On Architecture

Vitruvius Pollio

Vitruvius Pollio, creator; Morgan, M. H. (Morris Hicky), 1859-1910, translator

6. The Serpent is said to lie stretched out between their tails, and in it there is a star, called Polus, shining near the head of the Greater Bear. At the nearest point, the Serpent winds its head round, but is also flung in a fold round the head of the Lesser .Bear, and stretches out close to her feet. Here it twists back, making another fold, and, lifting itself up, bends its snout and right temple from the head of the Lesser Bear round towards the Greater. Above the tail of the Lesser Bear are the feet of Cepheus, and at this point, at the very top, are stars forming an equilateral triangle. There are a good many stars common to the Lesser Bear and to Cepheus.

I have now mentioned the constellations which are arranged in the heaven to the right of the east, between the belt of the signs and the north. I shall next describe those that Nature has distributed to the left of the east and in the southern regions.

1. FIRST under the He-Goat lies the Southern Fish, facing towards the tail of the Whale. The Censer is under the Scorpion's sting. The fore parts of the Centaur are next to the Balance and the Scorpion, and he holds in his hands the figure which astronomers

call the Beast. Beneath the Virgin, Lion, and Crab is the twisted girdle formed by the Snake, extending over a whole line of stars, his snout raised near the Crab, supporting the Bowl with the middle of his body near the Lion, and bringing his tail, on which is the Raven, under and near the hand of the Virgin. The region above his shoulders is equally bright.

2. Beneath the Snake's belly, at the tail, lies the Centaur. Near the Bowl and the Lion is the ship named Argo. Her bow is invisible, but her mast and the parts about the helm are in plain sight, the stern of the vessel joining the Dog at the tip of his tail. The Little Dog follows the Twins, and is opposite the Snake's head. The Greater Dog follows the Lesser. Orion lies aslant, under the Bull's hoof; in his left hand grasping his club, and raising the other toward the Twins.

3. At his feet is the Dog, following a little behind the Hare. The Whale lies under the Ram and the Fishes, and from his mane there is a slight sprinkling of stars, called in Greek a(rpedo/nai, regularly disposed towards each of the Fishes. This ligature by which they hang is carried a great way inwards, but reaches out to the top of the mane of the Whale. The River, formed of stars, flows from a source at the left foot of Orion. But the Water, said to pour from the Waterman, flows between the head of the Southern Fish and the tail of the Whale.

4. These constellations, whose outlines and shapes in the heavens were designed by Nature and the divine intelligence, I have described according to the view of the natural philosopher Democritus, but only those whose risings and settings we can observe and see with our own eyes. Just as the Bears turn round the pivot of the axis without ever setting or sinking under the earth, there are likewise stars that keep turning round the southern pivot, which on account of the inclination of the firmament lies always under the earth, and, being hidden there, they never rise and emerge above the earth. Consequently, the figures which they form are unknown to us on account of the interposition of the earth. The star Canopus proves this. It is unknown to our

vicinity; but we have reports of it from merchants who have been to the most distant part of Egypt, and to regions bordering on the uttermost boundaries of the earth.

1. I HAVE shown how the firmament, and the twelve signs with the constellations arranged to the north and south of them, fly round the earth, so that the matter may be clearly understood. For it is from this revolution of the firmament, from the course of the sun through the signs in the opposite direction, and from the shadows cast by equinoctial gnomons, that we find the figure of the analemma.

2. As for the branch of astronomy which concerns the influences of the twelve signs, the five stars, the sun, and the moon upon human life, we must leave all this to the calculations of the Chaldeans, to whom belongs the art of casting nativities, which enables them to declare the past and the future by means of calculations based on the stars. These discoveries have been transmitted by the men of genius and great acuteness who sprang directly from the nation of the Chaldeans; first of all, by Berosus, who settled in the island state of Cos, and there opened a school. Afterwards Antipater pursued the subject; then there was Archinapolus, who also left rules for casting nativities, based not on the moment of birth but on that of conception.

