Introductio arithmetica

Nicomachus of Gerasa

Nicomachus of Gerasa. Introductio arithmetica. Hoche, Richard, editor. Leipzig: Teubner, 1866.

ιβ. Καὶ περὶ μὲν τῆς τῶν πολυγώνων φύσεως Xl τῶν ἐπιπέδων ἱκανὰ ταῦτα ὡς ἐν πρώτῃ εἰςαγωγῇ· ὅτι δὲ συμφωνοτάτη διδασκαλία ἡ περὶ αὐτῶν τῇ γραμμικῇ καὶ οὐκ ἀπᾴδουσα, δῆλον ἂν εἴη οὐ μόνον [*](XII. lo. Phil. rec. l, μβ—μδ; rec. lI, λ—λγ. — Iambl. p. 86—101. — Boëth. II. 10. 11.) [*](1. ριβ, ρμη om. H — 2. ὀκταγώνιοι — haec sche- mata adponit G: α β γ δ ε ϛ ζ η θ ι ια ιβ ιγ ιδ ιε ιϚ ιζ ιη ιθ κ κα 5. τὸ αὐτὸ SH) [*](XII. 15. συμφωνότατος H — παῤ αὐτῶν C)

96
ἐκ τῆς σχηματογραφίας τῆς καθʼ ἕκαστον, ἀλλὰ κἀκεῖθεν· πᾶν τετράγωνον σχῆμα διαγωνίως διαιρεθὲν εἰς δύο τρίγωνα λύεται καὶ πᾶς τετράγωνος ἀριθμὸς εἰς δύο τριγώνους συνεχεῖς λύεται καὶ ἐξ ἄρα δύο τριγώνων συνεχῶν συνέστηκεν· οἷον τρίγωνοι μέν εἰσιν
  • α, γ, Ϛ, ι, ιε, κα, κη, λϚ, με, νε
  • καὶ οἱ ἑξῆς, τετράγωνοι δὲ
  • α, δ, θ, ιϚ, κε, λϚ, μθ, ξδ, πα, ρ
  • δύο δή, οὓς ἂν θέλῃς, τριγώνους συνεχεῖς ἀλλήλοις συνθεὶς πάντως τετράγωνον ποιήσεις καὶ ὁντινοῦν τετράγωνον ἄρα διαλύσας δυνήσῃ δύο ἀπʼ αὐτῶν τριγώνους ποιῆσαι· καὶ πάλιν παντὶ τετραγώνῳ σχήματι τρίγωνον προςζευχθὲν ὁθενοῦν πεντάγωνον ποιεῖ, οἷον τῷ δ τετραγώνῳ ὁ α τρίγωνος προςζευχθεὶς τὸν ε πεντάγωνον ποιεῖ καὶ τῷ θ τῷ ἑξῆς ὁ ἑξῆς προςτεθείς, δηλονότι ὁ γ, πεντάγωνον τὸν ιβ ποιεῖ, τῷ δὲ ιϛ ὄντι ἀκολούθῳ ὁ Ϛ ἀκόλουθος ἐπισυντεθεὶς τὸν κβ ἀκόλουθον ἀποδίδωσιν καὶ τῷ κε [*](3. Ηocce sclema codicis G: τετράγωνον εἰς δύο δια- λυόμενον τρί- γωνα. — 5. συνέστη H — 7. με, νε om. H — 9. πα, ρ om. — 10. ἐθέλοις C — 12. αὐτοῦ S — 14. τρίγωνον σχῆμα συζευχθέν — πρωτάγωνον G1 — 15. δ] τετάρτῳ G — προςζευχθεὶς] προςτεθεὶς S συντεθεὶς — 16. ε om. — 16 17. ὁ ἑξῆς om. P τῷ ἑξ. τῶ θ ὁ ἑξ. τρίτος προςτε θεὶς τὸν ἑξῆς πενταγ. ιβ S τῷ ἑξῆς τρίγωνος ὁ γ τὸν ἐξῆς τὸν ιβ πεντάγ. H — 18. ἀκολούθως H)
    97
    ὁ ι τὸν λε καὶ ἀεὶ οὕτως. κατὰ δὲ τὰ αὐτὰ κἂν τοῖς πενταγώνοις οἱ τρίγωνοι προςτιθοῖντο τῇ αὐτῇ τάξει, τοὺς εὐτάκτους γεννήσουσιν ἑξαγώνους καὶ πάλιν ἐκείνοις οἱ αὐτοὶ προςπλεκόμενοι τοὺς ἐν τάξει ἑπταγώνους ποιήσουσι καὶ μετʼ ἐκείνους τοὺς ὀκταγώνους καὶ τοῦτο ἐπʼ ἄπειρον. πρὸς δὲ ὑπόμνησιν ἐκκείσθωσαν ἡμῖν πολυγώνων στίχοι παραλλήλως γεγραμμένοι οἵδε, ὁ πρῶτος τρίγωνων, ὁ μετʼ αὐτὸν τετραγώνων, μετὰ δὲ ἀμφοτέρους πενταγώνων, εἶτα ἑξαγώνων, εἶτα ἑπταγώνων, εἶτα, εἰ ἐθέλοι τις, καὶ τῶν ἑξῆς πολυγώνων·

    μῆκος καὶ πλάτος

    τρίγωνοι α γ Ϛ ι ιε κα κη λϚ με νε

    τετράγωνο α δ θ ιϚ κε λϚ μθ ξδ πα ρ

    πεντάγωνοι α ε ιβ κβ λε να ο Ϟβ ριζ ρμε

    ἑξάγωνοι α Ϛ ιε κ με ξϚ Ϟα ρκ ρνγ ρϞ

    ἑπτάγωνοι α ζ ιη λδ νε πα ριβ ρμη ρπθ σλε

    βάθος

    ἔξεστι δὲ καὶ τῶν ἐφεξῆς πολυγώνων τὴν ἔκθεσιν ἐν [*](P) παραλλήλοις οὕτω στίχοις ποιήσασθαι. καθολικῶς γὰρ εὑρήσεις τοὺς μὲν τετραγώνους τῶν ὑπὲρ αὐτοὺς σύστημα ὄντας ὁμοταγῶν τριγώνων καὶ ἔτι τῶν ὑπερκειμένων ἐκείνοις ὁμογενῶν, οἷον [*](1. τὰ αὐτὰ] ταῦτα — 2. εἰ τρίγων προςτεθοῖντο S εἰ τρίγ, προςτίθενται H — 3, 4. καὶ πάλιν μετ᾿  H — 6. ὀκταγών. om. H — τοῦτο] οὕτως — 7 ἐκκείσθω S — παράλληλοι H — 8. οἵδε om. CH — 8. 9. ὁ μετʼ αὐτὸν] ὁ δεύτερος — 9. ἀμφότερα G — 10. εἶτα ἑξῆς ἑξαγ H — 11. θέλει SH — 13—17. schema om. PH — 18 ἔξεστι . . . πολυγ. om. H ἔξεστι γὰρ καὶ τὴν τούτων ἔκθεσιν C — ἐν om. — 19. οὕτω om. C — στίχοις] ὥςπερ τῶν πρὸ αὐτῶν add. S — ποιεῖσθαι H — 20. 21. αὐτοὺς] κειμέ- νων add. S — 22. ὑπερκειμ.] ὑπὲρ ἐκείνους κειμένων H)

    98
  • τὸν δ τοῦ γ καὶ α,
  • τὸν θ τοῦ Ϛ καὶ γ,
  • τὸν ιϚ τοῦ ι καὶ Ϛ,
  • τὸν κε τοῦ ιε καὶ ι,
  • τὸν δὲ λϚ τοῦ κα καὶ ιε
  • καὶ μέχρις ἀεὶ οὕτως· τοὺς δὲ πενταγώνους τῶν ὑπὲρ αὐτοὺς ὁμοταγῶν τετραγώνων σύστημα ὄντας καὶ προςέτι τῶν πρωτογενῶν τριγώνων, ὅσοι εἰσὶ μονάδι ἔλαττον ὁμοταγεῖς, οἷον
  • ὁ μὲν ε τοῦ δ καὶ α,
  • ὁ δὲ ιβ τοῦ θ καὶ γ,
  • ὁ δὲ κβ τοῦ ιϛ καὶ ϛ,
  • ὁ δὲ λε τοῦ κε καὶ ι
  • καὶ ἀεὶ οὕτως. πάλιν δὲ οἱ ἑξάγωνοι τῶν ὑπὲρ αὐτοὺς ὁμοταγῶν πενταγώνων καὶ τῶν προεκτεθέντων τριγώνων ὁμοίως, οἷον
  • ὁ Ϛ τοῦ ε καὶ α,
  • ὁ ιε τοῦ ιβ καὶ γ,
  • ὁ δὲ κη τοῦ κῆ καὶ Ϛ,
  • ὁ δὲ με τοῦ λε καὶ ι
  • καὶ μέχρις οὗ βούλει. τῶν δὲ ἑπταγώνων ὁ αὐτὸς τρόπος·
  • ὁ μὲν γὰρ ζ σύστημα τοῦ Ϛ καὶ α,
  • ὁ δὲ ιη τοῦ ιε καὶ γ,
  • ὁ δὲ λδ τοῦ κη καὶ Ϛ
  • καὶ οἱ ἑξῆς ἀκολούθως, ἵνα ἕκαστος πολύγωνος σύστημα τοῦ τε ὑπὲρ αὐτὸν ὁμοταγοῦς μονάδι ἐλάττονος [*](1. α] τοῦ α codd. — 3. Ϛ] τοῦ Ϛ codd. — 5. τὸν δὲ λϚ . . . ιε om. — 6. μέχρις om. H — κἂν τοῖς πενταγώ- νοις εὕροις — 8. πρωτογώνων S — 9. ἐλάττονες SH — 14. ἀεὶ οὕτως] μέχρις οὗ βούλει P — 15. πενταγώνων om. SH — προεκθέντων P — 16. οἷον om SH — 27 αὐτῶ G)
    99
    ὁμογωνίου καὶ τοῦ ἀνωτάτου τριγώνου τοῦ μονάδι ἐλάττονος ὁμοταγοῦς παῤ ἓν κειμένου. εἰκότως ἄρα στοιχεῖον πολυγώνων τὸ τρίγωνον καὶ ἐν γραμμαῖς καὶ ἐν ἀριθμοῖς· καὶ γὰρ καὶ κατὰ βάθος καὶ κατὰ πλάτος ἐν τῷ διαγράμματι εὑρίσκονται οἱ συνεχεῖς αἰεὶ ἀριθμοὶ κατὰ τοὺς στίχους αὐτούς ἔχοντες διαφορὰς τοὺς εὐτάκτους τριγώνους.

