Conica

Apollonius of Perga

Apollonii Pergaei Quae Graece Exstant, Volume 2. Heiberg, J. L., editor. Leipzig: Teubner, 1893.

Ἐὰν κώνου τομὴ ἢ κύκλου περιφέρεια μιᾷ τῶν ἀντικειμένων συμπίπτῃ, τῇ λοιπῇ αὐτῶν οὐ συμπεσεῖται κατὰ πλείονα σημεῖα ἢ δύο.

ἔστωσαν ἀντικείμεναι αἱ Α, Β, καὶ συμβαλλέτω τῇ Α κώνου τομὴ ἢ κύκλου περιφέρεια ἡ ΑΒΓ καὶ τεμνέτω τὴν Β ἀντικειμένην κατὰ τὰ Β, Γ. λέγω, ὅτι κατ’ ἄλλο σημεῖον οὐ συμπεσεῖται τῇ ΒΓ.

εἰ γὰρ δυνατόν, συμπιπτέτω κατὰ τὸ Δ. ἡ ἄρα ΒΓΔ τῇ ΒΓ τομῇ συμβάλλει κατὰ πλείονα σημεῖα ἢ δύο μὴ ἐπὶ τὰ αὐτὰ ἔχουσα τὰ κοῖλα· ὅπερ ἀδύνατον. ὁμοίως δὲ δειχθήσεται, καὶ ἐὰν ἡ ΑΒΓ γραμμὴ τῆς ἀντικειμένης ἐφάπτηται.

Κώνου τομὴ ἢ κύκλου περιφέρεια ταῖς ἀντικειμέναις οὐ συμπεσεῖται κατὰ πλείονα σημεῖα ἢ τέσσαρα.

φανερὸν δὲ τοῦτο ἐκ τοῦ τῇ μιᾷ τῶν ἀντικειμένων συμπίπτουσαν αὐτὴν τῇ λοιπῇ κατὰ πλείονα δυεῖν μὴ συμπίπτειν.

Ἐὰν κώνου τομὴ ἤ κύκλου περιφέρεια μιᾶς τῶν ἀντικειμένων ἐφάπτηται τοῖς κοίλοις αὐτῆς, τῇ ἑτέρᾳ τῶν ἀντικειμένων οὐ συμπεσεῖται.

ἔστωσαν ἀντικείμεναι αἱ Α, Β, καὶ τῆς Α τομῆς ἐφαπτέσθω ἡ ΓΑΔ. λέγω, ὅτι ἡ ΓΑΔ τῇ Β οὐ συμπεσεῖται.

ἤχθω ἀπὸ τοῦ Α ἐφαπτομένη ἡ ΕΑΖ. ἑκατέρας δὴ τῶν γραμμῶν ἐπιψαύει κατὰ τὸ Α· ὥστε οὐ συμπεσεῖται τῇ Β. ὥστε οὐδὲ ἡ ΓΑΔ.

Ἐὰν κώνου τομὴ ἢ κύκλου περιφέρεια ἑκατέρας τῶν ἀντικειμένων καθ’ ἕν ἐφάπτηται σημεῖον, καθ’ ἕτερον οὐ συμπεσεῖται ταῖς ἀντικειμέναις.

ἔστωσαν ἀντικείμεναι αἱ Α, Β, καὶ κώνου τομὴ ἢ κύκλου περιφέρεια ἐφαπτέσθω ἑκατέρας τῶν Α, Β κατὰ τὰ Α, Β. λέγω, ὅτι ἡ ΑΒΓ γραμμὴ καθ’ ἕτερον οὐ συμπεσεῖται ταῖς Α, Β τομαῖς.

ἐπεὶ οὖν ἡ ΑΒΓ γραμμὴ τῆς Α τομῆς ἐφάπτεται καθ’ ἓν συμπίπτουσα καὶ τῇ Β, τῆς Α ἄρα τομῆς οὐκ

ἐφάψεται κατὰ τὰ κοῖλα. ὁμοίως δὴ δειχθήσεται, ὅτι οὐδὲ τῆς Β. ἤχθωσαν τῶν Α, Β τομῶν ἐφαπτόμεναι αἱ ΑΔ, ΒΕ· αὗται δὴ ἐφάψονται τῆς ΑΒΓ γραμμῆς. εἰ γὰρ δυνατόν, τεμνέτω ἡ ἑτέρα αὐτῶν, καὶ ἔστω ἡ ΑΖ. μεταξὺ ἄρα τῆς ΑΖ ἐφαπτομένης καὶ τῆς Α τομῆς παρεμπέπτωκεν εὐθεῖα ἡ ΑΗ· ὅπερ ἀδύνατον. ἐφάψονται ἄρα τῆς ΑΒΓ, καὶ διὰ τοῦτο φανερόν, ὅτι ἡ ΑΒΓ καθ’ ἕτερον οὐ συμβάλλει ταῖς Α, Β ἀντικειμέναις.

