De sphaera et cylindro

Archimedes

Archimedes. Archimède, Volume 1. Mugler, Charles, editor. Paris: Les Belles Lettres, 1970.

Ἐὰν ῥόμβου ἐξ ἰσοσκελῶν κώνων συγκειμένου ὁ ἕτερος κῶνος ἐπιπέδῳ τμηθῇ παραλλήλῳ τῇ βάσει, ἀπὸ δὲ τοῦ γενομένου κύκλου κῶνος ἀναγραφῇ κορυφὴν ἔχων τὴν αὐτὴν τῷ ἑτέρῳ κώνῳ, ἀπὸ δε τοῦ ὅλου ὁόμβου ὁ γενόμενος ῥόμβος ἀφαιρεθῇ, τῷ περιλείμματι ἴσος ἔσται ὁ κῶνος ὁ βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων, ὕψος δὲ ἴσον τῇ ἀπὸ τῆς κορυφῆς τοῦ ἑτέρου κώνου ἐπὶ τὴν πλευρὰν τοῦ ἑτέρου κώνου καθέτῳ ἠγμένῃ.

Ἔστω ῥόμβος ἐξ ἰσοσκελῶν κώνων συγκείμενος ὁ ΑΒΓ△, καὶ τμηθήτω ὁ ἕτερος κῶνος ἐπιπέδῳ παραλλήλῳ τῇ βάσει, καὶ ποιείτω τομὴν τὴν ΕΖ, ἀπὸ δὲ τοῦ περὶ διάμετρον τὴν ΕΖ κύκλου κῶνος ἀναγεγράφθω τὴν κορυφὴν ἔχων τὸ μετρον σημεῖον· ἔσται δὴ γεγονὼς ῥόμβος ὁ ΕΒ△Ζ. Καὶ νοείσθω ἀφῃρημένος ἀπὸ τοῦ ὅλου ῥόμβου, ἐκκείσθω δέ τις κῶνος ὁ ΘΚΛ τὴν μὲν βάσιν ἴσην ἔχων τῇ ἐπιφανείᾳ τῇ μεταξὺ τῶν ΑΓ, ΕΖ, τὸ δὲ ὕψος ἴσον τῇ ἀπὸ τοῦ △ σημείου καθέτῳ ἀγομένῃ ἐπὶ τὴν ΒΑ ἢ τὴν ἐπʼ εὐθείας αὐτῇ· λέγω ὅτι ὁ ΘΚΛ κῶνος ἴσος ἐστὶ τῷ εἰρημένῳ περιλείμματι.

55

Ἐκκείσθωσαν γὰρ δύο κῶνοι οἱ ΜΝΞ, ΟΠΡ, καὶ ἡ μὲν βάσις τοῦ ΜΝΞ κώνου ἴση ἔστω τῇ ἐπιφανείᾳ τοῦ ΑΒΓ, τὸ δὲ ὕψος ἴσον τῇ △Η διὰ δὴ τὰ προδειχθέντα ἴσος ἐστὶν ὁ ΜΝΞ κῶνος τῷ ΑΒΓ△ ῥόμβῳ, τοῦ δὲ ΟΠΡ κώνου ἡ μὲν βάσις ἴση ἔστω τῇ ἐπιφανείᾳ τοῦ ΕΒΖ κώνου, τὸ δὲ ὕψος ἴσον τῇ △Η ὁμοίως δὴ ἴσος ἐστὶν ὁ ΟΠΡ κῶνος τῷ ΕΒ△Ζ ῥόμβῳ. Ἐπεὶ δὲ ὁμοίως ἡ ἐπιφάνεια τοῦ ΑΒΓ κώνου σύγκειται ἔκ τε τῆς τοῦ ΕΒΖ καὶ τῆς μεταξὺ τῶν ΕΖ, ΑΓ, ἀλλὰ ἡ μὲν τοῦ ΑΒΓ κώνου ἐπιφάνεια ἴση ἐστὶ τῇ βάσει τοῦ ΜΝΞ, ἡ δὲ τοῦ ΕΒΖ κώνου ἐπιφάνεια ἴση ἐστὶ τῇ βάσει τοῦ ΟΡΠ κώνου, ἡ δὲ μεταξὺ τῶν ΕΖ, ΑΓ ἴση ἐστὶ τῇ βάσει τοῦ ΘΚΛ, ἡ ἄρα βάσις τοῦ ΜΝΞ ἴση ἐστὶ ταῖς βάσεσιν τῶν ΟΠΡ, ΘΚΛ. Καί εἰσιν οἱ κῶνοι ὑπὸ τὸ αὐτὸ ὕψος· καὶ ὁ ΜΝΞ ἄρα κῶνος ἴσος ἐστὶ τοῖς ΘΚΛ, ΟΠΡ κώνοις. Ἀλλʼ ὁ μὲν ΜΝΞ κῶνος ἴσος ἐστὶ τῷ ΑΒΓ△ ῥόμβῳ, ὁ δὲ ΟΠΡ κῶνος τῷ ΕΒ△Ζ ῥόμβῳ· λοιπὸς ἄρα ὁ κῶνος ὁ ΘΚΛ ἴσος ἐστὶ τῷ περιλείμματι τῷ λοιπῷ.