    ιγ. Ἐντεῦθεν ἤδη ῥᾴδιον συνιδεῖν, τίς τε ὁ στερεὸς ἀριθμὸς καὶ πῶς ἰσοπλεύρως ὁ τοιοῦτος προκόπτει· ὁ γὰρ πρὸς τοῖς δυσὶ διαστήμασι τοῖς ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ θεωρουμένοις ἐπὶ μῆκος καὶ ἐπὶ πλάτος τρίτον διάστημα προςειληφώς, ὅ τινες μὲν βάθος, τινὲς δὲ πάχος καλοῦσιν, ἔνιοι δὲ ὕψος, ἐκεῖνος ἂν εἴη στερεὸς ἀριθμὸς ὁ τριχῆ διαστατὸς καὶ ἔχων ἐν ἑαυτῷ μῆκος, βάθος, πλάτος.

    Πρώτιστα δὲ οὗτος φαντάζεται ἐν ταῖς λεγομέναις πυραμίσιν. αὗται δὲ γίνονται ἐκ πλατυτέρων βάσεων μειουριζόμεναι εἰς ὀξεῖαν κορυφήν, πρῶτον μὲν κατὰ τριγωνισμὸν ἀπὸ τριγώνου βάσεως, δεύτερον δὲ κατὰ τετραγωνισμὸν ἀπὸ τετραγώνου βάσεως, ἑξῆς δὲ τούτοις κατὰ πενταγωνισμὸν ἀπὸ [*](XIII. Io Phil. rec. I, με, μϚ; rec. II, λδ, λε. — Iambl. p 131—138. — Theon. 28 —30. — Boëth. II. 12— 14.) [*](1. ὁμογωνίου] -ώνου πολυγώνου C — ἀνωτάτου om. C — 2. [μον. ἐλάττ.] delenda censeo; librarii negle- gentia repetita sunt. — παῤ ἓν κειμένου] τῷ πολυγώνῳ τριγώνου CH, om S — 5. καὶ κ. πλάτος, quae Ast deleuit, tuetur Io. Phil. I, μδ (II, λγ) — 6. καὶ κατὰ G) [*](XIII. Περὶ στερεῶν Ϲμ — 9. ἰσόπλευρος P — 14. στερεὸς om. P) [*](XIII, 2. Περὶ πυραμίδων Ϲμ — 17. πλατυτ.] ἐπι- ει πέδων βάσ. add. H — 18. μειουριζομένων GS μυουριζό- μεναι C — 20. βάσεως om. H δεύτερος . . . βάσεως om. S 21. ἑξῆς . . . ἀπὸ om. P)

    100
    πενταγώνου βάσεως, εἶτα ἀνάλογον ἀπὸ ἑξαγώνου καὶ ἑπταγώνου καὶ ὀκταγώνου καὶ ἀεὶ ἐπʼ ἄπειρον. [*](P) καθάπερ ἀμέλει καὶ ἐν τοῖς γεωμετρικοῖς στερεοῖς σχήμασιν ἀπὸ τριγώνου ἰσοπλεύρου ἐάν τις εὐθείας ἐννοήσῃ τρεῖς ἀπὸ τῶν γωνιῶν τῷ μήκει ἴσας ταῖς τοῦ τριγώνου πλευραῖς καθʼ ὕψος συννευούσας εἰς ἓν καὶ τὸ αὐτὸ σημεῖον, πυραμὶς ἂν ἀποτελεσθείη ὑπὸ τεσσάρων περιεχομένη τριγώνων ἰσοπλεύρων τε καὶ ἴσων ἀλλήλοις, ἑνὸς μὲν τοῦ ἐξ ἀρχῆς τριγώνου, τριῶν δὲ τῶν περιγραφέντων ὑπὸ τῶν λεχθεισῶν τριῶν εὐθειῶν. καὶ πάλιν ἀπὸ τετραγώνου ἐπιπέδου ἐάν τις τέσσαρας εὐθείας λογίσηται τῷ μήκει ἴσας ταῖς τοῦ τετραγώνου πλευραῖς ἑκάστην ἑκάστῃ πάλιν κατὰ τὸ ὕφος συννευούσας εἰς ἓν καὶ τὸ αὐτὸ σημεῖον, πυραμὶς ἂν ἀποτελεσθείη ἀπὸ τετραγώνου βάσεως τετραγωνικῶς μειουριζομένη, περιεχομένη δὲ ὑπὸ τεσσάρων μὲν τριγώνων ἰσοπλεύρων, ἑνὸς δὲ τετραγώνου τοῦ ἐξ ἀρχῆς. καὶ ἀπὸ πενταγώνου δὲ καὶ ἑξαγώνου καὶ ἑπταγώνου καὶ μέχρις οὗ βούλεταί τις προχωρεῖν, τῷ αὐτῷ τρόπῳ εὐθεῖαι ἰσάριθμοι ταῖς γωνίαις ἀπʼ αὐτῶν τῶν γωνιῶν ἀνεγειρόμεναι καὶ εἰς ἓν καὶ τὸ αὐτὸ συννεύουσαι σημεῖον πυραμίδα ἀποκορυφοῦσιν ὀνομαζομένην ἀπὸ πενταγώνου βάσεως ἢ ἑξαγώνου ἢ ἑπταγώνου [*](1. πενταγώνου βάσεως om. P — πενταγ.] τριγώνου G — 5. ἐπινοήσῃ CSH — τῷ μήκει om. H — 8. ὑπὸ τ. περιεχ. om. H — 10. παραγραφέντων G — 12. λογήσηται GP — 15. ἂν ἀποτελ. om. S — 16. τετραγωνικῶς om. H — μηουριζ. G μυουριζ. C — G adponit hasce figuras: — 17. ἰσοπλεύρων om. H — 20. βούλει C — προχωροῦσι H)
    101
    ἢ ἀνάλογον. οὕτω δὲ καὶ ἐν τοῖς ἀριθμοῖς ἀπὸ μὲν μονάδος ὡς ἀπὸ σημείου πᾶς γραμμικὸς ηὐξήθη ἀριθμός, οἷον
  • α, β γ, δ, ε
  • καὶ οἱ ἑξῆς ἐπʼ ἄπειρον· ἀπʼ αὐτῶν δὲ τούτων γραμμικῶν ὄντων καὶ ἐφ᾿ ἓν διαστατῶν πως συντεθέντων καὶ οὐχ ὡς ἔτυχεν οἱ πολύγωνοι καὶ ἐπίπεδοι ἀριθμοὶ πλάσσονται, τρίγωνοι μὲν παρὰ μηδένα συντεθέντων τῶν γνωμόνων, τετράγωνοι δὲ παρὰ ἕνα, πεντάγωνοι δὲ παρὰ δύο καὶ ἀεὶ οὕτως. τὸν αὐτὸν δὴ τρόπον καὶ αὐτῶν τούτων τῶν ἐπιπέδων πολυγώνων ἀριθμῶν ἐπισωρευομένων ἀλλήλοις καὶ ὡςανεὶ ἐποικοδομουμένων αἱ ὁμογενεῖς ἑκάστῳ πυραμίδες γεννῶνται, ἡ μὲν ἀπὸ τριγώνου βάσεως ἀπʼ αὐτῶν τῶν τριγώνων, ἡ δὲ ἀπὸ τετραγώνου βάσεως ἀπʼ αὐτῶν τῶν τετραγώνων, ἡ δὲ ἀπὸ πενταγώνου ἀπὸ τῶν πενταγώνων καὶ ἡ ἀπὸ ἑξαγώνου ἀπὸ τῶν ἑξαγώνων καὶ τοῦτο δι᾿ ὅλου. εἰσὶν οὖν αἱ μὲν ἀπὸ τριγώνου βάσεως εὔτακτοι αὗται
  • α, δ, ι, κ, λε, νϚ, πδ
  • [*](2. γραμμικῶς GP (-ός tuetur Io. Phil. l, μϚ (lI, λε) — 3 οἷον om H — 6. διαστατὸν C — 8—10. τρίγωνος . . . τετράγωονς . . . πεντάγωνος H — 11. τούτων om. H — 13. ὡς ἂν ἐπ. S — ἐπικοδομ. G ἐνοικοδ. H — 14. ἀπο- γενν. H — 15. αὐτῶν om. S — οἱ δὲ G — 16. βάσεως om. — αὐτῶν om. SΗ — 16. 17. βάσεως . . . πεντα- γώνου om. G — 17. καὶ ἡ . . . ἑξαγώνου om Η — 18. G adscribit: πρώτη πυραμίς. δευτέρα πυραμίς. [τρίτη πυραμίς. om. G] α α α α α α αα αα αα ααα ααα ααα ααα ααααα ααααα)
    102
    καὶ ἐφεξῆς, ὧν ἡ γένεσις αὐτοὶ οἱ τρίγωνοι ἀλλήλοις ἐπισωρευόμενοι, πρῶτος μὲν ὁ α, εἶτα ὁ αγ, P εἶτα ὁ αγϚ, εῖτα πρὸς τούτοις ὁ ι καὶ ἐφεξῆς σύν τοῖς πρόσθεν ὁ ιε καὶ ἐπὶ τούτοις ὁ κα καὶ ἐξῆς ὁ κη καὶ ἐπʼ ἄπειρον. δῆλον δέ, ὅτι καὶ ὁ μείζων τῶν ἀριθμῶν κατώτατος νοεῖται, αὐτὸς γὰρ βάσις εὑρίσκεται, ὁ δὲ εὐθύς μετ᾿ αὐτὸν ὑπὲρ αὐτὸν καὶ ὁ μετ᾿ ἐκεῖνον ὑπὲρ τοῦτον, ἕως ἄν ἡ μονὰς ἐπὶ τῇ κορυφῇ φανῇ καὶ ὡςανεὶ εἰς σημεῖον ἀπομειουρίσῃ τὴν τελείωσιν τῆς πυραμίδος.