Ἐὰν ὑπερβολὴ μιᾷ τῶν ἀντικειμένων κατὰ δύο σημεῖα συμπίπτῃ ἀντεστραμμένα τὰ κυρτὰ ἔχουσα, ἡ ἀντικειμένη αὐτῇ οὐ συμπεσεῖται τῇ ἑτέρᾳ τῶν ἀντικειμένων.

ἔστωσαν ἀντικείμεναι αἱ ΑΒΔ, Ζ, καὶ ὑπερβολὴ ἡ ΑΒΓ τῇ ΑΒΔ συμβαλλέτω κατὰ τὰ Α, Β σημεῖα ἀντεστραμμένα ἔχουσα τὰ κυρτὰ τοῖς κοίλοις, καὶ τῆς ΑΒΓ ἔστω ἀντικειμένη ἡ Ε. λέγω, ὅτι οὐ συμπεσεῖται τῇ Ζ. ἐπεζεύχθω ἡ AΒ καὶ ἐκβεβλήσθω ἐπὶ τὸ Η. ἐπεὶ οὖν ὑπερβολὴν τὴν Α Β Δ εὐθεῖα τέμνει ἡ ΑΒΗ, ἐκβαλλομένη δὲ ἐφ’ ἑκάτερα ἐκτὸς πίπτει τῆς τομῆς, οὐ συμπεσεῖται τῇ Ζ τομῇ. ὁμοίως δὴ

διὰ τὴν ΑΒΓ ὑπερβολὴν οὐδὲ τῇ Ε ἀντικειμένῃ συμπίπτει. οὐδὲ ἡ Ε ἄρα τῇ Ζ συμπεσεῖται.

Ἐὰν ὑπερβολὴ ἑκατέρᾳ τῶν ἀντικειμένων συμπίπτῃ, ἡ ἀντικειμένη αὐτῇ οὐδετέρᾳ τῶν ἀντικειμένων συμπεσεῖται κατὰ δύο σημεῖα.

ἔστωσαν ἀντικείμεναι αἱ Α, Β, καὶ ἡ ΑΓΒ ὑπερβολὴ συμπιπτέτω ἑκατέρᾳ τῶν Α, Β ἀντικειμένων. λέγω, ὅτι ἡ τῇ ΑΓΒ ἀντικειμένη οὐ συμβάλλει ταῖς Α, Β τομαῖς κατὰ δύο σημεῖα.

εἰ γὰρ δυνατόν, συμβαλλέτω κατὰ τὰ Δ, Ε, καὶ ἐπιζευχθεῖσα ἡ ΔΕ ἐκβεβλήσθω. διὰ μὲν δὴ τὴν ΔΕ τομὴν οὐ συμπεσεῖται ἡ ΔΕ εὐθεῖα τῇ ΑΒ τομῇ, διὰ δὲ τὴν ΑΕΔ οὐ συμπεσεῖται τῇ Β· διὰ γὰρ τῶν τριῶν τόπων ἐλεύσεται· ὅπερ ἀδύνατον. ὁμοίως δὴ δειχθήσεται, ὅτι οὐδὲ τῇ Β τομῇ κατὰ δύο σημεῖα συμπεσεῖται.

διὰ τὰ αὐτὰ δὴ οὐδὲ ἐφάψεται ἑκατέρας αὐτῶν. ἀγαγόντες γὰρ ἐπιψαύουσαν τὴν ΘΕ ἐφάπτεται μὲν αὕτη ἑκατέρας τῶν τομῶν· ὥστε διὰ μὲν τὴν ΔΕ οὐ συμπεσεῖται τῇ ΑΓ, διὰ δὲ τὴν ΑΕ οὐ συμβάλλει τῇ Β. ὥστε οὐδὲ ἡ ΑΓ τῇ Β συμβάλλει· ὅπερ οὐχ ὑπόκειται.