In Nicomachi Arithmeticam Introductionem

Iamblichus

Iamblichus. In Nicomachi Arithmeticam Introductionem. Pistelli, Ermenegildo, editor. Leipzig: Teubner, 1894.

στίχου, τοῦ δὲ παρ’ ἕνα τοὺς παρ’ ἕνα καὶ τοῦ παρὰ δύο τοὺς παρὰ δύο καὶ 〈τοῦ παρὰ τρεῖς τοὺς〉 παρὰ τρεῖς καὶ ἑξῆς ἀκολούθως. καὶ οἱ μὲν τοῦ ἑπταγώνου πάντες γνώμονες ὁμοκατάληκτοι ἔσονται τοῖς πρώτοις δυσὶ τῷ τε αʹ καὶ τῷ ϛʹ, οἱ δὲ τῶν ἄλλων κατ’ ἄλλας καὶ ἄλλας θεωρίας, ὥσπερ ἐν τῇ τοῦ ἑξαγώνου ἐκθέσει πάντες οἱ τέλειοι εὑρεθήσονται, καὶ ἴδιόν τι τοῖς ἑξαγώνοις συμβεβηκὸς ἔσται τὸ καὶ τριγώνοις εἶναι πᾶσιν, οὐκέτι μὴν τοῖς τριγώνοις πᾶσι τὸ καὶ ἑξαγώνοις εἶναι συμβήσεται, ἀλλ’ ἢ μόνοις τοῖς παρ’ ἕνα, τουτέστι τοῖς ἡμίσεσι τοῖς αʹ ϛʹ ιεʹ κηʹ μεʹ ἵνα καὶ ἐνταῦθα τὸ ἥμισυ τῷ δύο οἰκείως συζυγῇ. ἐπεὶ γὰρ διπλάσιος ὁ ἑξάγωνος καταστὰς γωνίας τε καὶ πλευρᾶς τοῦ τριγώνου, διὰ τοῦτο τοὺς ἡμίσεις παρέξει ἀφ’ ἑαυτοῦ ὁ τριγωνικὸς στίχος ἑξαγώνους, οἱ δ’ ἐν τῇ ἐκθέσει τῶν ἑξαγώνων τέλειοι ἅμα καὶ τρίγωνοί εἰσιν. ἐν δὲ τῇ τοῦ πενταγώνου, ἔνθα δύο ἄρτιοι ἀνὰ μέσον τῶν δύο συζυγιῶν περισσῶν, ὁ μὲν ἕτερος ἀναγκαίως τῶν ἀρτίων ἀρτιοπέρισσός ἐστιν, ὁ δὲ λοιπὸς περισσάρτιος. καὶ πολλὰ ἄλλα παρακολουθήματα γλαφυρὰ εὕροι τις ἂν συντείνων ἑαυτὸν συμβεβηκότα

τῷ τῶν πολυγώνων διαγράμματι, οἷον ὅτι ἐπὶ βάθος οἱ πρῶτοι μετὰ τὰς μονάδας ὁ ἐφεξῆς ἀριθμός ἐστιν, οἱ δὲ δεύτεροι κοινῇ μὲν διαφορᾷ

χρώμενοι τριάδι, τάξει δὲ οἱ ἐπιμόριοι ἀφ’ ἡμιολίου ἀρχόμενοι, οἱ δὲ τρίτοι ἐπιμερεῖς κοινῇ μὲν ἑξάδα διαφορὰν ἔχοντες ὀνομαζόμενοι δὲ τάξει τινὶ ἄλλῃ πρὸς ἀλλήλους· ἐπιτριμερεῖς μὲν γάρ, ἀλλὰ πέμπτα τὰ μέρη ἐπὶ τοῦ πρώτου, ἐπὶ δὲ τοῦ ἑξῆς ὄγδοα, εἶτα ἑνδέκατα, εἶτα τεσσαρεσκαιδέκατα, ἑξῆς ἀκολούθως, ὀνομαζομένων τῶν μορίων ἀεὶ κατὰ τὸ τοῦ ὑπολόγου ἥμισυ καὶ τῇ συζυγίᾳ τῆς ἐπιμερότητος. ἐμφανέστερον δὲ εὑρίσκεται ὁ ἐν τῷ διαγράμματι ἕκαστος μὲν τετράγωνος σύστημα ὢν τοῦ ὑπὲρ αὐτοῦ τριγώνου καὶ τοῦ πρὸ ἐκείνου ὁμοειδοῦς, ἅπας δὲ πεντάγωνος τοῦ κατ’ αὐτὸν ἐπὶ βάθος τριγώνου