    ιδ. Αἱ δὲ ἐξῆς πυραμίδες εἰσὶν αἱ ἀπὸ τετραγώνου βάσεως ὁμοιοσχημόνως ἀνιστάμεναι ἐφʼ ἓν καὶ τὸ αὐτὸ σημεῖον· αὗται δὲ τῷ αὐτῷ τρόπῳ πλάσσονται ταῖς προλεχθείσαις τριγωνικαῖς· τούς γὰρ ἀπὸ μονάδος εὐτάκτους τετραγώνους στοιχηδὸν ἐκθέμενος

  • α, δ, θ, ιϚ, κε, λϚ, μθ, ξδ, πα, ρ
  • καὶ τοὺς ἑξῆς πάλιν σωρηδὸν ἐπιτίθημι ἀλλήλοις κατὰ βάθος αὐτούς, τὸν α ἐπάνω τοῦ δ, καὶ γίνεται πυραμὶς ἡ ε ἐνεργείᾳ πρώτη ἀπὸ τετραγώνου βάσεως, δυνάμει γὰρ πρώτη καὶ ἐνταῦθα ἡ μονάς. πάλιν δ᾿ αὐτὴν ταύτην, ὡς ἔχει, τὴν πυραμίδα τὴν ἐκ πέντε μονάδων ἐπιτίθημι ὅλην τῷ θ τετραγώνῳ [*](XIV. Io. Phil. rec. I, μζ, μη; rec. lI, λε—λζ. — Iambl. p. 131 — 138. — Boëth. lI. 14. 15.) [*](2. ἐπισορ. G — 7. εὐθὺς ὑπʼ αὐτὸν H — 8. ἐκεῖνον] καὶ add. G — ἕως [ὡς H] ἂν εἰς SH — 9. ἀπομυου- ρίσῃ C; H in mrg: δύναται καὶ οὕτως ἀπογινώσκεσθαι· ἀπομυουρίσῃ.) [*](XIV. 12. ἱστάμεναι S — 15. εὐτάκτως — στιχη- δὸν PC — 19. γίνονται C — 20. τὰ ε — βάσεως] πλευρὰν ἔχουσα πάντοθι [-θεν H] δυάδα add. CH — 21. δινάμει G — πρώτη] α — 21—(p. 103)2. δυνάμει. . . .)
    103
    καὶ συνίσταταί μοι ἡ ιδ πυραμὶς ἀπὸ τετραγώνου βάσεως πλευρὰν ἔχουσα πάντοθι τριάδα, τῆς προτέρας δυάδα ἐχούσης τῆς ε, τῆς δὲ δυνάμει πρωτίστης μονάδα· δεῖ γὰρ καὶ ἐνθάδε τοσούτων ἑκάστην πλευρὰν ἡςτινοςοῦν πυραμίδος μονάδων εἶναι, ὅσοιπέρ εἰσι τὸν ἀριθμὸν οἱ εἰς σύστασιν αὐτῆς συσσωρευθέντες πολύγωνοι. πάλιν γὰρ τὴν ιδ πυραμίδα συνόλην βάσιν ἔχουσαν τὸν θ τετράγωνον ἐπιτίθημι τῷ ιϚ τετραγώνῳ καὶ ἀποτελεῖταί μοι ἡ λ πυραμὶς τρίτη κατ᾿ ἐνέργειαν τῶν ἀπὸ τετραγώνου βάσεως οὖσα· τῇ δ᾿ αὐτῇ τάξει καὶ ἀγωγῇ καὶ ἀπὸ πενταγώνου βάσεως καὶ ἀπὸ ἑξαγώνου καὶ ἑπταγώνου βάσεως καὶ ἐπὶ πλεῖον ἀεὶ προχωροῦντες πυραμίδας συστησόμεθα τούς ἀναλογοῦντας ἑκάστῃ πολυγώνους ἐπισωρεύοντες ἀλλήλοις ἀπὸ μονάδος ἀρχόμενοι ὡς ἀπὸ ἐλαχίστου καὶ προχωροῦντες μέχρις ἀπείρου καθ᾿ ἑκάστην. καὶ ἐκ τούτου δῆλον γίνεται, ὅτι στοιχειωδέστερα τὰ τρίγωνα· πᾶσαι γὰρ ἁπλῶς αἱ δεικνύμεναι καὶ φαινόμεναι πυραμίδες ἀπὸ τῶν καθ᾿ ἑκάστην πολυγώνων βάσεων τριγώνοις μέχρι κορυφῆς περιέχονται.

    [*](βάσεως om H, qui haec sola scribit: εἶτα βα πυραμὶς ὁ ιδ. G adscribit: α α αα αα αα αα ααα ααα   ααα)[*](2. πάντοθεν S πανταχόθεν H — τριάδος P — 6. τῶν ἀριθμῶν G — αὐτοῦ GP — 7. συσωρ. GP ubique; σω- om. C — 13. βάσεως om. CSH — 14. ἑκάστους P — τούτων δὲ δ. H — 18. στοιχιωδ. G — 19. ἁπλῶς om. S — ὑφαινόμεναι GH)
    104

    Ἵνα δὲ μὴ ἀνήκοοι ὦμεν κολούρων καὶ δικολούρων [*](P) καὶ τρικολούρων πυραμίδων, ὧν τοῖς ὀνόμασιν ἐντευξόμεθα ἐν συγγράμμασι μάλιστα τοῖς θεωρηματικοῖς, ἰστέον, ὅτι, ἐὰν πυραμὶς ἀφ᾿ ἡςτινοςοῦν βάσεως, τουτέστιν ὁντιναοῦν πολύγωνον ἔχουσα βάσιν εἴτε τρίγωνον εἴτε τετράγωνον εἴτε πεντάγωνον εἴτε τῶν ἐξῆς τινα τῶν ὁμογενῶν πολυγώνων, κατὰ σωρείαν αὐξηθεῖσα μὴ ἐπὶ μονάδα μειουρισθῇ, κόλουρος ἀπλῶς λέγεται ἐστερημένη τῆς φυσικῆς καὶ πᾶσιν ἐπιβαλλούσης κορυφώσεως· οὐ γὰρ εἰς τὸν δυνάμει πολύγωνον τὴν μονάδα τελευτᾷ αὕτη ὡς εἰς ἕν τι σημεῖον, ἀλλ᾿ εἰς ἕτερον ἐνεργείᾳ, καὶ οὐκέτι μονὰς κορυφή, ἀλλ᾿ ἐπίπεδον αὐτῇ τὸ πέρας γίνεται ἰσογώνιον τῇ βάσει· ἐὰν δὲ πρὸς τῷ μὴ εἰς μονάδα τελευτᾶν ἔτι καὶ μὴ εἰς τὸν παρὰ τὴν μονάδα ἐνεργεία πρῶτον τελευτήσῃ, δικόλουρος λέγεται ἡ τοιαύτη· ἐὰν δὲ καὶ ἔτι μὴ ἔχῃ τὸν ἐνεργείᾳ δεύτερον πολύγωνον ἐπὶ τῷ συμπεράσματι, ἀλλὰ μόνον τὸν ὑπ᾿ αὐτόν, τρικόλουρος κεκλήσεται καὶ τετρακόλουρός γε, ἂν καὶ τὸν μετ᾿ ἐκεῖνον μὴ ἔχῃ, καὶ πεντακόλουρος κατὰ τὸ ἑξῆς καὶ ἀεὶ μέχρι βούλει παρεκτείνειν τὸ ὄνομα.

    [*](XIV, 5. Περὶ κολούρων SH — 1. ἀνείκοοι G — 3. θεωρητικοῖς Ρ θεολογικοῖς S (cf. Io. Phil. rec. I, μη: ἐπειδήπερ τοῖς τοιούτοις ὀνόμασιν, οἷα εἰκός, ἐντευξόμεθα ἐν βιβλίοις τισὶ θεωρητικοῖς — καὶ αὐτὸς γὰρ μεγίστην πραγματείαν θεολογικὴν τοιαύτην ἔγραψεν — εἴπωμεν κτλ — rec. ll, λζ: ὥστε μὴ ἀνεννοήτους ἡμᾶς τούτων εἶναι παν- τάπασι, φησίν, ὡς ἐπειδήπερ τοῖς τοιούτοις ὀνόμασιν ἐντευ- ξόμεθα ἐν βιβλίοις τισὶ θεωρηματικοῖς, τουτέστι θεω- ρήματα μαθηματικὰ περιέχουσι — καὶ αὐτὸς γὰρ ὁ Νικό- μαχος μεγίστην πραγματείαν περὶ τούτων ἔγραψεν — εἴπω- μεν κτλ.) — 4. ὁςτινοςοῦν G ἡντιναοῦν G — 6. εἴτε πεντ. om. S — 7. τὸν ἐξ. P — 8. μὴ] καὶ G — μυουρι σθῇ C μειουρηθῇ S — 9. ἅπολος Ρ — 10. ἐπιβαλούσης P — 15. καὶ εἰς, om. μὴ GS — 21: μέχρις οὗ PCH)
    105

