On Architecture

Vitruvius Pollio

Vitruvius Pollio, creator; Morgan, M. H. (Morris Hicky), 1859-1910, translator

11. For the thickness of the shafts must be enlarged in proportion to the increase of the distance between the columns. In the araeostyle, for instance, if only a ninth or tenth part is given to the thickness, the column will look thin and mean, because the width of the intercolumniations is such that the air seems to eat away and diminish the thickness of such shafts. On the other hand, in pycnostyles, if an eighth part is given to the thickness, it will make the shaft look swollen and ungraceful, because the intercolumniations are so close to each other and so narrow. We must therefore follow the rules of symmetry required by each kind of building. Then, too, the columns at the corners should be made thicker than the others by a fiftieth of their own diameter, because they are sharply outlined by the unobstructed air round them, and seem to the beholder more slender than they are. Hence, we must counteract the ocular deception by an adjustment of proportions.

12. Moreover, the diminution in the top of a column at the necking seems to be regulated on the following principles: if a column is fifteen feet or under, let the thickness at the bottom

86
be divided into six parts, and let five of those parts form the thickness at the top. If it is from fifteen feet to twenty feet, let the bottom of the shaft be divided into six and a half parts, and let five and a half of those parts be the upper thickness of the column. In a column of from twenty feet to thirty feet, let the bottom of the shaft be divided into seven parts, and let the diminished top measure six of these. A column of from thirty to forty feet should be divided at the bottom into seven and a half parts, and, on the principle of diminution, have six and a half of these at the top. Columns of from forty feet to fifty should be divided into eight parts, and diminish to seven of these at the top of the shaft under the capital. In the case of higher columns, let the diminution be determined proportionally, on the same principles.

13. These proportionate enlargements are made in the thickness of columns on account of the different heights to which the eye has to climb. For the eye is always in search of beauty, and if we do not gratify its desire for pleasure by a proportionate enlargement in these measures, and thus make compensation for ocular deception, a clumsy and awkward appearance will be presented to the beholder. With regard to the enlargement made at the middle of columns, which among the Greeks is called e)/ntasis, at the end of the book a figure and calculation will be subjoined, showing how an agreeable and appropriate effect may be produced by it.

1. THE foundations of these works should be dug out of the solid ground, if it can be found, and carried down into solid ground as far as the magnitude of the work shall seem to require, and the whole substructure should be as solid as it can possibly be laid. Above ground, let walls be laid under the columns, thicker by one half than the columns are to be, so that the lower may be

88
stronger than the higher. Hence they are called “stereobates”; for they take the load. And the projections of the bases should not extend beyond this solid foundation. The wall-thickness is similarly to be preserved above ground likewise, and the intervals between these walls should be vaulted over, or filled with earth rammed down hard, to keep the walls well apart.

2. If, however, solid ground cannot be found, but the place proves to be nothing but a heap of loose earth to the very bottom, or a marsh, then it must be dug up and cleared out and set with piles made of charred alder or olive wood or oak, and these must be driven down by machinery, very closely together like bridge-piles, and the intervals between them filled in with charcoal, and finally the foundations are to be laid on them in the most solid form of construction. The foundations having been brought up to the level, the stylobates are next to be put in place.

3. The columns are then to be distributed over the stylobates in the manner above described: close together in the pycnostyle; in the systyle, diastyle, or eustyle, as they are described and arranged above. In araeostyle temples one is free to arrange them as far apart as one likes. Still, in peripterals, the columns should be so placed that there are twice as many intercolumniations on the sides as there are in front; for thus the length of the work will be twice its breadth. Those who make the number of columns double, seem to be in error, because then the length seems to be one intercolumniation longer than it ought to be.

4. The steps in front must be arranged so that there shall always be an odd number of them; for thus the right foot, with which one mounts the first step, will also be the first to reach the level of the temple itself. The rise of such steps should, I think, be limited to not more than ten nor less than nine inches; for then the ascent will not be difficult. The treads of the steps ought to be made not less than a foot and a half, and not more than two feet deep. If there are to be steps running all round the temple, they should be built of the same size.

5. But if a podium is to be built on three sides round the

89
temple, it should be so constructed that its plinths, bases, dies, coronae, and cymatiumare appropriate to the actual stylobate which is to be under the bases of the columns.

The level of the stylobate must be increased along the middle by the scamilli impares; for if it is laid perfectly level, it will look to the eye as though it were hollowed a little. At the end of the book a figure will be found, with a description showing how the scamilli may be made to suit this purpose.

90

1. THIS finished, let the bases of the columns be set in place, and constructed in such proportions that their height, including the plinth, may be half the thickness of a column, and their projection (called in Greek e)kfora/) the same.[*](Reading aeque tantam as in new Rose. Codd. sextantem; Schn. quadrantem.) Thus in both length and breadth it will be one and one half thicknesses of a column.

2. If the base is to be in the Attic style, let its height be so divided that the upper part shall be one third part of the thickness of the column, and the rest left for the plinth. Then, excluding the plinth, let the rest be divided into four parts, and of these let one fourth constitute the upper torus, and let the other three be divided equally, one part composing the lower torus, and the other, with its fillets, the scotia, which the Greeks call troxi/los.

3. But if Ionic bases are to be built, their proportions shall be so determined that the base may be each way equal in breadth to the thickness of a column plus three eighths of the thickness; its height that of the Attic base, and so too its plinth; excluding the plinth, let the rest, which will be a third part of the thickness of a column, be divided into seven parts. Three of these parts constitute the torus at the top, and the other four are to be divided equally, one part constituting the upper trochilus with its astragals and overhang, the other left for the lower trochilus. But the lower will seem to be larger, because it will project to the edge of the plinth. The astragals must be one eighth of the trochilus. The projection of the base will be three sixteenths of the thickness of a column.

4. The bases being thus finished and put in place, the columns are to be put in place: the middle columns of the front and rear porticoes perpendicular to their own centre; the corner columns, and those which are to extend in a line from them along the sides

92
of the temple to the right and left, are to be set so that their inner sides, which face toward the cella wall, are perpendicular, but their outer sides in the manner which I have described in speaking of their diminution. Thus, in the design of the temple the lines will be adjusted with due regard to the diminution,