καὶ δὶς τοῦ πρὸ ἐκείνου, καὶ πᾶς ἑξάγωνος τοῦ κατ’ αὐτὸν ἐπὶ βάθος τριγώνου καὶ τρὶς τοῦ πρὸ ἐκείνου, καὶ ἑπτάγωνος ὁμοίως τοῦ κατ’ αὐτὸν καὶ τετράκι τοῦ πρὸ ἐκείνου, καὶ ἀεὶ τὸ αὐτὸ συμβήσεται κατὰ πρόσθεσιν μονάδος τῆς ποσότητος παραυξομένης. πάλιν ὁ δεύτερος τετράγωνος ὁ θʹ σύστημά ἐστι τοῦ ὑπὲρ αὐτὸν τριγώνου τοῦ ἕξ καὶ τοῦ πρὸ ἐκείνου γʹ, ὡς εἴρηται. ὁ δ’ ὑπὸ τοῦτον πεντάγωνος ιβʹ σύστημά ἐστι τοῦ ὑπὲρ αὐτὸν τετραγώνου τοῦ θʹ καὶ τοῦ πρὸ ἐκείνου τετραγώνου τοῦ δʹ, παρὰ τὸν εʹ, διαγωνίου κειμένου αὐτῷ ἑνὸς τριγώνου. ὁ δ’ ὑπὸ τοῦτον ἑξάγωνος ὁ ιεʹ σύστημά ἐστι τοῦ ὑπὲρ αὐτὸν πενταγώνου τοῦ ιβʹ καὶ τοῦ πρὸ ἐκείνου εʹ, παρὰ δὶς τὸν αὐτὸν τρίγωνον τὸ πρῶτον αʹ. ὁ δ’ ὑπ’ αὐτὸν ἑπτάγωνος ὁ ιηʹ ἐκ τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ ιεʹ καὶ τοῦ πρὸ ἐκείνου τοῦ ϛʹ, παρὰ τρὶς τὸν αὐτὸν τρίγωνον τὸ αʹ. οἱ γὰρ ἐνεργείᾳ

πρῶτοι πολύγωνοι οἱ μετὰ τὰς δυνάμει μονάδας τεταγμένοι παρ’ οὐδὲν ἦσαν, ἀλλά πως ἕκαστος ἐκ τοῦ ὑπὲρ αὐτὸν καὶ τοῦ πρὸ ἐκείνου. πάλιν δὲ ἐξ ἄλλης ἀρχῆς ὁ ιϛʹ τετράγωνος κατὰ τὸν τέταρτον ἐπὶ πλάτος στίχον τεταγμένος σύστημά ἐστι τοῦ ὑπὲρ αὐτὸν τριγώνου

τοῦ ιʹ καὶ τοῦ πρὸ ἐκείνου ϛʹ ὁμοίως παρ’ οὐδέν. ὁ δ’ ὑπ’ αὐτὸν πεντάγωνος ὁ κβʹ σύστημα τοῦ ὑπὲρ αὐτὸν τετραγώνου τοῦ ιϛʹ καὶ τοῦ πρὸ ἐκείνου τοῦ θʹ, παρὰ τὸν ἐνεργείᾳ πρῶτον τρίγωνον τὸν γʹ, διαγώνιον ὄντα πρὸς αὐτόν. ὁ δ’ ὑπ’ αὐτὸν ἑξάγωνος ὁ κηʹ συνέστηκεν ἔκ τε τοῦ ὑπὲρ αὐτὸν κβʹ πενταγώνου καὶ τοῦ πρὸ ἐκείνου ιβʹ, παρὰ δὶς τὸν αὐτὸν τρίγωνον τὸν γʹ. ὁ δ’ ὑπ’ αὐτὸν ἑπτάγωνος ὁ λδʹ σύστημά ἐστι τοῦ ὑπὲρ αὐτὸν ἑξαγώνου τοῦ κηʹ καὶ τοῦ πρὸ ἐκείνου ιεʹ, παρὰ τρὶς [καὶ] τὸν αὐτὸν τρίγωνον τὸν γʹ. καὶ ἑξῆς ὁμοίως τὸ αὐτὸ συμβήσεται συμπροκοπτόντων τοῖς ἑξῆς ἐπὶ τὸ πλάτος λαμβανομένοις πολυγώνοις καὶ τῶν γνωμονικῶν τριγώνων. ὁ μὲν γὰρ ἐφεξῆς εἰς τὸ· ἔπος στίχος τῶν πολυγώνων, οὗ ἄρχει ὁ ιεʹ τρίγωνος, διεκταθήσεται ὁμοίως τοῖς προειρημένοις κατὰ τὸν ιʹ τρίγωνον· ὁ δὲ μετ’ αὐτόν, οὗ ἀρχὴ καʹ, κατὰ τὸν ιεʹ. καὶ ἀεὶ ὁμοίως διεκταθήσεται ἡ προκοπὴ τῶν πολυγώνων καὶ τῶν εἰδοποιούντων αὐτοὺς τριγώνων, ὥστε καθολικὸν ἐπ’ αὐτῶν εἶναι θεώρημα τοῦτο· ἕκαστος γὰρ πολύγωνος σύστημά ἐστι τοῦ ὑπὲρ αὐτὸν μονάδι μικρωνυμωτέρου