    ιε. Καὶ ἡ μὲν τῶν ἰσοπλεύρων στερεῶν ἀριθμῶν πυραμοειδῶν γένεσις καὶ προκοπὴ καὶ ἐπαύξησις καὶ φύσις τοιαύτη σπέρμα καὶ ῥίζαν ἔχουσα τούς πολυγώνους αὐτούς καὶ τὴν ἐκείνων εὔτακτον ἐπισωρείαν, ἑτέρα δέ τις στερεῶν ἑτερογενῶν εὐταξία ἐστὶ τῶν λεγομένων κύβων, δοκίδων, πλινθίδων, σφηνίσκων, σφαιρικῶν, παραλληλεπιπέδων, τήν τῆς προβάσεως τάξιν ἔχουσα τοιαύτην τινά. οἱ προφρασθέντες τετράγωνοι

  • α, δ, θ, ιϚ, κε, λϚ μθ, ξδ
  • καὶ οἱ ἑξῆς διχῆ ὄντες διαστατοὶ καὶ ἐν τῇ ἐπιπέδῳ σχηματογραφίᾳ μῆκος καὶ πλάτος μόνον ἔχοντες ἔτι καὶ τρίτον προςλήψονται διάστημα καὶ ἔσονται στερεοὶ καὶ τριχῆ διαστατοί, ἐὰν τῇ ἰδίᾳ πλευρᾷ ἕκαστος πολλαπλασιασθῇ, ὁ μὲν δ δὶς β ὢν πάλιν δὶς γενόμενος, ἵνα ὀγδοὰς ἀποτελεσθῇ, ὁ δὲ θ τρὶς γ ὤν πάλιν τριάδι ἐπ᾿ ἄλλο διάστημα αὐξηθῇ καὶ γένηται ὁ κζ, ὁ δὲ ιϚ τετράκις δ ὑπάρχων πάλιν τετράδι τῇ αὐτοῦ πλευρᾷ μεγεθυνθῇ καὶ γένηται ὁ ξδ, καὶ οἱ ἑξῆς παραπλησίως μέχρι παντός. τοσούτων [*](XV. Io. Phil. rec. l, μθ, ν; rec. II, λη. — Iambl. p. 137. 138. — Boëth II. 16.) [*](XV. 2. πυραμίδων Ρ -μίδων H — γέννησις H in mrg. — 2. 3. ἐπαύξησις καὶ φύσις Ρ ἐπαύξησις, φύσις G ἐπαυξήσεως φύσις CSH ἐπαύξησις φυσική Ast — 5. Περι κύβων, δοκίδων, σφηνίσκων καὶ πλινθίδων H — ἑτέρων C — ἑτερογενῶν om. — 7. σφηωίκων C — 10. ξδ om. PCH — 11. ὄντες] ἐπὶ μῆκος ἢ πλάτος add. S — 14. πλευρᾷ] πάλιν add. H — 15. πολυπλ. H διπλασια- σθῇ S — δὶς] ἕκαστος S — 16. γενόμενοι C — ἀποτελε- σθείη H — 16 — 18. ὁ δὲ θ . . . κζ om. C — 19. τῇ αὐτῇ CSH — 18. 19. ὁ κζ . . . γένηται om P — 19. ὁ om. G — 20. παντὸς] κύβοι οὗτοι πάντες καλοῦν- ται add. C)
    106
    δὲ καὶ ἐνθάδε μονάδων αἱ πλευραὶ ἔσονται, [*](P) ὅσωνπερ ἧσαν καὶ αἱ τῶν τετραγώνων, ἀφ᾿ ὧν ἐγένοντο, ἕκαστος ἀφ᾿ ἑκάστου, αἱ μὲν τοῦ η δυάδων, ὅσων καὶ αἱ τοῦ δ, αἱ δὲ τοῦ κζ τριάδων, ὅσων καὶ αἱ τοῦ θ, αἱ δὲ τοῦ ξδ τετράδων, ὅσων καὶ αἱ τοῦ ιϚ, καὶ τοῦτο ἐφεξῆς, ὥςτε καὶ ἡ τῆς δυνάμει κύβου μονάδος πλευρὰ μονὰς ἔσται πανταχόθι, ὅσηπερ καὶ ἡ τῆς δυνάμει τετραγώνου μονάδος. καθόλου δὲ ἕκαστος τετράγωνος ἓν μὲν ἐπίπεδόν ἐστι, γωνίας δὲ ἔχει τέσσαρας καὶ πλευρὰς τέσσαρας, ἕκαστος δὲ κύβος ηὐξημένος ὢν ἐξ ἑκάστου τετραγώνου τῇ ἰδίᾳ πλευρᾷ πολυπλασιασθέντος ἐπίπεδα μὲν ἕξει πάντως ἔξ, ὧν ἕκαστον ἶσον τῷ προγόνῳ αὐτοῦ τετραγώνῳ, πλευρὰς δὲ δώδεκα, ὦν ἑκάστῃ ἴση καὶ μο νάδων γε τῶν αὐτῶν τῇ τοῦ προγόνου τετραγώνου πλευρᾷ, γωνίας δὲ ὀκτώ στερεάς, ὧν ἑκάστη περιέχεται ὑπὸ τριῶν πλευρῶν, οἵα ἐστὶν ἑκάστη τῶν ἐν τῷ προγόνῳ τετραγώνῳ.

    ιϚ. Ἐπειδὴ οὖν πάντη ἰσόπλευρον ἐπὶ μῆκος καὶ [*](XVI. Io. Phil. rec. I, να, νβ; rec. II. λθ. — Theon. 29. — Boëth. II. 16.) [*](1. μονάδι H — 3. ἕκαστος] ἕκάστ G -ον Ρ — 5. αἱ πλευραὶ τοῦ θ H — 6. ὥςτε] ὅθεν H — 7. πανταχόθεν P — ὅσηςπερ GSH ὅση P ὅσηπερ C — 12. πολλαπλ. — ἔχει H - 13. ἕξ] ἐξ P — 14316. μονάδων γε τοσαύ- των, ὅση τοῦ προγ. τετραγ. πλευρά P, μον. γε τοσαύτων, ὅσων καὶ C] ἡ τοῦ προγ. τετρ. πλευρά CH — 17. πλευ- ρῶν] τοιούτων scil. γωνιῶν] Ast. see intellegendum γραμμι- κῶν, non ἐπιπέδων; lo Phil. uocem πλευρῶν hoc loco ignorauit cf. rec. l, ν: ὑπὸ γ δέ τινων· γραμμῶν δηλονότι· τί- νων γὰρ ἄλλων; αἱ μὲν γὰρ ἐν τῷ ἐπιπέδῳ γωνίαι ἑκάστη ὑπὸ β γραμμῶν περιέχεται, βαθυνομένου δὲ τοῦ ἐπιπέδου πρός ταῖς β τῆς γωνίας γραμμαῖς καὶ γ αὐταῖς προςτίθε- ται ἡ τού βάθους. — rec ll, λη: . . . γίνεται στερεὰ γω- νία περιεχομένη ὑπὸ γ εὐθειῶν — ἐν om. P)

    107
    βάθος καὶ πλάτος σχῆμα στερεὸν ὑπάρχει ὁ κύβος καὶ ἐπὶ τὰς λεγομένας ἓξ περιστάσεις ἰσοδιάστατον, ἀκόλουθον ἄρα ἐστίν, ἀντικεῖσθαι αὐτῷ τὸ μηδαμῆ ἴσας ἔχον τὰς διαστάσεις ἀλλήλαις, ἀλλ᾿ ἄνισον τὴν τοῦ βάθους τῇ τοῦ πλάτους καὶ ἑκατέρᾳ τούτων τὴν τοῦ μήκους, οἷον δὶς τρὶς τετράκις ἢ δὶς τετράκις ὀκτάκις ἢ τρὶς πεντάκις δωδεκάκις ἢ κατά τινα ἄλλην ἀνισότητα τοιαύτην. τὰ δὲ τοιαῦτα στερεὰ σχήματα λέγεται σκαληνὰ ἁπλῶς, ὧν πάντη τὰ διαστήματα ἄνισα ἀλλήλοις ἐστι· τινὲς δὲ αὐτὰ πωλυνωύμως σφηνίσκους καλοῦσι, καὶ γὰρ καὶ οἱ σφῆνες ἀνισόπλευροι πανταχῆ τεκτονικοί τε καὶ οἰκοδομικοὶ καὶ χαλκευτικοὶ καὶ οἱ τῶν ἄλλων τεχνῶν πλάσσονται ἀπὸ ὀξυτέρου ἄκρου διαδύνειν ἀρχόμενοι καὶ αἰεὶ μᾶλλον πλατυνόμενοι ἀνομοίως κατὰ πάντα τὰ διαστήματα· τινὲς δὲ τούς αὐτούς σφηκίσκους καλοῦσι, τοιοῦτος γὰρ καὶ ὁ τῶν σφηκῶν μάλιστα ἄγκος ἀποσφιγγόμενος κατὰ μέσον καὶ τὴν λεχθεῖσαν ὁμοιότητα ἐμφαίνων· παρὰ τοῦτο εἰκὸς καὶ τὸ σφήκωμα ὠνομάσθαι, ἔνθα γὰρ ἂν ἀποσφίγξῃ, τὴν τού σφηκὸς ἐντομὴν μιμεῖται· ἕτεροι δὲ τούς αὐτούς βωμίσκους προςαγορεύουσιν [*](p) ἀπὸ οἰκείας εἰκόνος, οἱ γὰρ παλαιότροποι βωμοί, μάλιστα δὲ ἰωνικοί, οὔτε τὸ πλάτος τῷ βάθει οὔτε συναμφότερα τῴ μήκει ἶσα ἔχουσιν οὕτε τὴν βάσιν τῇ κορυφῇ, ἀλλὰ πάντη εἰσὶν ἐξηλλαγμένοι [*](XVI. 3. ἄρα om. S — μηδαμῶς PSH — 4. ἔχων P ἄνισον] ἔχον add. H — 5. 6 ἑκατέραν . . . τῇ S — 6. 7. οἷον θὶς ε, τετράκις ε, ἢ δις δ, τετράκις δ, ὀκτάκις δ, ἢ τρὶς γ, πεντάκις γ, δωδεκάκις γ ἢ κατὰ . . Ρ θὶς τρία τε- τράκις ἢ δὶς δ ὀκτάκις ἢ τρὶς ε δωδεκάκις — 10. σφῆ- ναις G — 16. σφηνίσκους καὶ σφηκ. — 17. μάλιστα om. S — ἀποσφηγγόμ. G ἀποσφιγγόμενοι P — 18. ἀνο- μοιότητα H — 22 παλαιότεροι H — 25. ἐξηλαγμ. P)
    108
    ταῖς διαστάσεσιν. ὡς οὖν ἀκροτήτων δύο κύβου τε καὶ σκαληνοῦ, τοῦ μὲν κατ᾿ ἰσότητα διεστῶτος, τοῦ δὲ κατ᾿ ἀνισότητα πάντη, μέσοι εἰσὶ στερεοὶ ἀριθμοὶ οἱ λεγόμενοι παραλληλεπίπεδοι, ὧν καὶ τὰ ἐπίπεδα ἑτερομήκεις ὑπάρχουσιν ἀριθμοί, ὥςπερρ καὶ τῶν κύβων αὐτῶν τετράγωνοι ἀριθμοὶ ἦσαν τὰ ἐπίπεδα, ὡς ἐδείχθη.

