On Architecture
Vitruvius Pollio
Vitruvius Pollio, creator; Morgan, M. H. (Morris Hicky), 1859-1910, translator
2. We must also beware that it has not a southern exposure. When the sun shines full upon the rounded part of it, the air, being shut up in the curved enclosure and unable to circulate, stays there and becomes heated; and getting glowing hot it burns up, dries out, and impairs the fluids of the human body. For these reasons, sites which are unwholesome in such respects are to be avoided, and healthy sites selected.
3. The foundation walls will be an easier matter if they are on a hillside; but if they have to be laid on a plain or in a marshy place, solidity must be assured and substructures built in accordance with what has been written in the third book, on the foundations of temples. Above the foundation walls, the ascending rows of seats, from the substructures up, should be built of stone and marble materials.
4. The curved cross-aisles should be constructed in proportionate relation, it is thought, to the height of the theatre, but not higher than the footway of the passage is broad. If they are loftier, they will throw back the voice and drive it away from the upper portion, thus preventing the case-endings of words from reaching with distinct meaning the ears of those who are in the uppermost seats above the cross-aisles. In short, it should be so contrived that a line drawn from the lowest to the highest seat will touch the top edges and angles of all the seats. Thus the voice will meet with no obstruction.
5. The different entrances ought to be numerous and spacious, the upper not connected with the lower, but built in a continuous straight line from all parts of the house, without turnings, so that the people may not be crowded together when let out from shows, but may have separate exits from all parts without obstructions. Particular pains must also be taken that the site be not a “deaf” one, but one through which the voice can range with the greatest clearness. This can be brought about if a site is selected where there is no obstruction due to echo.
6. Voice is a flowing breath of air, perceptible to the hearing by contact. It moves in an endless number of circular rounds,
7. In the same manner the voice executes its movements in concentric circles; but while in the case of water the circles move horizontally on a plane surface, the voice not only proceeds horizontally, but also ascends vertically by regular stages. Therefore, as in the case of the waves formed in the water, so it is in the case of the voice: the first wave, when there is no obstruction to interrupt it, does not break up the second or the following waves, but they all reach the ears of the lowest and highest spectators without an echo.
8. Hence the ancient architects, following in the footsteps of nature, perfected the ascending rows of seats in theatres from their investigations of the ascending voice, and, by means of the canonical theory of the mathematicians and that of the musicians, endeavoured to make every voice uttered on the stage come with greater clearness and sweetness to the ears of the audience. For just as musical instruments are brought to perfection of clearness in the sound of their strings by means of bronze plates or horn so the ancients devised methods of increasing the power of the voice in theatres through the application of harmonics.
1. HARMONICS is an obscure and difficult branch of musical science, especially for those who do not know Greek. If we desire to treat of it, we must use Greek words, because some of them have no Latin equivalents. Hence, I will explain it as clearly as
2. The voice, in its changes of position when shifting pitch, becomes sometimes high, sometimes low, and its movements are of two kinds, in one of which its progress is continuous, in the other by intervals. The continuous voice does not become stationary at the “boundaries” or at any definite place, and so the extremities of its progress are not apparent, but the fact that there are differences of pitch is apparent, as in our ordinary speech in sol, lux, flos, vox for in these cases we cannot tell at what pitch the voice begins, nor at what pitch it leaves off, but the fact that it becomes low from high and high from low is apparent to the ear. In its progress by intervals the opposite is the case. For here, when the pitch shifts, the voice, by change of position, stations itself on one pitch, then on another, and, as it frequently repeats this alternating process, it appears to the senses to become stationary, as happens in singing when we produce a variation of the mode by changing the pitch of the voice. And so, since it moves by intervals, the points at which it begins and where it leaves off are obviously apparent in the boundaries of the notes, but the intermediate points escape notice and are obscure, owing to the intervals.