καὶ τριγώνου τοῦ ἑνὶ βαθμῷ ὑποβεβιβασμένου. καὶ τὰ μὲν

τοῖς ἐπιπέδοις ἀριθμοῖς συμβαίνοντα ὡς ἐν ἐπιδρομῇ ἐπὶ τοσοῦτον ἡμῖν δεδείχθω.

Ἐπεὶ δὲ καὶ περὶ ἑτερομηκῶν λέγειν καιρός διότι τῆς τῶν ἐπιπέδων ἰδιότητός εἰσι καὶ αὐτοί, ἄξιον θαυμάσαι τῶν περὶ Πυθαγόραν τὴν περὶ τὰ μαθήματα σπουδήν τε καὶ ἀκρίβειαν· κατιδόντες γὰρ οἱ σοφώτατοι πάντας τοὺς ἐν ἀριθμῷ λόγους ποικιλωτάτους ὄντας καὶ ἀπείρους τὸ πλῆθος ἀπὸ μονάδος ἅπαντας, ὥσπερ ἀπὸ κοινῆς τινος ῥίζης, φυομένους καὶ εἰς τὸ ἐνεργείᾳ ἀπὸ δυνάμεως μεθισταμένους ἀρτίους τε καὶ περισσοὺς καὶ καθ’ ἑκάτερον τοὺς εἰδικοὺς αὐτῶν τελείους τε καὶ τοὺς ἐναντίους, ἔτι μὴν καὶ τὰς δέκα σχέσεις ἀπ’ αὐτῆς πλασσομένας, πολυγώνους τε καὶ ἐπιπέδους ἀπὸ τριγώνου μέχρις ἀπείρου, ἔτι μὴν καὶ στερεούς, ὡς ἑξῆς δειχθήσεται, κατὰ πᾶν εἶδος στερεοῦ, σφαιρικοὺς λέγω καὶ κυβικοὺς καὶ πυραμιδικούς, πλευρικούς τε καὶ διαμετρικούς, καὶ ἁπλῶς ἅπαντα ὅσα συμβέβηκε τοῖς ἀριθμοῖς προσεμφαινόμενα τῇ μονάδι

ἐκείνην τε καὶ ἀπ’ ἐκείνης διατρανούμενα δὲ μόνον λόγον τὸν ἑτερομηκικὸν ἐν ἁπάσῃ τῇ θεωρίᾳ τῇ ἀριθμητικῇ κατὰ μηδὲν αὐτῇ κοινωνοῦντα μήτε ἐν τῷ μεταλαμβάνειν μήτε ἐν τῷ μεταδιδόναι, ἀλλ’ ὥσπερ ἀντίξουν αὐτῇ καὶ ἑτερογενῆ ἐπίτηδες ὑπ’ αὐτῆς τῆς φύσεως ἀναδειχθέντα πως. κατὰ τὴν τῶν ἀρχῶν τούτων ἐναντιότητα τῶν ὄντων ἁπάντων συνισταμένων. ὡς ἑξῆς ἐπιδειχθήσεται, ἡ τῆς ἁρμονίας οὐσία χώραν

ἀναγκαίως ἔχει, εἴ γε συναρμογά τίς ἐστι καὶ ἕνωσις τῶν διχοφωνεόντων καὶ τᾷ φύσει πολεμίων ἁρμονία κατὰ τοὺς Πυθαγορείους, καὶ ἄλλως ἵνα τὰ καθόλου κἀνταῦθα διαφυλάττηται τὸ μηδὲν εἶναι ἐν τοῖς οὖσιν οὗ τὸ ἐναντίον οὐκ ἔστιν. εὐθὺς οὖν καὶ ἐξ αὐτοῦ τοῦ ὀνόματος τῆς ἑτερότητος τὴν ἐναντιότητα συνιδεῖν ἔστι· ταὐτὸν γὰρ ἐναντία. ἡ δὲ ταυτότης καὶ ἑνότης περὶ τὴν τῆς μονάδος φύσιν φαντάζεται, ὅπως καὶ μονάδα ἔφαμεν αὐτὴν κεκλῆσθαι διὰ τὸ μονὴν καὶ στάσιν ἔχειν αὐτῆς τὸν λόγον, εἴτε καθ’ ἑαυτὴν ἐξετάζοιτο, εἴτε καὶ σὺν ἄλλῳ ὡτινιοῦν εἴτε ἀριθμῷ εἴτε ὄγκῳ εἴτε μεγέθει πλησιάζοι καὶ ἀνακίρναιτο,