    ιζ. Πάλιν οὖν ἄνωθεν ἑτερομήκης ἀριθμὸς λέγεται, οὐ ἐπιπέδως σχηματογραφηθέντος τετράπλευρος μὲν καὶ τετραγώνιος γίνεται ἡ καταγραφή, οὐ μὴν ἴσαι ἀλλήλαις αἱ πλευραὶ οὐδὲ τὸ μῆκος τῷ πλάτει ἶσον, ἀλλὰ παρὰ μονάδα, οἷον

  • ὁ β, ὁ Ϛ, ὁ ιβ, ὁ κ, ὁ λ, ὁ μβ
  • καὶ οἱ ἐξῆς· ἂν γὰρ αὐτούς ἐπιπέδως διαγράφῃ τις, πάντως οὕτω ποιήσει·
  • ἅπαξ β β, δὶς γ Ϛ, τρὶς δ ιβ
  • καὶ τοὺς ἐξῆς ἀναλόγως·
  • τετράκις ε, πεντάκις ς, ἑξάκις ζ, ἑπτάκις η
  • καὶ ἐπ᾿ ἄπειρον, μόνον ἵνα μονάδι μείζων ἡ ἑτέρα πλευρὰ τῆς λοιπῆς ᾖ, ἄλλῳ δὲ μηδενὶ ἀριθμῷ· ἐὰν δὲ ἄλλως παρὰ τὴν μονάδα διαφέρωσιν ἀλλήλων αἱ πλευραὶ, οἷον δυάδι, τριάδι, τετράδι ἢ ἐφεξῆς, ὡς τὰ
  • δὶς δ ἢ τρὶς Ϛ ἢ τετράκις η
  • [*](XVII. Io. Phil. rec. l, νγ—νζ; rec. ll, μ—-μβ. — Iambi. p. 102 seq. — Theon. 24. 29 — Boëth. II. 17—20.) [*](3. πάντη om. S) [*](XVII. Περὶ ἑτερομήκους GP — 8. ἑτερομήκις G — 10. τετράγωνος C — 14. διαγράφει P — 15. οὕυτω om S — 16. β . . . Ϛ . . \β om. — 17. ἀνάλογον H — 18. ε, πεντ. om. P — 20. οὐδενὶ SΗ — 21. ἄλλως] ἄλλω H — 22. δυάδι η τρ. ἢ τετρ. SH — 24. τρὶς η GRH cf. XVIII, 2.)
    109
    ἢ ὅπως ποτὲ οὖν ἑτέρως, οὐκέτι κυρίως ὁ τοιοῦτος ἑτερομήκης κληθήσεται, ἀλλὰ προμήκης· ἕτερον γὰρ καὶ ἑτερότητα οἱ παλαιοὶ οἱ περί τε Πυθαγόραν καὶ τούς ἐκείνου διαδόχους πυθμενικῶς ἐν τῇ δυάδιἐθεώρουν, ταυτὸν δὲ καὶ ταυτότητα ἐν τῇ μονάδι, ὡς ἐν δυσὶν ἀρχαῖς τῶν ὅλων· εὑρίσκονται δὲ αὗται μονάδι μόνον ἀλλήλων διαφέρουσαι, ὥςτε καὶ τὸ ἕτερον σπερματικῶς μονάδι ἕτερόν ἐστι καὶ οὐκ ἄλλῳ ἀριθμῷ· διόπερ καὶ συνήθως ἐπὶ δυοῖν, ἀλλʼ οὐκ ἐπὶ πλειόνων τὸ ἕτερον λέγεται παρὰ τοῖς ὀρθῶς διαλεγομένοις. ἀλλὰ μὴν καὶ μονάδι μὲν εἰδοποιεῖσθαι ἀπεδείχθη ὁ περισσὸς πᾶς ἀριθμός, δυάδι δὲ ὁ ἄρτιος πᾶς Ὅθεν εἰκότως τὸν μὲν περισσὸν τῆς ταυτοῦ [*](P) φύσεως ἐροῦμεν μετέχειν, τὸν δὲ ἄρτιον τῆς θατέρου, καὶ γὰρ δὴ καὶ κατὰ σωρείαν ἑκατέρου ἀποτελοῦνται φύσει, ἀλλʼ οὐχ ἡμῶν θεμένων, τῇ μὲν τοῦ ἀπὸ μονάδος περισσοῦ ἐπ᾿ ἄπειρον ἡ τετραγώνων φύσις, τῇ δὲ τοῦ ἀπὸ δυάδος ἀρτίου ἐπ᾿ ἄπειρον ἡ τῶν ἑτερομηκῶν. πᾶσα ἄρα ἀνάγκη, τὸν μὲν τετράγωνον οἴεσθαι πάλιν τῆς ταυτοῦ φύσεως μετέχειν· τὸν γὰρ αὐτὸν λόγον καὶ ὅμοιον καὶ ἀπαράλλακτον καὶ ἐν ἰσότητι κείμενον αἱ πλευραὶ αὐτοῦ ἀποδεικνύουσι πρὸς ἑαυτάς, τὸν δὲ ἑτερομήκη τῆς θατέρου· ὃν γὰρ μονὰς πρὸς δυάδα τρόπον παρήλλακται μονάδι μόνῃ διαφέρουσα, τοῦτον καὶ παντὸς ἑτερομήκους αἱ πλευραὶ πρὸς ἀλλήλας διαλλάσσουσιν, [*](2. ἑτερομήκες G — προμήκις G — 5. 6. ὡς . . . μονάδι om P — 6. δυσὶν] δισσαὶ CS — 9. ἐπὶ δυ.] ἐστὶ δυ. H — 12. ὁ περισσὸς om. — ὁ ante ἄρτιος om. GH — 13. τῆς τοὺ ταυτοῦ S — 17. τετραγώνου P — 20. αὐτοῦ P — μετέχειν] εἶναι S — 25. μόνον S — τοῦτο P τούτῳ S — παντὸς] παντὶ τοῦ S)
    110
    ἡ ἑτέρα τῆς ἑρέρας μονάδι μόνον διαφέρουσα· οἷον ἐκκειμένου μοι τοῦ ἀπὸ μονάδος συνεχοῦς ἐξῆς ἀριθμοῦ ἐκλεξάμενος ἰδίᾳ μὲν τούς περισσούς τάσσω ἐν ἑνὶ στίχῳ, ἰδία δὲ τούς ἀρτίους ἐν ἑτέρῳ, καὶ γίνονταί μοι δύο στίχοι τοιοῦτοι·
  • α, γ, ε, ζ, θ, ια, ιγ, ιε, ιζ, ιθ, κα, κγ, κε, κζ·
  • β, δ, Ϛ, η, ι, ιβ, ιδ, ιϚ, ιη, κ, κβ, κδ, κϚ, κη.
  • ἀρχὴ μὲν οὖν τοῦ τῶν περισσῶν στίχου ἡ μονὰς ὁμογενής τε οὖσα καὶ τὴν τοῦ ταυτοῦ φύσιν ἔχουσα· διὸ οὔτε ἐὰν τε ἑαυτὴν πολυπλασιάσῃ ἐπιπέδως ἢ στερεῶς, ἑτεροιοῦται οὔτε ἄλλον ὁντιναοῦν ἐξίστησι τοῦ ἐξ ἀρχῆς, ἀλλὰ τηρεῖ αὐτὸν ἐν ταυτῷ· τὸ δὲ τοιοῦτον περὶ ἄλλον ἀριθμὸν εὑρεῖν ἀδύνατον. τοῦ δ᾿ ἄλλου στίχου ἄρχει ἡ δυὰς ὁμογενὴς αὐτῷ οῡσα καὶ ἑτερότητος καταρκτική· εἴτε γὰρ ἑαυτὴν εἴτε ἄλλον πολυπλασιάσειεν, ἔκστασιν ποιεῖ, οἷον
  • δὶς β, θὶς γ.
  • Ὅταν δὲ ᾖ

