ταῖς εἰρημέναις γραμμαῖς καὶ τὰ

29
τριταμόρια τῶν τετραγώνων τῶν ἀπὸ τᾶν ΟΧ, ΠΨ, ΡΩ, Σϡ, Τ(??), ΥΝ τὸν αὐτὸν ἑξοῦντι λόγον, ὃν τὸ ἀπὸ τᾶς ΑΒ τετράγωνον ποτὶ τὰ συναμφότερα τό τε ὑπὸ τᾶν ΑΒ, ΦΒ περιεχόμενον καὶ τὸ τρίτον μέρος τοῦ ἀπὸ ΦΑ τετραγώνου. Εἰ οὖν κα δειχθῇ τό τε περιεχόμενον ὑπό τε τᾶς ΝΞ καὶ τᾶς ἴσας πάσαις ταῖς Ο△, ΠΖ, ΡΘ, ΣΚ, ΤΜ, ΥΞ καὶ τὰ τρίτα μέρεα τῶν τετραγώνων τῶν ἀπὸ τᾶν ΟΧ, ΠΨ, ΡΩ. Σϡ, Τ(??), ΥΝ τῶν μὲν τετραγώνων τῶν ἀπὸ τᾶν ΑΒ, Γ△, ΕΖ, ΗΘ, ΙΚ, ΛΜ ἐλάττονα, τῶν δὲ τετραγώνων τῶν ἀπὸ τᾶν Γ△, ΕΖ, ΗΘ, ΙK, ΛΜ, ΝΞ μείζονα, δεδειγμένον ἐσσεῖται τὸ προτεθέν.

Ἐντὶ δὴ τὸ μὲν περιεχόμενον ὑπό τε τᾶς ΝΞ καὶ τᾶς ἴσας πάσαις ταῖς Ο△, ΠΖ, ΡΘ, ΣΚ, ΤΜ. ΥΞ καὶ τὰ τρίτα μέρεα τῶν τετραγώνων τῶν ἀπὸ τᾶν ΟΧ, ΠΨ, ΡΩ. Σϡ, Τ(??), ΥΝ ἴσα τοῖς τετραγώνοις τοῖς ἀπὸ Χ#9651;, ΨΖ, ΩΘ, ϡΚ, (??)Μ, ΝΞ καὶ τῷ περιεχομένῳ ὑπό τε τᾶς ΝΞ καὶ τᾶς ἴσας πάσαις ταῖς ΟΧ, ΠΨ, ΡΩ. Σϡ, Τ(??), ΥΝ καὶ τῷ τρίτῳ μέρει τῶν τετραγώνων τῶν ἀπὸ τᾶν ΟΧ, ΠΨ, ΡΩ, Σϡ, Τ(??), ΥΝ. τὰ δὲ ἀπὸ τᾶν ΑΒ, Γ△, ΕΖ, ΗΘ, ΙK, ΛΜ τετράγωνα ἴσα τοῖς ἀπὸ τᾶν ΒΦ, Χ△, ΨΖ, ΩΘ, ϡK, (??)Μ τετραγώνοις καὶ τοῖς ἀπὸ τᾶν ΑΦ, ΓΧ, ΕΨ, ΗΩ, Ιϡ, Λ(??) καὶ τῷ περιεχομένῳ ὑπὸ τᾶς ΒΦ καὶ τᾶς διπλασίας τᾶν ΑΦ, ΓΧ, ΕΨ, ΗΩ, Ιϡ, Λ(??) Κοινὰ μὲν οὖν ἐντι ἑκατέρων τὰ τετράγωνα τὰ ἀπὸ τᾶν ἰσᾶν τᾷ ΝΞ, τὸ δὲ περιεχόμενον ὑπό τε τᾶς ΝΞ καὶ τᾶς ἴσας ταῖς ΟΧ, ΠΨ, ΩΡ, ϡΣ, (??)Τ, ΥΝ ἔλασσόν ἐστι τοῦ περιεχομένου ὑπό τε τᾶς ΒΦ καὶ τᾶς διπλασίας τᾶν ΑΦ, ΓΧ, ΕΨ, ΗΩ, Ιϡ, Λ(??) διὰ τὸ τὰς νῦν εἰρημένας τραμμὰς ταῖς μὲν ΓΟ, ΕΠ, ΡΗ, ΙΣ, ΛΤ, ΥΝ ἴσας εἶμεν, τᾶν δὲ λοιπᾶν