στάσιν αὐτῷ καὶ ταυτότητα παρέχει· ἅπαξ γὰρ τὰ ἑκατὸν ρʹ, καὶ ἅπαξ τὸ τρίγωνον τρίγωνον, καὶ ἅπαξ ὁ ἄνθρωπος ἄνθρωπος, καὶ ἐπὶ πάντων ὁμοίως. καὶ μὴν καὶ ὅτι τῶν περισσῶν εἰδοποιὸς ἐφάνη οὖσα ἡ μονὰς ἰδίως, γνώμονες δὲ τετραγώνων ἐφάνησαν ὄντες οἱ περισσοί, ταυτότητα δὲ καὶ ἰσότητα ἐνείδομεν τοῖς τετραγώνοις ὑπάρχουσαν, εὐλόγως ἂν ἡ ταυτότης ἀπὸ μονάδος καὶ διὰ μονάδα τοῖς ἀλόγοις συμβαίνειν λέγοιτο. εἰ δὲ ἡ ταυτότης κατὰ μονάδα, ἡ ἑτερότης κατὰ τὴν ἐναντίαν δύναμιν συμβήσεται τοῖς οὖσιν· πάλιν γὰρ αὕτη φανησεται ἰδίως τοὺς ἑτερομήκεις εἰδοποιοῦσα καὶ μηδὲν τῆς μονάδος εἰς τὴν πλάσιν αὐτῶν δεομένη, ἀλλ’ εὐθὺς ἑτερότητα καὶ παρατροπὴν τῆς διὰ μονάδα ταυτότητος κατὰ τὰς πλευρὰς ἀπογεννῶσα. παρὰ μονάδα

γὰρ ἴσας τὰς πλευρὰς παντὸς ἑτερομήκους ἀποφαίνει, διότι καὶ αὕτη παρὰ μονάδα ἴση ἐστὶ τῇ μονάδι, καὶ πρώτη ἀνισότητος αἰτία γενήσεται καὶ μείζονος καὶ ἐλάττονος ἐμφαντική. καὶ ἡ συνήθεια τὸ ἕτερον ἐπὶ δυοῖν λέγει· ὅθεν καὶ οἱ γεννῶντες τὸν ἑτερομήκη δύο τέ εἰσιν ἀριθμοὶ καὶ μονάδι ἀλλήλων διαφέροντες. ἐκ ταὐτοῦ, ὃ δὴ καὶ ἴσον καὶ ὅμοιον, ἐξ ἑτέρου, ὃ δὴ καὶ ἄνισον

καὶ ἀνόμοιόν ἐστιν, ὡσανεί ἐκ δύο στοιχείων πάντα διαφερόντων, γίνεσθαι ἔδοξε τοῖς ἀπὸ Πυθαγόρου πρώτιστα μὲν τὰ ἐν ἀριθμοῖς συμπτώματα διὰ τὴν τῆς δυάδος πρὸς μονάδα ἐναντιότητα, κατὰ δὲ τὴν τούτων ἤδη μετουσίαν καὶ ἀφομοίωσιν καὶ τὰ ἐν κόσμῳ πάντα· τὰ μὲν γὰρ ἄλλα πάντα τὸν ἀριθμὸν φαίνεται μιμούμενα, ὁ δὲ ἀριθμὸς παρ’ ἑαυτοῦ ἀρχὰς μονάδα καὶ δυάδα. ὡς οὖν ἀπὸ πάντων τῶν τέσσαρας πλευράς τε καὶ γωνίας ἐχόντων σχημάτων συστείλαντες τὸ ὄνομα τετράγωνον ἐκαλέσαμεν τὸν πάσας πλευράς τε καὶ γωνίας ἴσας ἔχοντα, οὕτως καὶ ἑτερομήκη καλέσομεν ἀπὸ πάντων τῶν τῆς ἑτερότητος εἰδῶν κατὰ τὰς πλευρὰς τὸν ἐγγυτάτω τῆς ἑτερότητος τὴν παρατροπὴν ἐμφήναντα, τουτέστι τὸν παρὰ μονάδα τὸ ἕτερον ἐν τοῖς μήκεσιν ἐσχηκότα, ἀντιδιεσταλμένως λεγόμενον τῷ αὐτομήκει. ὅπερ πάλιν οὐ συνιδὼν ὁ Εὐκλείδης συνέχεε κἀπὶ τούτῳ τὴν τῆς θεωρίας ἐξαλλαγὴν καὶ ποικιλίαν, οἰηθεὶς ἑτερομήκη εἶναι τὸν ἀπλῶς ὑπὸ διαφόρων δύο ἀριθμῶν πολλαπλασιασθέντων γινόμενον καὶ