  • ὀκτάκις η δὶς ἢ τρίς,
  • τὰ τοιαῦτα στερεὰ σχήματα πλινθίδες λέγονται ἰσάκις ἶσοι ἐλαττονάκις· ἐὰν δὲ καὶ μείζονα τὰ ὕψη τῷ τετραγώνῳ προςγένηται, δοκίδες οἱ τοιοῦτοι ἀριθμοὶ λέγονται, οἷον
  • τρὶς γ ἑπτάκις ἢ ὀκτάκις ἢ ἐνάκις
  • [*](2. μοι om. P, ἡμῖν SH — συνεχῶς H. om. — 4. τάσσων S — 5. δύο om. S — τοιοῦτοι CSH — 8. ἄρχει P — 9. τὴν τοῦ αὐτοῦ P τὴν ταυτοῦ S — 10. διόπερ H — ἐάν τε om. CH — αὐτήν H — πολυπλασιάσασα CH — 11. ἑτεριοῦται P — 12 τοῦ ἐξ ἀρχ.] τῆς ἀρχ. — 14. ἄλ- λου] ἑτέρου S — ἀρχὴ S — 15. ἑαυτὸν GP — 16. ἄλλην H — 18. ᾖ om SH — 21. 22. τῶν τετραγώνων SH — 22. γένηται S προςγίν. H — 24 — (p. 111) 1. ἑπτάκις μόνον] τετράκις ἢ πεντάκις ἢ ἑξάκις η ἑπτάκις ἢ ὁσακιςοῦν μόριον ὑπερβ. S — 24. ἐννάκις P ἐννεάκις CH)
    111
    ἢ ὁσακιςοῦν μόνον ὑπερβαλλόντως· ἔστι δὲ δοκὶς ἀριθμὸς ἰσάκις ἶσος μειζονάκις· οἱ δέ γε σφηνίσκοι ἦσαν ἀνισάκις ἄνισοι ἀνισάκις καὶ οἱ κύβοι ἰσάκις ἶσοι ἰσάκις. αὐτῶν δὲ τῶν κύβων ὅσοι πρὸς τῷ ἰσάκις ἶσοι ἰσάκις εἶναι ἔτι ἔχουσι καὶ τὸ αἰεὶ καταλήγειν κατὰ πᾶσαν πολυπλασίασιν εἰς τὸ αὐτό, ἀφ᾿ οὗπερ ἤρξαντο, σφαιρικοὶ καλοῦνται, οἱ δʼ [*](P) αὐτοὶ καὶ ἀποκαταστατικοί, ὥςπερ ἀμέλει ὁ ἀπὸ τῆς ε πλευρᾶς καὶ ὁ ἀπὸ τῆς Ϛ· ὅσαις γὰρ ἂν αὐξήσεσιν αὐξήσω τούτων ἑκάτερον, εἰς τὸ αὐτὸ συμπέρασμα ἀεὶ τελευτήσει πάντως, ὁ μὲν ἀπὸ τοὺ Ϛ εἰς αὐτὸ τὸ Ϛ, ὁ δὲ ἀπὸ τοῦ ε εἰς αὐτὸ τὸ ε· οἷον πεντάκις ε εἰς τὸ ε τελευτήσει καὶ τοῦτο πεντάκις καὶ εἰ δέοι πάλιν πεντάκις τοῦτο καὶ μέχρις ἀπείρου ἑτέρα τις τελευτὴ οὐχ εὑρεθήσεται, πλὴν εἰ μὴ ἡ ε, καὶ ἀπὸ τοῦ Ϛ τὸν αὐτὸν τρόπον ἡ Ϛ καὶ ἄλλη οὐδεμία· ὥςτε καὶ ἡ μονὰς δυνάμει σφαιρική ἐστι καὶ ἀποκαταστατική, τὸ γὰρ αὐτὸ πάσχει τοῦτο, ὡς εἰκός, πάθος τὸ περὶ τὰς σφαίρας καὶ τούς κύκλους· ἐκείνων γὰρ ἑκάτερον, ὅθεν ἄρχεται, ἐκεῖ καὶ τελευτὰ περικυκλούμενον καὶ περιστρεφόμενον. ὡς καὶ οἱ λεχθέντες οὗτοι ἀριθμοὶ μονώτατοι τῶν ἄλλων τῶν ἰσάκις ἴσων καταστρέφουσιν εἰς τὴν αὐτὴνἀρχήν, [*](2. ἴσον P — 5. τῷ] τὸ G — ἔτι] εἰ add. H — 6. πολυπλάσιον P — 9. ὅσαι P — ἂν om. H — 12. 13. πεντ. ε] κε add. S — 13. 14. καὶ τοῦτο . . . τοῦτο] καὶ τοῦτο πάλιν πεντάκις εἰς τὸ αὐτὸ τελευτήσει καὶ πάλιν τοῦτο πεντάκις καὶ εἰ δέοι πάλιν πεντάκις τοῦτο καὶ μέχρ. C καὶ πάλ. τοῦτον πεντάκ. καὶ εἰς τὸν αὐτὸν τελευτήσει πάλιν ρκε καὶ μέχρ. S καὶ τοῦ πεντ. πάλ. ρκε εἰς τὸ αὐτὸ τελ. καὶ πάλ. τοῦ πεντάκις καὶ μέχρ. Η — 14. τοῦτο scripsi pro ε (GP) — 15. εἰ μὴ om. S ὁ ε CH — 16. ὁ Ϛ C — 19. τὸ παρὰ P τῶ περὶ C — 23. ἴσων καὶ εἰς, om. καταστρέφουσιν P — εἰς . . . ἀρχὴν] εἰς τούς αὐτούς S)
    112
    ὅθεν ἤρξαντο, κατὰ πάσας τὰς αὐξήσεις· ἀλλ᾿ ἄν μὲν ἐπιπέδως δυσὶ διαστήμασι προκόψωσι, κυκλικοὶ λέγονται, ὡς ὁ
  • α, κε, λϚ
  • ἐκ τοῦ ἅπαξ α καὶ τοῦ πεντάκις ε καὶ τοῦ ἑξάκις Ϛ· ἐὰν δὲ τρία διαστήματα ἔχωσιν ἢ ἐπὶ πλέον τούτων πολλαπλασιασθῶσι, σφαιρικοὶ στερεοὶ λέγονται, ὡς ὁ
  • α, ρκε, σιϚ
  • ἤ ἄλλως
  • α, χκε, σσ??Ϛ.
  • ιη. Καὶ περὶ μὲν στερεῶν ἀριθμῶν ἱκανὰ ἐν τῷ παρόντι καὶ ταῦτα· ἐπεὶ δὲ ἀρχὰς τῶν ὅλων οἵ τε φυσικοὶ καὶ οἱ ἐκ τῶν μαθημάτων ὁρμώμενοι τὸ ταυτὸν καὶ τὸ ἕτερον λέγουσιν, ἀπεδείχθη δὲ τὸ ταυτὸντὸν μὲν ὑπάρχουσα ἡ μονὰς καὶ οἱ κατὰ εἰδοποίησιν αὐτῆς περισσοί, πολύ δὲ μᾶλλον οἱ ἐκ τούτων συσσωρευομένων συνιστάμενοι τετράγωνοι ὡς ἂν δὴ ἰσότητος ἐν ταῖς πλευραῖς μετέχοντες, ἕτερον δὲ δυάς τε καὶ ὁ ὑπὸ ταύτης εἰδοποιούμενος πᾶς ἄρτιος, μάλιστα δὲ οἱ ὑπὸ τούτων συσσωρευομένων συνιστάμενοι ἑτερομήκεις διὰ τὸ πρώτης ἀνισότητος [*](XVIII. lo. Phil. rec. l, νη; rec. lI, μγ, μδ. α, Iambl. p. 10 seq. — Theon. 12—14. 17. 21. — Boëth. II, 21. 22.) [*](2. κύκλοι S — 6. τοῦτον P — 7. πολυπλ. SH — σφαιρικοὶ] τότε praemittit S — 10. ἄλλως] πάλιν S) [*](XVIII. 13. ὅλων] ὄντων C — 16. ει G — 17. αὐτῆς] ἀριθμοὶ add. H — 18. συνιστάμενοι om. S — 19. ἰσότητα G — 20. εἰδοποιούμενοι ἄρτιοι S — 21. τούτων] -ῳ Π -ου H — σωρευομένων S -ου H — 22. διὰ τὸ καὶ τῆς πρώτης ἀνισ. S διὰ τὸ πρώτως τῆς ἀνισ. C)