3. When we come to natural philosophy, however, Thales of Miletus, Anaxagoras of Clazomenae, Pythagoras of Samos, Xenophanes of Colophon, and Democritus of Abdera have in various ways investigated and left us the laws and the working of the laws by which nature governs it. In the track of their discoveries, Eudoxus, Euctemon, Callippus, Meto, Philippus, Hipparchus, Aratus, and others discovered the risings and settings of the constellations, as well as weather prognostications from astronomy through

the study of the calendars, and this study they set forth and left to posterity. Their learning deserves the admiration of mankind; for they were so solicitous as even to be able to predict, long beforehand, with divining mind, the signs of the weather which was to follow in the future. On this subject, therefore, reference must be made to their labours and investigations.

1. IN distinction from the subjects first mentioned, we must ourselves explain the principles which govern the shortening and lengthening of the day. When the sun is at the equinoxes, that is, passing through Aries or Libra, he makes the gnomon cast a shadow equal to eight ninths of its own length, in the latitude of Rome. In Athens, the shadow is equal to three fourths of the length of the gnomon; at Rhodes to five sevenths; at Tarentum, to nine elevenths; at Alexandria, to three fifths; and so at other places it is found that the shadows of equinoctial gnomons are naturally different from one another.

2. Hence, wherever a sundial is to be constructed, we must take the equinoctial shadow of the place. If it is found to be, as in Rome, equal to eight ninths of the gnomon, let a line be drawn on a plane surface, and in the middle thereof erect a perpendicular, plumb to the line, which perpendicular is called the gnomon. Then,from the line in the plane, let the line of the gnomon be divided off by the compasses into nine parts, and take the point designating the ninth part as a centre, to be marked by the letter A. Then, opening the compasses from that centre to the line in the plane at the point B, describe a circle. This circle is called the meridian.

3. Then, of the nine parts between the plane and the centre on the gnomon, take eight, and mark them off on the line in the plane to the point C. This will be the equinoctial shadow of the

gnomon. From that point, marked by C, let a line be drawn through the centre at the point A, and this will represent a ray of the sun at the equinox. Then, extending the compasses from the centre to the line in the plane, mark off the equidistant points E on the left and I on the right, on the two sides of the circumference, and let a line be drawn through the centre, dividing the circle into two equal semicircles. This line is called by mathematicians the horizon.

4. Then, take a fifteenth part of the entire circumference, and, placing the centre of the compasses on the circumference at the point where the equinoctial ray cuts it at the letter F, mark off the points G and H on the right and left. Then lines must be drawn from these (and the centre) to the line of the plane at the points T and R, and thus, one will represent the ray of the sun in winter, and the other the ray in summer. Opposite E will be the point I, where the line drawn through the centre at the point A cuts the circumference; opposite G and H will be the points L and K; and opposite C, F, and A will be the point N.

5. Then, diameters are to be drawn from G to L and from H to K. The upper will denote the summer and the lower the winter portion. These diameters are to be divided equally in the middle at the points M and 0, and those centres marked; then, through

these marks and the centre A, draw a line extending to the two sides of the circumference at the points P and Q. This will be a line perpendicular to the equinoctial ray, and it is called in mathematical figures the axis. From these same centres open the compasses to the ends of the diameters, and describe semicircles, one of which will be for summer and the other for winter.

6. Then, at the points at which the parallel lines cut the line called the horizon, the letter S is to be on the right and the letter V on the left, and from the extremity of the semicircle, at the point G, draw a line parallel to the axis, extending to the left-hand semicircle at the point H. This parallel line is called the Logotomus. Then, centre the compasses at the point where the equinoctial ray cuts that line, at the letter D, and open them to the point where the summer ray cuts the circumference at the letter H. From the equinoctial centre, with a radius extending to the summer ray, describe the circumference of the circle of the months, which is called Menaeus. Thus we shall have the figure of the analemma.

7. This having been drawn and completed, the scheme of hours is next to be drawn on the baseplates from the analemma, according to the winter lines, or those of summer,or the equinoxes, or the months, and thus many different kinds of dials may be laid down and drawn by this ingenious method. But the result of all these shapes and designs is in one respect the same: namely, the days of the equinoxes and of the winter and summer solstices are always divided into twelve equal parts. Omitting details, therefore,—not for fear of the trouble, but lest I should prove tiresome by writing too much,—I will state by whom the different classes and designs of dials have been invented. For I cannot invent new kinds myself at this late day, nor do I think that I ought to display the inventions of others as my own. Hence, I will mention those that have come down to us, and by whom they were invented.