μὴ διακρινόμενος αὐτοῦ 〈τὸν〉 προμήκη, ὅπερ εἰ συγχωρήσειέ τις αὐτῷ, συμβήσεται τὰ ἐναντία ἀσυνύπαρκτα φύσει ὄντα ἅμα καὶ

περὶ τὸ αὐτὸ εὑρίσκεσθαι· τὸν αὐτὸν γὰρ ἀριθμὸν τετράγωνον ἀλλὰ καὶ ἑτερομήκη ἀποφαίνει ὁ ἐκείνου λόγος, οἷον τὸν λϛʹ καὶ τὸν ιϛʹ καὶ ἑτέρους πολλούς, ὅπερ ἴσον ἂν εἴη τῷ τὸν περισσὸν ἀριθμὸν ταὐτὸν εἶναι τῷ ἀρτίῳ. εἰ δέ γε ἐκεῖνοι ἀπ’ αὐτῆς τῆς φύσεως καὶ οὐχ ἡμῶν θεμένων εἷς παρ’ ἕνα διευτακτοῦνται καὶ οὐκ ἄν ποτε συγγυθεῖεν, οὕτως τετράγωνοι καὶ ἑτερομήκεις φυσικώτατοι καὶ αὐτοὶ εὐταξίᾳ χρήσονται ὡς ἂν ἀπ’ ἐκείνων τὴν πλάσιν ἔχοντες καὶ διακόσμησιν, ἡγουμένης καὶ ἀρχούσης τῶν μὲν περισσῶν μονάδος, δυάδος δὲ τῶν ἀρτίων· ἐκ μὲν γὰρ τῶν αʹ γʹ εʹ ζʹ θʹ ιαʹ ιγʹ ιεʹ ιζʹ ιθʹ καὶ ἐφοσονοῦν συντιθεμένων, γίνονται τετράγωνοι οἱ αʹ δʹ θʹ ιϛʹ κεʹ λϛʹ μθʹ ξδʹ παʹ ρʹ· ἐκ δὲ τῶν βʹ δʹ ϛʹ ηʹ ιʹ ιβʹ ιδʹ ιϛʹ ιηʹ κʹ ἑτερομήκεις οἱ βʹ ϛʹ ιβʹ κʹ λʹ μβʹ νϛʹ οβʹ ҁʹ ριʹ. καὶ οἱ μὲν ἰσάκις ἴσοι πλευρὰς ἕξουσι τοὺς ἀπὸ μονάδος ἐφεξῆς ἀριθμούς, οἱ δὲ ἀνισάκις ἄνισοι ἔγγιστα, τουτέστι παρὰ μονάδα τοὺς ἀπὸ μονάδος ἐφεξῆς σύνδυο, κατὰ τὸν συνημμένον τρόπον ἐκλεγομένους,

ἵνα καὶ αἱ πλευραὶ μονάδι ἀλλήλων διαφέρωσιν. ἐν μὲν οὖν τῇ τῶν τετραγώνων γενέσει ἡ μονὰς τὴν αἰτίαν ἀποφέρεται τῆς συστάσεως· ἔν τε γὰρ τῇ τῶν γνωμόνων περιθέσει αὕτη ἐστὶν ἡ προϋφισταμένη, ἄνευ δὲ αὐτῆς καθ’ αὐτοὺς τῶν περισσῶν ἡ ἐπισύνθεσις οὐκ ἂν γεννήσειε τετραγώνους, ἔν τε τῇ κατὰ τὸν λεγόμενον δίαυλον ἐπισωρείᾳ τῶν ἐφεξῆς ἀριθμῶν παρέχει ἑαυτὴν ἡ μονὰς ὕσπληγά τε καὶ νύσσαν καθ’ ἑκάστην