56

Ἐὰν εἰς κύκλον πολύγωνον ἐγγραφῇ ἀρτιόπλευρόν τε καὶ ἰσόπλευρον, καὶ διαχθῶσιν εὐθεῖαι ἐπιζευγνύουσα τὰς πλευρὰς τοῦ πολυγώνου, ὥστε αὐτὰς παραλλήλους εἶναι μιᾷ ὁποιᾳοῦν τῶν ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινουσῶν, αἱ ἐπιζευγνύουσαι πᾶσαι πρὸς τὴν τοῦ κύκλου διάμετρον τοῦτον ἔχουσι τὸν λόγον, ὃν ἔχει ἡ ὑποτείνουσα τὰς μιᾷ ἐλάσσονας τῶν ἡμίσεων πρὸς τὴν πλευρὰν τοῦ πολυγώνου.

Ἔστω κύκλος ὁ ΑΒΓ△, καὶ ἐν αὐτῷ πολύγωνον ἐγγεγράφθω τὸ ΑΕΖΒΗΘΓΜΝ△ΛΚ, καὶ ἐπεζεύχθωσαν αἱ ΕΚ ΖΛ, Β△, ΗΝ, ΘΜ· δῆλον δὴ ὅτι παράλληλοί εἰσιν τῇ ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινούσῃ· λέγω οὖν ὅτι αἱ εἰρημέναι πᾶσαι πρὸς τὴν τοῦ κύκλου διάμετρον τὴν ΑΓ τὸν αὐτὸν λόγον ἔχουσι τῷ τῆς ΓΕ πρὸς ΕΑ.

Ἐπεζεύχθωσαν γὰρ αἱ ΖΚ, ΛΒ, Η△, ΘΝ· παράλληλος ἄρα ἡ μὲν ΖΚ τῇ ΕΑ, ἡ δὲ ΒΛ τῇ ΖΚ, καὶ ἔτι ἡ μὲν △Η τῇ ΒΛ, ἡ δὲ ΘΝ τῇ △Η, καὶ ἡ ΓΜ τῇ ΘΝ καὶ ἐπεὶ δύο παράλληλοί εἰσιν αἱ ΕΑ, ΚΖ, καὶ δύο διηγμέναι εἰσὶν αἱ ΕΚ,

57
ΑΟ, ἔστιν ἄρα, ὡς ἡ ΕΞ πρὸς ΞΑ, ἡ ΚΞ πρὸς ΞΟ. Ὡς δ᾿  ἡ ΚΞ πρὸς ΞΟ, ἡ ΖΠ πρὸς ΠΟ, ὡς δὲ ἡ ΖΠ πρὸς ΠΟ, ἡ ΛΠ πρὸς ΠΡ, ὡς δὲ ἡ ΛΠ πρὸς ΠΡ, οὕτως ἡ ΒΣ πρὸς ΣΡ, καὶ ἔτι ὡς ἡ μὲν ΒΣ πρὸς ΣΡ, ἡ △Σ πρὸς ΣΓ, ὡς δὲ ἡ △Σ πρὸς ΣΤ, ἡ ΗΥ πρὸς ΥΤ, καὶ ἔτι ὡς ἡ μὲν ΗΥ πρὸς ΥΤ, ἡ ΝΥ πρὸς ΥΦ, ὡς δὲ ἡ ΝΥ πρὸς ΥΦ, ἡ ΘΧ πρὸς ΧΦ, καὶ ἔτι ὡς μὲν ἡ ΘΧ πρὸς ΧΦ, ἡ ΜΧ πρὸς ΧΓ καὶ πάντα ἄρα πρὸς πάντα ἐστὶν ὡς εἷς τῶν λόγων πρὸς ἕνα· ὡς ἄρα ἡ ΕΞ πρὸς ΞΑ, οὕτως αἱ ΕΚ, ΖΛ, Β△, ΗΝ, ΘΜ πρὸς τὴν ΑΓ διάμετρον. Ὡς δὲ ἡ ΕΞ πρὸς ΞΑ, οὕτως ἡ ΓΕ πρὸς ΕΑ· ἔσται ἄρα καὶ ὡς ἡ ΓΕ πρὸς ΕΑ, οὕτω πᾶσαι αἱ ΕΚ, ΖΛ, Β△, ΗΝ, ΘΜ πρὸς τὴν ΑΓ διάμετρον.

