Conica

Apollonius of Perga

Apollonii Pergaei Quae Graece Exstant, Volume 2. Heiberg, J. L., editor. Leipzig: Teubner, 1893.

Τῶν αὐτῶν ὄντων ἔστω τὸ Δ σημεῖον ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης, καὶ τὰ λοιπὰ τὰ αὐτὰ γινέσθω.

λέγω, ὅτι ἡ ἀπὸ τοῦ Ζ ἐπὶ τὸ Γ ἐπιζευγνυμένη ἐκβαλλομένη συμπεσεῖται τῇ ἀντικειμένῃ τομῇ, καὶ ἡ ἀπὸ τῆς συμπτώσεως ἐπὶ τὸ Δ ἐφάψεται τῆς ἀντικειμένης τομῆς.

ἔστω γὰρ τὰ αὐτὰ, καὶ τὸ Δ σημεῖον ἐν τῇ ἐφεξῆς γωνίᾳ τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης, καὶ ἤχθω ἀπὸ τοῦ Δ ἐφαπτομένη τῆς Α τομῆς ἡ ΔΕ, καὶ ἐπεζεύχθω ἡ ΕΖ καὶ ἐκβαλλομένη, εἰ δυνατόν, μὴ ἐρχέσθω ἐπὶ τὸ Γ, ἀλλ’ ἐπὶ τὸ Η. ἔσται δή, ὡς ἡ ΑΗ πρὸς ΗΒ, ἡ ΑΔ πρὸς ΔΒ· ὅπερ ἄτοπον· ὑπόκειται γάρ, ὡς ἡ ΑΔ πρὸς ΔΒ, ἡ ΑΓ πρὸς ΓΒ.

Τῶν αὐτῶν ὄντων ἔστω τὸ Δ σημεῖον ἐπί τινος τῶν ἀσυμπτώτων.

λέγω, ὅτι ἡ ἀπὸ τοῦ Ζ ἐπὶ τὸ Γ ἀγομένη παράλληλος ἔσται τῇ ἀσυμπτώτῳ, ἐφ’ ἧς ἐστι τὸ σημεῖον.

ἔστωσαν τὰ αὐτὰ ἔσται τῇ ἀσυμπτώτῳ, ἔστωσαν τὰ αὐτὰ τοῖς ἔμπροσθεν, τὸ δὲ Δ σημεῖον ἐπὶ μιᾶς τῶν ἀσυμπτώτων, καὶ ἤχθω διὰ τοῦ Ζ παράλληλος, καὶ εἰ δυνατόν, μὴ πιπτέτω ἐπὶ τὸ Γ, ἀλλ’ ἐπὶ τὸ Η. ἔσται δή, ὡς ἡ ΑΔ πρὸς ΔΒ, ἡ ΑΗ πρὸς ΗΒ· ὅπερ ἄτοπον. ἡ ἄρα ἀπὸ τοῦ Ζ παρὰ τὴν ἀσύμπτωτον ἐπὶ τὸ Γ πίπτει.

Ἐὰν ἐν ἀντικειμέναις ληφθῇ τι σημεῖον μεταξὺ τῶν δύο τομῶν, καὶ ἀπ’ αὐτοῦ δύο εὐθεῖαι διαχθῶσι τέμνουσαι ἑκατέραν τῶν τομῶν, καὶ ὡς ἔχουσιν αἱ μεταξὺ τῆς μιᾶς τομῆς πρὸς τὰς μεταξὺ τῆς ἑτέρας τομῆς καὶ τοῦ αὐτοῦ σημείου, οὕτως ἔχωσιν αἱ μείζους τῶν ἀπολαμβανομένων μεταξὺ τῶν ἀντικειμένων πρὸς τὰς ὑπεροχὰς αὐτῶν, ἡ διὰ τῶν περάτων ἀγομένη εὐθεῖα τῶν μειζόνων εὐθειῶν ταῖς τομαῖς συμπεσεῖται, καὶ αἱ ἀπὸ τῶν συμπτώσεων ἐπὶ τὸ ληφθὲν σημεῖον ἀγόμεναι εὐθεῖαι ἐφάψονται τῶν γραμμῶν.

ἔστωσαν ἀντικείμεναι αἱ Α, Β, καὶ τὸ Δ σημεῖον μεταξὺ τῶν τομῶν. πρότερον ὑποκείσθω ἐν τῇ ὑπὸ τῶν ἀσυμπτώτων περιεχομένῃ γωνίᾳ, καὶ διὰ τοῦ Δ διήχθωσαν αἱ ΑΔΒ, ΓΔΘ. μείζων ἄρα ἐστὶν ἡ μὲν ΑΔ τῆς ΔΒ, ἡ δὲ ΓΔ τῆς ΔΘ, διότι ἴση ἐστὶν ἡ ΒΝ

τῇ ΑΜ. καὶ ὃν μὲν ἔχει λόγον ἡ ΑΔ πρὸς ΔΒ, ἐχέτω ἡ ΑΚ πρὸς ΚΒ, ὃν δὲ ἔχει λόγον ἡ ΓΑ πρὸς ΔΘ, ἐχέτω ἡ ΓΗ πρὸς ΗΘ. λέγω, ὅτι ἡ διὰ τῶν Κ, Η συμπεσεῖται τῇ τομῇ, καὶ αἱ ἀπὸ τοῦ Δ ἐπὶ τὰς συμπτώσεις ἐφάψονται τῆς τομῆς. ἐπεὶ γὰρ τὸ Δ ἐντός ἐστι τῆς ὑπὸ τῶν ἀσυμπτώτων περιεχομένης γωνίας, δυνατὸν ἀπὸ τοῦ Δ δύο ἐφαπτομένας ἀγαγεῖν. ἤχθωσαν αἱ ΔΕ, ΔΖ, καὶ ἐπεζεύχθω ἡ ΕΖ· ἐλεύσεται δὴ διὰ τῶν Κ, Η σημείων [εἰ γὰρ μή, ἢ διὰ τοῦ ἑνὸς αὐτῶν ἐλεύσεται μόνου ἢ δι’ οὐδετέρου]. εἰ μὲν γὰρ δι’ ἑνὸς αὐτῶν μόνου, ἡ ἑτέρα τῶν εὐθειῶν εἰς τὸν αὐτὸν λόγον τμηθήσεται καθ’ ἕτερον σημεῖον· ὅπερ ἀδύνατον· εἰ δὲ δι’ οὐδετέρου, ἐπ’ ἀμφοτέρων τὸ ἀδύνατον συμβήσεται.