30
μείζονας, καὶ τὰ τετράγωνα δὲ τὰ ἀπὸ τᾶν ΑΦ, ΓΧ, ΕΨ, ΗΩ, Ιϡ, Λ(??) μείζονά ἐντι τοῦ τρίτου μέρεος τῶν ἀπὸ τᾶν ΟΧ, ΠΨ, ΡΩ. Σϡ, T(??), ΥΝ· δέδεικται γὰρ τοῦτο ἐν τοῖς ἐπάνω ἐλάττονα ἄρα ἐντὶ τὰ ῥηθέντα χωρία τῶν τετραγώνων τῶν ἀπὸ τᾶν ΑΒ, Γ△, ΕΖ, ΗΘ, ΙΚ, ΛΜ.

Λοιπὸν δὲ δειξοῦμες ὅτι μείζονά ἐντι τῶν τετραγώνων τῶν ἀπὸ τᾶν Γ△, ΕΖ, ΗΘ, ΙK, ΛΜ, ΝΞ. Πάλιν δὴ τὰ τετράγωνα τὰ ἀπὸ τᾶν Γ△, ΕΖ, ΗΘ, ΙΚ, ΛΜ, ΝΞ ἴσα ἐντὶ τοῖς τε ἀπὸ τᾶν ΧΓ, ΕΨ, ΗΩ, Ιϡ, Λ(??) καὶ τοῖς ἀπὸ τᾶν Χ△, ΨΖ, ΩΘ, ϡΚ, (??)Μ, ΝΞ καὶ τῷ περιεχομένῳ ὑπό τε τᾶς ΝΞ καὶ τᾶς διπλασίας πασᾶν τᾶν ΓΧ, ΕΨ, ΗΩ, Ιϡ, Λ(??). Καί ἐστι κοινὰ μὲν τὰ ἀπὸ τᾶν Χ△, ΨΖ, ΩΘ, ϡΚ, Μ(??), ΝΞ, μεῖζον δὲ τὸ ὑπό τε τᾶς ΝΞ καὶ τᾶς ἴσας πάσαις ταῖς ΟΧ, ΠΨ, ΡΩ. Σϡ, T(??), ΥΝ τοῦ ὑπὸ τᾶς ΝΞ καὶ τᾶς διπλασίας πασᾶν τᾶν ΓΧ, ΕΨ, ΗΩ, Ιϡ, Λ(??), ἐντὶ δὲ καὶ τὰ τετράγωνα τὰ ἀπὸ τᾶν ΧΟ, ΨΠ, ΩΡ, ϡΣ, (??)Τ, ΥΝ τῶν ἀπὸ τᾶν ΓΧ, ΕΨ, ΗΩ, Ιϡ, Λ(??) μείζονα ἢ τριπλάσια δέδεικται γὰρ καὶ τοῦτο· μείζονα ἄρα ἐντὶ τὰ ῥηθέντα χωρία τῶν τετραγώνων τῶν ἀπὸ τᾶν Γ△, ΕΖ, ΗΘ, ΙΚ, ΛΜ, ΝΞ.

ΠΟΡΙΣΜΑ

Καὶ τοίνυν εἴ κα ὁμοῖα ἀναγραφέωντι ἀπὸ πασᾶν, ἀπό τε τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν καὶ ἀπὸ τᾶν ἰσᾶν τᾷ μεγίστᾳ, εἴδεα, πάντα τὰ ἀπὸ τᾶν ἰσᾶν τᾷ μεγίστᾳ ποτὶ τὰ ἀπὸ τᾶν τῷ ἴσῳ ἀλλαλᾶν ὑπερεχουσᾶν χωρὶς

31
τοῦ ἀπὸ τᾶς ἐλαχίστας εἴδεος ἐλάσσονα λόγον ἑξοῦντι ἢ τὸ τετράγωνον τὸ ἀπὸ τᾶς μεγίστας ποτὶ τὸ ἴσον ἀμφοτέροις τῷ τε περιεχομένῳ ὑπό τε τᾶς μεγίστας καὶ τᾶς ἐλαχίστας καὶ τῷ τρίτῳ μέρει τοῦ ἀπὸ τᾶς ὑπεροχᾶς, ᾇ ὑπερέχει ἁ μεγίστα τᾶς ἐλαχίστας, ποτὶ δὲ τὰ ἀπὸ τᾶν αὐτᾶν εἴδεα χωρὶς τοῦ ἀπὸ τᾶς μεγίστας μείζονα τοῦ αὐτοῦ λόγου · τὸν αὐτὸν γὰρ ἑξοῦντι λόγον τὰ ὁμοῖα εἴδεα τοῖς τετραγώνοις.