    113
    καὶ ἑτερότητος ἐν τῇ τῶν πλευρῶν διαφορᾷ μετέχειν, ἔτι τοῦτο ἀποδεικτέον ἀναγκαιότατα, πῶς ἐν ἀμφοτέροις τούτοις ὡς ἐν ἀρχαῖς καὶ σπέρμασι δυνάμει πάντα τὰ τοῦ ἀριθμοῦ ἰδιώματα προυπόκειται εἰδῶν τε αὐτοῦ καὶ ὑποδιαιρέσεων σχέσεών τε πασῶν καὶ πολυγώνων καὶ τῶν παραπλησίων. πρότερον δὲ διασταλτέον ἡμῖν, ᾗ διαφέρει προμήκης ἀριθμὸς ἑτερομήκους· ἑτερομήκης μὲν γάρ ἐστιν, ὡς προελέχθη, [*](P) ὁ γινόμενος ὑπὸ ἀριθμοῦ τὸν μονάδι ἑαυτοῦ μείζονα πολυπλασιάσαντος, οἷον
  • ὁ Ϛ ὑπὸ τού δὶς γ,
  • ὁ ιβ ὑπὸ τοῦ τρὶς δ,
  • προμήκης δέ ἐστιν ὁ ὑπὸ δύο μὲν ἀριθμῶν διαφέρόντων ὁμοίως καὶ αὐτὸς γινόμενος, οὐ μὴν μονάδι γε, ἀλλὰ μείζονί τινι ἀριθμῷ, οἷον
  • δὶς δ, τρὶς Ϛ, τετράκις,
  • καὶ οἱ παραπλήσιοι τῴ μήκει προπεπτωκότες τρόπον τινὰ καὶ ὑπερβεβηκότες τὴν τῆς μονάδος διαφοράν. οὐκοῦν ὅτι μὲν οἱ τετράγωνοι ὑπό τινων ἀριθμῶν ἰδίῳ μήκει μηκυνθέντων γίνονται, ταυτὸν ἔχοντες τὸ μῆκος τῷ πλάτει, ἰδιομήκεις ἄν κυρίως καὶ ταυτομήκεις λέγοιντο, οἶον
  • δὶς β, τρὶς γ, τετράκις δ
  • καὶ οἱ ἐφεξῆς· εἰ δὲ τοῦτο, ἐπιδεκτικοὶ πάντως ταυτότητος καὶ ἰσότητος, διόπερ ὡρισμένοι τε καὶ περαίνοντες· τὸ γὰρ ἶσον καὶ τὸ ταυτὸν ἑνὶ τρόπῳ [*](1. πλευρῶν] παλαιῶν S — 2 ἀναγκαιότ om. S — 7. ἡμῖν om. SH — ᾗ | τίνι S — 8. ἑτερομήκεις μὲν G — 9. τοῦ μον. — 10. πολλαπλ. — 13 ἐστιν om. S — 19. αριθμῶν om. S — 20. γίνεται — τὸ αὐτὸ H — 21. πλάτος τῷ μήκει SH — ἰδιωμήκ. G — 22. οἷον om. H — 24. ἐπιδεικτικοὶ SH — 26. τὸ αὐτὸ H)
    114
    καὶ ὡρισμένῳ οιοῦτον· ὅτι δὲ καὶ οἱ ἑτερομήκεις ἀριθμοὶ οὐκ ἰδίῳ μήκει, ἀλλ᾿ ἑτέρου μηκυνθέντος ἀποτελοῦνται, ἑτερομήκεις τε διὰ τοῦτο καὶ ἑτερότητος ἐπιδεκτικοὶ ἀπειρίας τε καὶ ἀοριστίας. τῇ δὲ ἄρα διχοστατεῖ καὶ διανενέμηται καὶ ἐναντία ἀλλήλοις φαίνεται τά τε τοῦ ἀριθμοῦ πάντα καὶ τὰ ἐν κόσμῳ πρὸς ταῦτα ἀποτελεσθέντα καὶ καλῶς οἱ παλαιοὶ φυσιολογεῖν ἀρχόμενοι τὴν πρώτην διαίρεσιν τῆς κοσμοποιίας ταύτῃ ποιοῦνται· Πλάτων μὲν τῆς ταυτοῦ. φύσεως καὶ τῆς θατέρου ὀνομάζων καὶ πάλιν τῆς ἀμερίστου καὶ ἀεὶ κατὰ τὰ αὐτὰ ἐχούσης οὐσίας τῆς τε οὖ μερι στῆς γινομένης, Φιλόλαος δὲ ἀναγκαῖον τὰ ἐόντα πάντα εἶμεν ἤτοι ἄπειρα ἢ περαίνοντα ἢ περαίνοντα ἄμα καὶ ἄπειρα, ὅπερ μᾶλλον συγκατατίθεται εἶναι, ἐκ περαινόντων ἅμα καὶ ἀπείρων συνεστάναι τὸν κόσμον, κατ᾿ εἰκόνα δηλονότι τοῦ ἀριθμοῦ· καὶ γὰρ οὗτος σύμπας ἐκ μονάδος καὶ δυάδος σύγκειται ἀρτίου τε καὶ περιττοῦ, ἃ δὴ ἰσότητός τε καὶ ἀνισότητος ἐμφαντικὰ ταυτότητὸς τε καὶ ἑτερότητος περαίνοντός τε καὶ ἀπείρου ὡρισμένου τε καὶ ἀορίστου.

    ιθ. Ἵνα δὲ καὶ ἐναργῶς πεισθῶμεν περὶ τῶν λεγομένων, ὅτι ἄρα ἐκ μαχομένων καὶ ἐναντίων [*](XIX. 10. Phil. rec. I, νθ—ξδ; rec. ll, με. μϚ. — Iambl. p. 102 sqq. — Boëth. II. 22 23.) [*](1. ὅτι δὲ καὶ] ἔτι δὲ CH — 2. ἑτέρῳ — 3. τῇ δὲ] ἡ δὲ P οὕτως H — 9. κοσμωποιίας G — ταύτην Ast. — Πλάτων] cf. Tim. VIII (p 35 A) — 13. Φιλίλαος] ct. Stob. Eclog. phys l. p. 454 Heer. — ἀνάγκη — ἐόντα om. G ὄντα S — 14. πάντα om. P, omnia quae sunt boëth. Il, 22 — εἶμεν] εἶναι P ἦμεν m. 2. εἰ μὲν H ἔμμεναι Γ — 18. ουτως G — ἅπας S — 20. ἐμφαν///τικὰ G ἐκφαντικά H) [*](XXIX. 24. μαχομένου καὶ ἐναντίου S)

    115
    συνέστη τὰ ὄντα καὶ εἰκότως ἁρμονίαν ὑπεδέξατο (ἁρμονία δὲ πάντως ἐξ ἐναντίων γίνεται· ἔστι γὰρ [*](P) ἁρμονία πολυμιγέων ἕνωσις καὶ δίχα φρονεόντων συμφρόνησις), ἐκθώμεθα ἐν δυσὶ παραλλήλοις ἐπὶ μῆκος στίχοις μηκέτι ἰδίᾳ ἀρτίους ἀπὸ δυάδος καὶ περισσούς ἀπὸ μονάδος, ὡς πρὸ μικροῦ, ἀλλὰ τούς ἐξ αὐτῶν τούτων συσσωρευθέντων αὐτοῖς ἀποτελεσθέντας, τετραγώνους μὲν ἀπὸ περισσῶν, ἑτερομήκεις δὲ ἀπὸ ἀρτίων· ἐνατενίζοντες γὰρ τῇ ἐκθέσει αὐτῶν θαυμάσομεν τὴν φιλαλληλίαν καὶ τὸ συλληπτικὸν ἀλλήλοις εἰς τὸ ἀπογεννᾶν τὰ λοιπὰ καὶ ἐκτελεῖν, ἵνα εἰκότως ἐπινοῶμεν καὶ ἐν τῇ τῶν ὅλων φύσει ἐντεῦθέν ποθεν τὸ τοιοῦτον ὑπὸ τῆς κοσμικῆς προνοίας συντελεῖσθαι. ἔστωσαν οὖν οἱ δύο στίχοι τοιοῦτοι·
  • ὁ μὲν τῶν τετραγώνων ἀπὸ μονάδος
  • α, δ, θ, ιϚ, κε, λϚ μθ, ξδ, πα, ρ, ρκα, ρμδ,
  • ρξθ, ρ??ϛ, σκε·
  • ὁ δὲ τῶν ἑτερομηκῶν ἀπὸ δυάδος ἀρχόμενος καὶ αὐτὸς οὕτως·
  • β, Ϛ, ιβ, κ, λ, μβ, νϛ, οβ, ??, ρι, ρλβ, ρνϚ, ρπβ,
  • σι, σμ.
  • πρῶτον μὲν οὖν πρῶτος πρώτου πυθμὴν πολλαπλάσιος, δεύτερος δὲ δευτέρου ἡμιόλιος, τρίτος δὲ τρίτου ἐπίτριτος, τέταρτος δὲ τετάρτου ἐπιτέταρτος, [*](4. σύμφρασις GP συμρόνασιςς CΓ συμφρόνησις S (Theo smyrn. l.p. 15) dissentientium consensio Boëth. II, 22 (cf. Boeckh, Philol p. 61.) — 4. 5. ἐπὶ μῆκος] ἐπιμήκης S -εις H — 6. πρὸ μικροῦ] πρὶν S — 7. τούτων] τοιούτων P τουτέ- στι S — αὐτοῖς] -ῶν S — 10. θαυμάζομεν P — φιλα- δελφίαν C amicitiam Boëth lI, 23 — 12. καὶ ἐν] καὶ om. G — 13 ποθεν om. H — 14. συντελεῖται H — 19. 20 ἀρ- χόμ. . . . οὕτως om. C — 23. πρῶτος om. S — 25. τρίτου] -ον G — τετάρτου -ον G)
    116
    εἶτα ἐπίπεμπτος καὶ ἔφεκτος καὶ τοῦτο ἐπ᾿ ἄπειρον ἀναλόγως· διαφοραὶ δὲ αὐτῶν προκόψουσι κατὰ τὸν συνεχῆ ἀπὸ μονάδος ἀριθμόν, μονὰς μὲν τῶν πρώτων, δυὰς δὲ τῶν δευτέρων, τριὰς δὲ τῶν τρίτων καὶ ἀεὶ οὕτως· εἶτα δὲ ἐὰν ἀρξάμενος ὁ τῶν τετραγώνων δεύτερος συγκρίνηται κατὰ δυασμὸν τῷ πρώτῳ τῶν ἑτερομηκῶν καὶ ὁ τρίτος δευτέρῳ καὶ ὁ τέταρτος τρίτῳ καὶ ἀκολούθως οἱ λοιποί, τούς αὐτούς ἀπαραλλάκτους λόγους διατηρήσουσι τοῖς πρόσθεν, αἱ δὲ διαφοραὶ οὐκέτι ἀπὸ μονάδος, ἀλλ᾿ ἀπὸ δυάδος ἄρξονται προχωρεῖν αἱ αὐταί, καὶ κατὰ πρόβασιν δὲ ἐν τῇ προτέρᾳ συγκρίσει πρῶτος μὲν πρώτου πρῶτον πυθμένα πολλαπλάσιον ἕξει, δεύτερος δὲ δευτέρου δεύτερον ἀπὸ πυθμένος ἡμιόλιον, τρίτος δὲ τρίτου τρίτον ἀπὸ πυθμένος ἐπίτριτον, καὶ παραπλησίως προκόψουσιν οἱ ἐξῆς. ἔτι δὲ οἱ μὲν τετράγωνοι πρὸς ἑαυτούς διαφορὰς τούς περισσούς μόνον ἔχουσιν, οἱ δὲ ἑτερομήκεις τούς ἀρτίους· ἂν δὲ καὶ τὸν πρῶτον ἑτερομήκη μέσον ἀμφοτέρων τῶν πρώτων τετραγώνων θῶμεν, τὸν δὲ δεύτερον τῶν ἐξῆς, τὸν δὲ τρίτον τῶν μετ᾿ αὐτούς, τὸν τέταρτον δὲ τῶν ἐφεξῆς, τούτοις ὀφθήσονται εὐτακτότεραι αἱ [*](P) σχέσεις ἐν τρισὶν ὅροις· ἣν γὰρ ὁ δ πρὸς τὸν β σχέσιν ἔχει, οὕτως ὁ β πρὸς μονάδα, καὶ ἣν ὁ θ [*](5. εἶτα δὲ] ἔπειτα S — ἐὰν ἀρξ.] ἐναρξάμ P — 6. δεύτερος] -α G — 7. δευτέρῳ] β P — 9. λόγους om. P — 13. πρῶτον om. S — 14. δεύτερον πυθμένα GP — τρίτος δὲ om. H — 17. διαφορὰν H — 18. μόνους C — 21. μετὰ τούτους — 23 — (p. 117) 4. ὅροις . . μείζων om — 23 24, ἣν . . . μονάδα] ἣν ὁ πρῶτος πρὸς τὸν δεύ- τερον σχ. ἔχ., οὕτως ὁ β πρὸς τὸν δ G ἣν ὁ δεύτερος πρὸς τὸν πρῶτον σχ. ἔχ., οὕτως ὁ δεύτερος πρὸς τὸν τρίτον P ἣν ὁ πρῶτος πρὸς τὂν δεύτερον σχ. ἔχ., ταύτην καὶ ὁ δεύτερος πρ. τὸν τέταρτον H. codicis C lectionem, quam ταύτην in οὕ- τως mutato recepi, tuetur Io. Phil. I, ξβ (lI, μϚ).)
    117
    πρὸς τὸν Ϛ ἡμιολίως, οὕτως ὁ Ϛ πρὸς τὸν δ, καὶ ἣν ὁ ιϚ πρὸς τὸν ιβ, οὕτως ὁ ιβ πρὸς τὸν θ, καὶ τοῦτο ἐφεξῆς τῶν ἀριθμῶν καὶ τῶν λόγων προκοπτόντων εὐτάκτως· ὡς γὰρ ὁ μείζων πρὸς τὸν μέσον, οὕτως ὁ μέσος πρὸς τὸν ἐλάχιστον ἔσται, καὶ οὐ τῷ αὐτῷ λόγῳ, ἀλλὰ ποικίλῳ ἀεὶ κατὰ προκοπήν· καὶ ἐπὶ πασῶν τῶν συζυγιῶν τὸ ὑπό· ἶσον τῷ ἀπό·- καὶ ἅπαξ τὰ ἄκρα σύν δὶς τῷ μέσῳ ἐναλλὰξ τετράγωνον πάντως ποιήσει καὶ τό πάντων τούτων γλαφυρώτατον, ἐξ ἀμφοτέρων συντιθεμένων τριγώνων γένεσις εὔτακτος γίνεται σημαίνουσα, ὡς τῆς τῶν πάντων ἀρχῆς ἀρχικωτέρα ἡ τούτων φύσις, α καὶ β, καὶ β καὶ δ, καὶ δ καὶ Ϛ, καὶ Ϛ καὶ θ, καὶ θ καὶ ιβ, καὶ ιβ καὶ ιϛ, καὶ ιϚ καὶ κ, καὶ ἀεὶ οὕτως οἱ τῶν πολυγώνων γεννητικοὶ τρίγωνοι εὔτακτοι γίνονται.