Ἐὰν εἰς τμῆμα κύκλου πολύγωνον ἐγγραφῇ τὰς πλευρὰς ἔχον χωρὶς τῆς βάσεως ἴσας καὶ ἀρτίους, ἀχθῶσιν δὲ εὐθεῖαι παρὰ τὴν βάσιν τοῦ τμήματος αἱ τὰς πλευρὰς ἐπιζευγνύουσαι τοῦ πολυγώνου, αἱ ἀχθεῖσαι πᾶσαι καὶ ἡ ἡμίσεια τῆς βάσεως πρὸς τὸ ὕψος τοῦ τμήματος τὸν αὐτὸν λόγον ἔχουσιν, ὃν ἡ ἀπὸ τῆς διαμέτρου τοῦ κύκλου ἐπὶ τὴν πλευρὰν τοῦ πολυγώνου ἐπιζευγνυμένη πρὸς τὴν τοῦ πολυγώνου πλευράν.

Εἰς γὰρ κύκλον τὸν ΑΒΓ△ διήχθω τις εὐθεῖα ἡ ΑΓ, καὶ ἐπὶ τῆς ΑΓ πολύγωνον ἐγγεγράφθω εἰς τὸ ΑΒΓ τμῆμα ἀρτιόπλευρόν τε καὶ ἴσας ἔχον τὰς πλευρὰς χωρὶς τῆς βάσεως τῆς ΑΓ, καὶ ἐπεζεύχθωσαν αἱ ΖΗ, ΕΘ, αἵ εἰσιν παράλληλοι τῇ βάσει τοῦ τμήματος· λέγω ὅτι ἐστὶν ὡς αἱ ΖΗ, ΕΘ, ΑΞ πρὸς ΒΞ, οὕτως ἡ △Ζ πρὸς ΖΒ.

58

Πάλιν γὰρ ὁμοίως ἐπεζεύχθωσαν αἱ ΗΕ, ΑΘ· παράλληλοι ἄρα εἰσὶν τῇ ΒΖ· διὰ δὴ ταὐτά ἐστιν, ὡς ἡ ΚΖ πρὸς ΚΒ, ἥ τε ΗΚ πρὸς ΚΛ καὶ ἡ ΕΜ πρὸς ΜΛ καὶ ἡ ΜΘ πρὸς ΜΝ καὶ ἡ ΞΑ πρὸς ΞΝ καὶ ὡς ἄρα πάντα πρὸς πάντα, εἷς τῶν λόγων πρὸς ἕνα· ὡς ἄρα αἱ ΖΗ, ΕΘ, ΑΞ πρὸς ΒΞ, οὕτως ἡ ΖΚ πρὸς ΚΒ. Ὡς δὲ ἡ ΖΚ πρὸς ΚΒ, οὕτως ἡ △Ζ πρὸς ΖΒ· ὡς ἄρα ἡ △Ζ πρὸς ΖΒ, οὕτως αἱ ΖΗ, ΕΘ, ΑΞ πρὸς ΞΒ.

Ἔστω ἐν σφαίρᾳ μέγιστος κύκλος ὁ ΑΒΓ△, καὶ ἐγγεγράφθω εἰς αὐτὸν πολύγωνον ἰσόπλευρον, τὸ δὲ πλῆθος τῶν πλευρῶν αὐτοῦ μετρείσθω ὑπὸ τετράδος, αἱ δὲ ΑΓ, △Β διάμετροι ἔστωσαν. Ἐὰν δὴ μενούσης τῆς ΑΓ διαμέτρου περιενεχθῇ ὁ ΑΒΓ△ κύκλος ἔχων τὸ πολύγωνον, δῆλον ὅτι ἡ μὲν περιφέρεια αὐτοῦ κατὰ τῆς ἐπιφανείας τῆς σφαίρας ἐνεχθήσεται, αἱ δὲ τοῦ πολυγώνου γωνίαι χωρὶς τῶν πρὸς τοῖς Α, Γ σημείοις κατὰ κύκλων περιφερειῶν ἐνεχθήσονται ἐν τῇ ἐπιφανείᾳ τῆς σφαίρας γεγραμμένων ὀρθῶν