ΟΡΟΙ

α΄. Εἴ κα εὐθεῖα ἐπιζευχθῇ γραμμὰ ἐν ἐπιπέδῳ καὶ μένοντος τοῦ ἑτέρου πέρατος αὐτᾶς ἰσοταχέως περιενεχθεῖσα ὁσακισοῦν ἀποκατασταθῇ πάλιν, ὅθεν ὥρμασεν, ἄμα δὲ τᾷ γραμμᾷ περιαγομένᾳ φέρηταί τι σαμεῖον ἰσοταχέως αὐτὸ ἑαυτῷ κατὰ τᾶς εὐθείας ἀρξάμενον ἀπὸ τοῦ μένοντος πέρατος, τὸ σαμεῖον ἕλικα γράψει ἐν τῷ ἐπιπέδῳ.

β΄. Καλείσθω οὖν τὸ μὲν πέρας τᾶς εὐθείας τὸ μένον περιαγομένας αὐτᾶς ἀρχὰ τᾶς ἕλικος.

γ΄. Ἁ δὲ θέσις τᾶς τραμμᾶς, ἀφʼ ἆς ἄρξατο ἁ εὐθεῖα περιφέρεσθαι, ἀρχὰ τᾶς περιφορᾶς.

δ΄. Εὐθεῖα, ἃν μὲν ἐν τᾷ πρώτᾳ περιφορᾷ διαπορευθῇ τὸ σαμεῖον τὸ κατὰ τᾶς εὐθείας φερόμενον, πρώτα καλείσθω, ἃν δʼ ἐν τᾷ δευτέρᾳ περιφορᾷ τὸ αὐτὸ σαμεῖον διανύσῃ, δευτέρα, καὶ αἱ ἄλλαι ὁμοίως ταύταις ὁμωνύμως ταῖς περιφοραῖς καλείσθωσαν.

32

ε΄. Τὸ δὲ χωρίον τὸ περιλαφθὲν ὑπό τε τᾶς ἕλικος τᾶς ἐν τᾷ πρώτᾳ περιφορᾷ γραφείσας καὶ τᾶς εὐθείας, ἅ ἐστιν πρώτα, πρῶτον καλείσθω, τὸ δὲ περιλαφθὲν ὑπό τε τᾶς ἕλικος τᾶς ἐν τᾷ δευτέρᾳ περιφορᾷ γραφείσας καὶ τᾶς εὐθείας τᾶς δευτέρας δεύτερον καλείσθω, καὶ τὰ ἄλλα ἑξῆς οὕτω καλείσθω.

ϛ΄. Καὶ εἴ κα ἀπὸ τοῦ σαμείου, ὅ ἐστιν ἀρχὰ τᾶς ἕλικος, ἀχθῇ τις εὐθεῖα γραμμά, τᾶς εὐθείας ταύτας τὰ ἐπὶ τὰ αὐτά, ἐφʼ ἅ κα ἁ περιφορὰ γένηται, προαγουμένα καλείσθω, τὰ δὲ ἐπὶ θάτερα ἑπομένα.

ζ΄. Ὅ τε γραφεὶς κύκλος κέντρῳ μὲν τῷ σαμείῳ, ὅ ἐστιν ἀρχὰ τᾶς ἕλικος, διαστήματι δὲ τᾷ εὐθείᾳ, ἅ ἐστιν πρώτα, πρῶτος καλείσθω, ὁ δὲ γραφεὶς κέντρῳ μὲν τῷ αὐτῷ, διαστήματι δὲ τᾷ διπλασίᾳ εὐθείᾳ δεύτερος καλείσθω, καὶ οἱ ἄλλοι δὲ ἑξῆς τούτοις τὸν αὐτὸν τρόπον.