ἐπισύνθεσιν· ἀπ’ αὐτῆς τε γὰρ ἡ τῆς προβάσεως ἀρχὴ γίνεται κατὰ τὴν γένεσιν ἑκάστου τετραγώνου, ὡς ἀπὸ ὕσπληγος μέχρι ὡσανεὶ καμπτῆρος τῆς τοῦ ἀποτελεσθησομένου πλευρᾶς, καὶ πάλιν ἐπ’ αὐτὴν ἡ ἐπάνοδος ὡς ἐπί τινα νύσσαν, κατὰ διαφόρησιν πάντων τῶν ἀριθμῶν καὶ αὐτῆς, πλὴν τοῦ καμπτῆρος, ὅπερ καὶ πλευρὰ ἔσται τοῦ κατ’ αὐτὸν τετραγώνου. οὕτως γὰρ καὶ συμβήσεται ἕκαστον τῶν ἀριθμῶν μέχρις ἑαυτοῦ τὴν ἀπὸ μονάδος πρόβασιν ἀναδεχόμενον καὶ ἀπ’ αὐτοῦ τὴν ἀνάκρουσιν τῆς παλινδρομίας ὡς ἐπὶ μονάδα ποιούμενον πλευρὰν τετραγωνικὴν ὑπάρχειν, τὸν μὲν δύο πλευρὰν τοῦ

τέτταρα τετραγώνου· αʹ γὰρ καὶ δύο καὶ ἐξ ὑποστροφῆς πάλιν ὁ αʹ, ὁ δʹ γίνεται τετράγωνος. τὸν δὲ γʹ τοῦ θʹ· αʹ γὰρ καὶ δύο καὶ τρία καὶ ἐξ ὑποστροφῆς βʹ καὶ αʹ, ὁ θʹ τετράγωνος. τὸν δὲ τέταρτον δʹ τοῦ ιϛʹ· αʹ γὰρ καὶ βʹ γʹ δʹ 〈καὶ ἐξ ὑποστροφῆς γʹ βʹ αʹ, ὁ ιϛʹ τετράγωνος〉. καὶ μέχρι ὅσου τις θέλει διελεγχέτω, εὕροι ἂν πάντας μὲν τοὺς ἐντὸς τοῦ ὑστάτου ἀριθμοῦ, ὅς ἐστι πλευρὰ τοῦ τετραγώνου, διαφορουμένους ἐν τῇ συνθέσει κατά τε τὴν ἀπὸ μονάδος πρόοδον καὶ τὴν εἰς αὐτὴν ἐπάνοδον· μόνον δὲ τὸν πλευρικὸν ἀδιαφόρητον, καὶ ἀρχῆς τε ἅμα καὶ τέλους καὶ πρὸς τούτοις μεσότητος λόγον ἔχοντα, ἀρχῆς μὲν διότι ἀπ’ αὐτοῦ ἡ ἐπάνοδος εἰς μονάδα, τέλους· δὲ διότι ἐπ’ αὐτὸν ἡ πρόοδος ἀπὸ μονάδος, μεσότητος δὲ διότι ὁρίζει τήν τε πρόοδον καὶ ἐπάνοδον, ὡσανεὶ καμπτὴρ ὑπάρχων, καὶ μή τι διὰ τοῦτο δύναμίς ἐστιν αὐτοῦ τὸ πᾶν συγκεφαλαίωμα

τῶν ἐπισυντιθεμένων ἀριθμῶν κατά τε πρόοδον καὶ ἐπάνοδον, ἐπειδὴ ὥσπερ ἐν ἀκροπόλει μόνος τεταγμένος δορυφορεῖται ὡς ὑπὸ δυνάμεως τῶν λοιπῶν ἀριθμῶν κατὰ πρόβασιν. ἐν δὲ τῇ τῶν ἑτερομηκῶν