59
πρὸς τὸν ΑΒΓ△ κύκλον· διάμετροι δὲ αὐτῶν ἔσονται αἱ ἐπιζευγνύουσαι τὰς γωνίας τοῦ πολυγώνου παρὰ τὴν Β△ οὖσαι. Αἱ δὲ τοῦ πολυγώνου πλευραὶ κατά τινων κώνων ἐνεχθήσονται, αἱ μὲν ΑΖ, ΑΝ κατʼ ἐπιφανείας κώνου, οὗ βάσις μὲν ὁ κύκλος ὁ περὶ διάμετρον τὴν ΖΝ, κορυφὴ δὲ τὸ Α σημεῖον, αἱ δὲ ΖΗ, ΜΝ κατά τινος κωνικῆς ἐπιφανείας οἰσθήσονται, ἧς βάσις μὲν ὁ κύκλος ὁ περὶ διάμετρον τὴν ΜΗ, κορυφὴ δὲ τὸ σημεῖον, καθʼ ὃ συμβάλλουσιν ἐκβαλλόμεναι αἱ ΖΗ, ΜΝ ἀλλήλαις τε καὶ τῇ ΑΓ, αἱ δὲ ΒΗ, Μ△ πλευραὶ κατὰ κωνικῆς ἐπιφανείας οἰσθήσονται, ἧς βάσις μέν ἐστιν ὁ κύκλος ὁ περὶ διάμετρον τὴν Β△ ὀρθὸς πρὸς τὸν ΑΒΓ△ κύκλον, κορυφὴ δὲ τὸ σημεῖον, καθ᾿  ὃ συμβάλλουσιν ἐκβαλλόμεναι αἱ ΒΗ, △Μ ἀλλήλαις τε καὶ τῇ ΓΑ· ὁμοίως δὲ καὶ αἱ ἐν τῷ ἑτέρῳ ἡμικυκλίῳ πλευραὶ κατὰ κωνικῶν ἐπιφανειῶν οἰσθήσονται πάλιν ὁμοίων ταύταις. Ἔσται δή τι σχῆμα ἐγγεγραμμένον ἐν τῇ σφαίρᾳ ὑπὸ κωνικῶν ἐπιφανειῶν περιεχόμενον τῶν προειρημένων, οὗ ἡ ἐπιφάνεια ἐλάσσων ἔσται τῆς ἐπιφανείας τῆς σφαίρας.

60

Διαιρεθείσης γὰρ τῆς σφαίρας ὑπὸ τοῦ ἐπιπέδου τοῦ κατὰ τὴν Β△ ὀρθοῦ πρὸς τὸν ΑΒΓ△ κύκλον ἡ ἐπιφάνεια τοῦ ἑτέρου ἡμισφαιρίου καὶ ἡ ἐπιφάνεια τοῦ σχήματος τοῦ ἐν αὐτῷ ἐγγεγραμμένου τὰ αὐτὰ πέρατα ἔχουσιν ἐν ἑνὶ ἐπιπέδῳ· ἀμφοτέρων γὰρ τῶν ἐπιφανειῶν πέρας ἐστὶν τοῦ κύκλου ἡ ἐπιφάνεια τοῦ περὶ διάμετρον τὴν Β△ ὀρθοῦ πρὸς τὸν ΑΒΓ△ κύκλον καί εἰσιν ἀμφότεραι ἐπὶ τὰ αὐτὰ κοῖλαι, καὶ περιλαμβάνεται αὐτῶν ἡ ἑτέρα ὑπὸ τῆς ἑτέρας ἐπιφανείας καὶ τῆς ἐπιπέδου τῆς τὰ αὐτὰ πέρατα ἐχούσης αὐτῇ. Ὁμοίως δὲ καὶ τοῦ ἐν τῷ ἑτέρῳ ἡμισφαιρίῳ σχήματος ἡ ἐπιφάνεια ἐλάσσων ἐστὶν τῆς τοῦ ἡμισφαιρίου ἐπιφανείας· καὶ ὅλη οὖν ἡ ἐπιφάνεια τοῦ σχήματος τοῦ ἐν τῇ σφαίρᾳ ἐλάσσων ἐστὶν τῆς ἐπιφανείας τῆς σφαίρας.