    κ. Ἔτι δὲ καὶ πᾶς πετράγωνος προςλαβὼν τὴν ἑαυτοῦ πλευρὰν ἑτερομήκης γίνεται ἢ νὴ Δί᾿ ἀφαιρεθεὶς τὴν ἑαυτοῦ πλευράν· οὕτως καὶ τὸ ἕτερον καὶ ἐπὶ τὸ πλεῖον καὶ ἐπὶ τὸ ἔλαττον νοεῖται τοῦ ταυτοῦ, εἴπερ κατὰ πρόςθεσιν καὶ ἀφαίρεσιν συντελεῖται, καθὰ καὶ τοῦ ἀνίσου τὰ δύο εἴδη τό τε μεῖζον καὶ τὸ ἔλαττον κατὰ πρόςθεσιν ἢ ἀφαίρεσιν προςγινομένην τῷ ἴσῳ τὴν γένεσιν λαμβάνει. ἱκανὸν [*](XX. Io. Phil. rec. l, ξε—ξζ; rec. II, μϚ, μζ. — Iambl. P. 102 seq. — Boëth. II. 24—29.) [*](6. ποικίλλων P ποικίλως Io. Phil. I, ξβ — ἀεὶ om. — 8. συνδεὶς P συνθεὶς S — ἐναλλάξ om. C — 9. ποιήσεις S — γλαφυρώτερον — 10, συντιθεμένων] τετραγώνου καὶ ἑτερομήκους add. H — 12—14. αβ καὶ βδ κτλ. S — 13. καὶ δ om. G — 14. κ] καὶ κ καὶ κε add. H) [*](XX. 19 νοεῖται] θεωρεῖται H in mrg. — 19. 20. τοῦ αὐτοῦ GP — 20. καθὸ S — 22. τὸ om. GP)

    118
    καὶ τοῦτο τεκμήριον τοῦ ταυτότητος καὶ ἑτερότητος μετέχειν τὰ εἴδη ἀμφότερα, ἑτερότητος μὲν ἀορίστως, ταυτότητος δὲ ὡρισμένως, γενικῶς μὲν μονάδα καὶ δυάδα, ὑποβεβηκότως δὲ περισσόν μὲν ταυτότητος διὰ τὸ μονάδι ὁμογενὲς εἶναι, ἄρτιον δὲ ἑτερότητος διὰ τὸ δυάδι. καὶ ἔτι ἐκδηλότερον, τετράγωνον μὲν διὰ τὸ σύνθεσιν περισσοῦ εἶναι ταυτότητι συγγενῆ ὑπάρχειν, ἑτερομήκη δὲ διὰ τὸ ἀρτίου ἑτερότητι· καὶ γὰρ καὶ ὡς φιλάλληλα ἐν τοῖς δυσὶ στίχοις μεταδιδόασιν ἀλλήλοις τὰ δύο εἴδη ταῦτα παρὰ μέρος τῶν αὐτῶν διαφορῶν, εἰ μὴ καὶ τῶν αὐτῶν λόγων, καὶ ἀνάπαλιν τῶν αὐτῶν λόγων, εἰ μὴ καὶ τῶν αὐτῶν διαφορῶν· ὃ γὰρ μεταξύ τοῦ δ καὶ τοῦ β διπλασίως, τοῦτο ἐπιμορίως μεταξύ τοῦ Ϛ καὶ τοῦ δ, καὶ πάλιν ὃ μεταξύ τοῦ θ καὶ Ϛ ἡμιολίως, [*](P) τοῦτο μεταξύ τοῦ ιβ καὶ θ ἐπιτρίτως, καὶ ἀεὶ οὕτως· καὶ ὃ ποιότητι ταυτόν, ποσότητι ἕτερον, καὶ τοὐναντίον ὃ ποσότητι ταυτόν, ποιότητι ἕτερον. καὶ πάλιν, ὅτι ἀναγκαίως κατὰ πάσας τὰς σχέσεις ἡ αὐτὴ διαφορὰ τῶν δύο ὅρων μονάδι ἐξηλλαγμένως μέρος λεχθήσεται, τοῦ μὲν ἥμισυ, τοῦ δὲ τρίτον ὑπάρχουσα, ἢ τοῦ μὲν τρίτον, τοῦ δὲ τέταρτον, ἢ ἄλλως τοῦ μὲν τέταρτον, τοῦ δὲ πέμπτον, καὶ ἐφεξῆς οὕτως. ὃ δὲ μάλιστα βεβαιώσει, ταυτότητος αἰτιώτατον εἶναι τὸ περισσόν, οὐδέποτε δὲ τὸ ἄρτιον, ἐκεῖνο παραδεικτέον ἐν πάσῃ ἀπὸ μονάδος ἀναλόγῳ ἐκθέσει, οἷον διπλασίῳ μὲν
  • α, β, δ, η, ιϚ, λβ, ξδ, ρκη, σνϚ,
  • [*](5. ὁμογενῆ — 10. μεταδίδωσιν CH — 17. 18. κἀκ τοῦ ἐναντίου H, S superscr. — 25. τὸν περ, . . . ἄρτ. P τὸν περ. . . . τὸν ἄρτ. — 26. ἀναλόγως ἀνάλογον H — 27. διπλασίᾳ H)
    119
    τριπλασίῳ δὲ
  • α, γ, θ, κζ, πα, αμγ, ψκθ, βρπζ
  • καὶ μέχρι οὐ βούλει, πάντας εὑρήσεις ἐξ ἀνάγκης τοὺς ἐν περισσαῖς χώραις τετραγώνους, ἄλλους δὲ οὐκέτι οὐδεμιᾷ μηχανῇ, οὐδένα δὲ ἐν ἀρτίᾳ τετράγωνον, ἀλλὰ καὶ οἱ ἰσάκις ἶσοι ἰσάκις ἄπαντες, τουτέστι κύβοι τριχὴ διαστατοὶ ὄντες καὶ ταυτότητος ἐπὶ πλεῖον δοκοῦντες μετέχειν ἔργον εἰσὶ περισσῶν, ἀλλ᾿ οὐκ ἀρτίων,
  • ὁ α καὶ η καὶ κζ καὶ ξδ καὶ ρκε καὶ σιϚ
  • καὶ οἱ ἀνάλογον προχωροῦντες καὶ ἁπλῇ γε καὶ ἀποικίλῳ ἐφόδῳ· ἐκτεθέντων γὰρ τῶν ἀπὸ μονάδος ἐπ᾿ ἄπειρον συνεχῶν περισσῶν ἐπισκόπει οὕτως, ὁ πρῶτος τὸν δυνάμει κύβον ποιεῖ, οἱ δὲ δύο μετ᾿ ἐκεῖνον συντεθέντες τὸν δεύτερον, οἱ δὲ ἐπὶ τούτοις τρεῖς τὸν τρίτον, οἱ δὲ συνεχεῖς τούτοις τέσσαρες τὸν τέταρτον, οἱ δὲ ἐφεξῆς τούτοις πέντε τὸν πέμπτον καὶ οἱ ἐξῆς ἕξ τὸν ἕκτον καὶ τοῦτο μέχρις αἰεί.