συστάσει εἴτε γνωμονικῶς δέοι περιτιθέναι τινὶ τὴν ἐπισωρείαν τῶν ἀρτίων, ἡ δυὰς μόνη φανήσεται ἀναδεχομένη καὶ ὑπομένουσα τὴν περίθεσιν, ἄνευ δὲ αὐτῆς οὐ φύσονται ἑτερομήκεις· εἴτε κατὰ τὸν αὐτὸν δίαυλον οἱ ἐφεξῆς ἀριθμοὶ συνσωρεύοιντο, ἡ μὲν μονὰς ὡς ἂν ἀρχὴ οὖσα πάντων κατὰ τὸν Φιλόλαον (οὐ γὰρ ἕν φησιν ἀρχὰ πάντων) καὶ τοῖς ἑτερομήκεσιν εἰς γένεσιν ὕσπληγα ὁμοίως ἑαυτὴν παρέξει, οὐκέτι δὲ καὶ νύσσα ἔσται τῆς καθ’ ὑποστροφὴν παλινδρομίας καὶ ἐπανόδου, ἀλλὰ τὸ τοιοῦτον ἡ δυὰς ἀντ’ αὐτῆς ὑποστήσεται· ταύτης γὰρ αὐτῆς ἔσται ἡ ἐπάνοδος. ἔοικε δὲ ἡ μὲν ἀπὸ μονάδος πρόοδος μέχρι τῶν πλευρικῶν δύο ἀριθμῶν, οἵπερ καμπτήρων λόγον ἕξουσιν ἐπὶ τῶν ἑτερομηκῶν γενέσει προϊούσῃ ἀπὸ τῆς κοινῆς πάντων ἀρχῆς ὡσανεὶ ἐπ’ ἀκμὴν αὐτοὺς τοὺς καμπτῆρας, ἡ δὲ ἀπὸ τούτων ἐπάνοδος ὥσπερ τις ἀνάλυσις οὖσα καὶ παρακμὴ φθορᾷ, διόπερ εὐλόγως εἰς μὲν σύστασιν καὶ αὐτῶν τῶν ἑτερομηκῶν ὡς ἂν εἴδους λόγον ἔχουσα ἡ μονὰς ἑαυτὴν ἐπιδώσει, εἰς δὲ ἀνάλυσιν καὶ ὡσανεὶ φθορὰν οὐκέτι, ἀλλὰ εἰς δυάδα ὕλης λόγον ἔχουσαν καταστρέψει, ὥσπερ ὁρῶμεν καὶ ἐπὶ τῶν φυσικῶν τὰ ἐν γενέσει πάντα τὸ μὲν γίνεσθαι καὶ τόδε τι εἶναι καὶ ἕν εἶναι ἕκαστον ἔχοντα παρὰ τὸ

εἶδος, τὸ δὲ φθείρεσθαι

καὶ μὴ εἶναι ἀλλὰ ἀοριστεῖν παρὰ τὴν ὕλην· εἴδους γὰρ καὶ μορφῆς στερόμενον τὸ τόδε τι ὕλη ἂν εἴη ἀόριστος καὶ ἄποσος καὶ ἄποιος, διὰ τὴν τῆς δυάδος ἀοριστίαν καὶ ἀνισότητα. διὰ τοῦτο ἰδίως τῶν ἑτερομηκῶν εἰδοποιὸς ἡ δυὰς ἐφάνη οὖσα καὶ τῆς ἰδίας δυνάμεως αὐτοῖς κατὰ τὰς πλευρὰς μεταδιδοῦσα, τουτέστι τῆς ἀνισότητος· δύο γὰρ τὸ ἄνισον, ὑπεροχὴ καὶ ἔλλειψις· ἡ δὲ μονὰς τῶν τετραγώνων, διόπερ καὶ ἰσάκις ἴσοι· ἀρχὴ γὰρ τῶν ἴσων τὸ ἓν καὶ ἡ μονάς, εἴ γε τὸ ἴσον ἓν πρὸς ἕν ἐστι, καὶ τὰ ἴσα καθ’ ἕνα λόγον ἐστὶν ἴσα. δῆλον οὖν ὅτι ἀναλόγως ἐξ εἴδους καὶ ὕλης τὰ ἐν κόσμῳ πάντα συνέστη καὶ γίνεται, ὡς ἐκ μονάδος καὶ δυάδος τὰ ἐν ἀριθμῷ συμπτώματα πάντα. πρώτως μὲν γὰρ εἰδοποιὸς ἑκατέρα ἡ ἀρχὴ τῶν δύο μηκῶν τοῦ ἀριθμοῦ, ἀρτίου λέγω καὶ περισσοῦ, δευτέρως δὲ ἡ μὲν τετραγώνων ἡ δὲ ἑτερομηκῶν, καὶ οὐκ ἐπαλλάττουσιν αἱ δυνάμεις αὐτῶν, ἀλλ’ ἐναντιώταται οὖσαι κατὰ τὸν ἴδιον λόγον ἑκατέρα διατίθησι τὰ μετίσχοντα αὐτῶν· ὡς γὰρ τὸ θερμὸν