3. There are three classes of modes: first, that which the Greeks term the enharmonic; second, the chromatic; third, the diatonic. The enharmonic mode is an artistic conception, and therefore execution in it has a specially severe dignity and distinction. The chromatic, with its delicate subtlety and with the “crowding” of its notes, gives a sweeter kind of pleasure. In the diatonic, the distance between the intervals is easier to understand, because it is natural. These three classes differ in their arrangement of the tetrachord. In the enharmonic, the tetrachord consists of two tones and two “dieses.” A diesis is a quarter tone; hence in a semitone there are included two dieses. In the chromatic there are two semitones arranged in succession, and the
4. Now then, these intervals of tones and semitones of the tetrachord are a division introduced by nature in the case of the voice, and she has defined their limits by measures according to the magnitude of the intervals, and determined their characteristics in certain different ways. These natural laws are followed by the skilled workmen who fashion musical instruments, in bringing them to the perfection of their proper concords.
5. In each class there are eighteen notes, termed in Greek of which eight in all the three classes are constant and fixed, while the other ten, not being tuned to the same pitch, are variable. The fixed notes are those which, being placed between the moveable, make up the unity of the tetrachord, and remain unaltered in their boundaries according to the different classes. Their names are proslambanomenos, hypate hypaton, hypate meson, mese, nete synhemmenon, paramese, nete diezeugmenon, nete hyperbolaeon. The moveable notes are those which, being arranged in the tetrachord between the immoveable, change from place to place according to the different classes. They are called
6. These notes, from being moveable, take on different qualities; for they may stand at different intervals and increasing distances. Thus, parhypate, which in the enharmonic is at the interval of half a semitone from hypate, has a semitone interval when transferred to the chromatic. What is called lichanos in the enharmonic is at the interval of a semitone from hypate; but when shifted to the chromatic, it goes two semitones away; and in the diatonic it is at an interval of three semitones from hypate. Hence the ten notes produce three different kinds of modes on account of their changes of position in the classes.
7. There are five tetrachords: first, the lowest, termed in Greek u(/paton; second, the middle, called me/son; third, the conjunct, termed fourth, the disjunct, named diezeugme/non; the fifth, which Greek u(perbo/laion. The concords, termed in Greek sumfwni/ai, of which human modulation will naturally admit, are six in number: the fourth, the fifth, the octave, the octave and fourth, the octave and fifth, and the double octave.
8. Their names are therefore due to numerical value; for when the voice becomes stationary on some one note, and then, shifting its pitch, changes its position and passes to the limit of the fourth note from that one, we use the term “fourth”; when it passes to the fifth, the term is “fifth.” [*](The remainderof this section is omitted from the translation as being an obvious interpolation)
9. For there can be no consonancies either in the case of the notes of stringed instruments or of the singing voice, between two intervals or between three or six or seven; but, as written above, it is only the harmonies of the fourth, the fifth, and so on up to the double octave, that have boundaries naturally corresponding to those of the voice: and these concords are produced by the union of the notes.
1. IN accordance with the foregoing investigations on mathematical principles, let bronze vessels be made, proportionate to the size of the theatre, and let them be so fashioned that, when touched, they may produce with one another the notes of the fourth, the fifth, and so on up to the double octave. Then, having constructed niches in between the seats of the theatre, let the vessels be arranged in them, in accordance with musical laws, in such a way that they nowhere touch the wall, but have a clear space all round them and room over their tops. They should be set upside down, and be supported on the side facing the stage by wedges not less than half a foot high. Opposite each niche, apertures should be left in the surface of the seat next below, two feet long and half a foot deep.
2. The arrangement of these vessels, with reference to the situations in which they should be placed, may be described as follows. If the theatre be of no great size, mark out a horizontal range halfway up, and in it construct thirteen arched niches with twelve equal spaces between them, so that of the above mentioned “echea” those which give the note nete hyperbolaeon may be placed first on each side, in the niches which are at the extreme ends; next to the ends and a fourth below in pitch, the note nete diezeugmenon; third, paramese, a fourth below; fourth, nete synhemmenon; fifth, mese, a fourth below; sixth, hypate meson, a fourth below; and in the middle and another fourth below, one vessel giving the note hypate hypaton.