Ἡ τοῦ ἐγγραφομένου σχήματος εἰς τὴν σφαῖραν ἐπιφάνεια ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ περιεχόμενον ὑπό τε τῆς πλευρᾶς τοῦ σχήματος καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς πλευρὰς τοῦ πολυγώνου παραλλήλοις οὔσαις τῇ ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινούσῃ εὐθείᾳ.

Ἔστω ἐν σφαίρᾳ μέγιστος κύκλος ὁ ΑΒΓ△, καὶ ἐν αὐτῷ πολύγωνον ἐγγεγράφθω ἰσόπλευρον, οὗ αἱ πλευραὶ ὑπὸ τετράδος μετροῦνται, καὶ ἀπὸ τοῦ πολυγώνου τοῦ ἐγγεγραμμένου νοείσθω τι εἰς τὴν σφαῖραν ἐγγραφὲν σχῆμα, καὶ ἐπεζεύχθωσαν αἱ ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ παράλληλοι οὖσαι τῇ ὑπὸ δύο πλευρὰς ὑποτεινούσῃ εὐθείᾳ, κύκλος δέ τις ἐκκείσθω ὁ Ξ, οὗ ἡ ἐκ τοῦ κέντρου δυνάσθω

61
τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ τῆς ἴσης ταῖς ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ· λέγω ὅτι ὁ κύκλος οὗτος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ εἰς τὴν σφαῖραν ἐγγραφομένου σχήματος.

Ἐκκείσθωσαν γὰρ κύκλοι οἱ Ο, Π, Ρ, Σ, Τ, Υ, καὶ τοῦ μὲν Ο ἡ ἐκ τοῦ κέντρου δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΕΑ καὶ τῆς ἡμισείας τῆς ΕΖ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Π δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΕΑ καὶ τῆς ἡμισείας τῶν ΕΖ, ΗΘ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Ρ δυνάσθω τὸ περιεχόμενον ὑπὸ τῆς ΕΑ καὶ τῆς ἡμισείας τῶν ΗΘ, Γ△, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Σ δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΕΑ καὶ τῆς ἡμισείας τῶν Γ△, Κ△, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Τ δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ τῆς ἡμισείας τῶν ΚΛ, ΜΝ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Υ δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ τῆς ἡμισείας τῆς ΜΝ. Διὰ δὴ ταῦτα ὁ μὲν Ο κύκλος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ ΑΕΖ κώνου, ὁ δὲ Π τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν ΕΖ, ΗΘ, ὁ δὲ Ρ τῇ μεταξὺ τῶν ΗΘ, Γ△, ὁ δὲ Σ τῇ μεταξὺ τῶν △Γ, ΚΛ, καὶ ἔτι ὁ μὲν Τ ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν ΚΛ, ΜΝ, ὁ δὲ Υ τῇ τοῦ ΜΒΝ κώνου ἐπιφανείᾳ ἴσος ἐστίν· οἱ πάντες ἄρα κύκλοι ἴσοι εἰσὶν τῇ τοῦ ἐγγεγραμμένου σχήματος ἐπιφανείᾳ. Καὶ φανερὸν ὅτι αἱ ἐκ τῶν κέντρων τῶν Ο, Π, Ρ, Σ, Τ

62
κύκλων δύνανται τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ δὶς τῶν ἡμίσεων τῆς ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ, αἳ ὅλαι εἰσὶν αἱ ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ· αἱ ἄρα ἐκ τῶν κέντρων τῶν Ο, Π, Ρ, Σ, Τ, Υ κύκλων δύνανται τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ πασῶν τῶν ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ. Ἀλλὰ καὶ ἡ ἐκ τοῦ κέντρου τοῦ Ξ κύκλου δύναται τὸ ὑπὸ τῆς ΑΕ καὶ τῆς συγκειμένης ἐκ πασῶν τῶν ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ· ἡ ἄρα ἐκ τοῦ κέντρου τοῦ Ξ κύκλου δύναται τὰ ἀπὸ τῶν ἐκ τῶν κέντρων τῶν Ο, Π, Ρ, Σ, Τ, Υ κύκλων· καὶ ὁ κύκλος ἄρα ὁ Ξ ἴσος ἐστὶ τοῖς Ο, Π, Ρ, Σ, Τ, Υ κύκλοις. Οἱ δὲ Ο, Π, Ρ, Σ, Τ, Υ κύκλοι ἀπεδείχθησαν ἴσοι τῇ εἰρημένῃ τοῦ σχήματος ἐπιφανείᾳ· καὶ ὁ Ξ ἄρα κύκλος ἴσος ἔσται τῇ ἐπιφανείᾳ τοῦ σχήματος.