θερμαίνειν πέφυκε τὰ πλησιάζοντα καὶ τὸ ψυχρὸν ψύχειν καὶ τὸ ὑγρὸν ὑγραίνειν, οὕτως καὶ αἱ τῶν ὄντων ἀρχαὶ ἄμικτοι τῶν ἄλλων δυνάμεων οὖσαι πάντα τὰ μεταλαμβάνοντα αὐτῶν κατὰ τὰς οἰκείας δυνάμεις ῥυθμίζουσι. πέφυκε δὲ τὸ μὲν ἓν καὶ ἡ μονὰς ὁρίζειν καὶ περαίνειν καὶ μορφοῦν καὶ ἰσάζειν καὶ σῴζειν καὶ ὅλως ἑνοποιεῖν, ἡ δὲ δυὰς μερίζειν καὶ διχάζειν καὶ φθείρειν καὶ ὅλως ἀορισταίνειν, διόπερ ἐν τῇ εἰρημένῃ γενέσει τῶν ἑτερομηκῶν εἰς τὴν αὐτῆς δυάδος σύστασιν ἡ μονὰς οὐκέτι

ἑαυτὴν παρέξει, ἀλλ’ αὐτὴ καθ’ αὑτὴν ἡ δυὰς ὡς ἂν ἀρχὴ οὖσα καὶ αὐτὴ εὐθὺς ἑτερομηκῶν ἐστι πυθμήν. διότι δὲ ἐξ ἀρχῆς οὐκ ἂν εἴη, φησὶν ὁ Πλάτων, οὐκ ἂν ἔτι ἀρχὴ εἴη. εὑρίσκεται δὲ ἀναλόγως καὶ ἐν ταῖς κοσμικαῖς ἀρχαῖς ὁ δημιουργὸς θεὸς μὴ ὢν τῆς ὕλης γεννητικός, ἀλλὰ καὶ αὐτὴν ἀίδιον παραλαβών, εἴδεσι καὶ λόγοις τοῖς κατ’ ἀριθμὸν διαπλάττων καὶ κοσμοποιῶν. εἰς δέ γε τὰς τῶν λοιπῶν ἑτερομηκῶν συστάσεις κατὰ μόνην τὴν πρόοδον, ὡς ἔφαμεν, ἐπιδώσει αὑτὴν ἡ μονάς, οὐκέτι δὲ καὶ εἰς τὴν ἐπάνοδον, οἷον οὕτως ἐκ τοῦ ἕν καὶ δύο

καὶ τρία ὁ ϛʹ γίνεται ἑτερομήκης συνεχὴς ὢν τῇ δυάδι καὶ πλευρὰς ἔχων δυάδα καὶ τριάδα, καίπερ καμπτήρων ἀμφότεραι λόγον ἔχουσαι. ἐν μὲν γὰρ τοῖς τετραγώνοις διὰ τὴν ταυτότητα καὶ ἰσότητα τῶν πλευρῶν ἕνα καμπτῆρα εἶναι συνέβαινεν, ὃς δὴ πλευρικὸς ἦν καθ’ ἕκαστον τετράγωνον ἀριθμός· ἐνταῦθα δὲ ἐπὶ τῶν ἑτερομηκῶν, ὅτι διαφόρους καὶ ἀνίσους εἶναι δεῖ τὰς πλευράς, δύο καμπτήρων ἐδέησε, κατ’ ἐπάνοδον δ’ ἐπισυνθεῖναι κωλυόμεθα ἀριθμὸν ὑπὸ τοῦ ϛʹ, ἐπείπερ ὑπόκειται ἡ μονὰς ἀνεπίδεκτος οὖσα τῆς ἐπανόδου καὶ ἀναλύσεως· ἡ δὲ δυὰς οὐδὲν ἔλαττον τῆς τριάδος καμπτὴρ ὑπάρχει, ἀλλ’ ἰσοκρατῶς ἀμφότεροι πλευρικοί εἰσιν ἀριθμοὶ τοῦ ϛʹ ἑτερομήκους ἐκ τοῦ δὶς τρία 〈ἢ〉 ἐκ τοῦ τρὶς βʹ ποιοῦντες αὐτόν. ἅπαξ δὲ χρὴ κατὰ μόνην τὴν πρόοδον ἐκ πάντων ἑτερομηκῶν τοὺς καμπτῆρας λαμβάνεσθαι, ὡς καὶ ἐπὶ τῶν τετραγώνων

ἐποιοῦμεν. πάλιν ἐκ τῶν αʹ βʹ γʹ δʹ καὶ ἐξ ὑποστροφῆς μόνου τοῦ βʹ ὁ ιβʹ τρίτος ἑτερομήκης γίνεται, οὗ πλευραὶ δύο καμπτῆρες ὅ τε γʹ