On Architecture

Vitruvius Pollio

Vitruvius Pollio, creator; Morgan, M. H. (Morris Hicky), 1859-1910, translator

1. I SHALL now explain the making of the different kinds of engines which have been invented for raising water, and will first speak of the tympanum. Although it does not lift the water high, it raises a great quantity very quickly. An axle is fashioned on a lathe or with the compasses, its ends are shod with iron hoops, and it carries round its middle a tympanum made of boards joined together. It rests on posts which have pieces of iron on them under the ends of the axle. In the interior of this tympanum there are eight crosspieces set at intervals, extending from the axle to the circumference of the tympanum, and dividing the space in the tympanum into equal compartments.

2. Planks are nailed round the face of it, leaving six-inch apertures to admit the water. At one side of it there are also holes, like those of a dovecot, next to the axle, one for each compartment. After being smeared with pitch like a ship, the thing is turned by the tread of men, and raising the water by means of the apertures in the face of the tympanum, delivers it through the

294
holes next to the axle into a wooden trough set underneath, with a conduit joined to it. Thus, a large quantity of water is furnished for irrigation in gardens, or for supplying the needs of saltworks.

3. But when it has to be raised higher, the same principle will be modified as follows. A wheel on an axle is to be made, large enough to reach the necessary height. All round the circumference of the wheel there will be cubical boxes, made tight with pitch and wax. So, when the wheel is turned by treading, the boxes, carried up full and again returning to the bottom, will of themselves discharge into the reservoir what they have carried up.

4. But, if it has to be supplied to a place still more high, a double iron chain, which will reach the surface when let down, is passed round the axle of the same wheel, with bronze buckets attached to it, each holding about six pints. The turning of the wheel, winding the chain round the axle, will carry the buckets to the top, and as they pass above the axle they must tip over and deliver into the reservoir what they have carried up.

1. WHEELS on the principles that have been described above are also constructed in rivers. Round their faces floatboards are fixed, which, on being struck by the current of the river, make the wheel turn as they move, and thus, by raising the water in the boxes and bringing it to the top, they accomplish the necessary work through being turned by the mere impulse of the river, without any treading on the part of workmen.

2. Water mills are turned on the same principle. Everything is the same in them, except that a drum with teeth is fixed into one end of the axle. It is set vertically on its edge, and turns in the same plane with the wheel. Next to this larger drum there is a smaller one, also with teeth, but set horizontally, and this is

295
attached (to the millstone). Thus the teeth of the drum which is fixed to the axle make the teeth of the horizontal drum move, and cause the mill to turn. A hopper, hanging over this contrivance, supplies the mill with corn, and meal is produced by the same revolution.

1. THERE is also the method of the screw, which raises a great quantity of water, but does not carry it as high as does the wheel. The method of constructing it is as follows. A beam is selected, the thickness of which in digits is equivalent to its length in feet. This is made perfectly round. The ends are to be divided off on their circumference with the compass into eight parts, by quadrants and octants, and let the lines be so placed that, if the beam is laid in a horizontal position, the lines on the two ends may perfectly correspond with each other, and intervals of the size of one eighth part of the circumference of the beam may be laid off on the length of it. Then, placing the beam in a horizontal position, let perfectly straight lines be drawn from one end to the other. So the intervals will be equal in the directions both of the periphery and of the length. Where the lines are drawn along the length, the cutting circles will make intersections, and definite points at the intersections.