On Architecture

Vitruvius Pollio

Vitruvius Pollio, creator; Morgan, M. H. (Morris Hicky), 1859-1910, translator

11. It may also not be out of place to explain the ingenious procedure of Chersiphron. Desiring to convey the shafts for the temple of Diana at Ephesus from the stone quarries, and not trusting to carts, lest their wheels should be engulfed on account of the great weights of the load and the softness of the roads in the plain, he tried the following plan. Using four-inch timbers, he joined two of them, each as long as the shaft, with two crosspieces set between them, dovetailing all together, and then leaded iron gudgeons shaped like dovetails into the ends of the shafts, as dowels are leaded, and in the woodwork he fixed rings to contain the pivots, and fastened wooden cheeks to the ends. The pivots, being enclosed in the rings, turned freely. So, when yokes of oxen began to draw the four-inch frame, they made the shaft revolve constantly, turning it by means of the pivots and rings.

12. When they had thus transported all the shafts, and it became necessary to transport the architraves, Chersiphron's son Metagenes extended the same principle from the transportation of the shafts to the bringing down of the architraves. He made wheels, each about twelve feet in diameter, and enclosed the ends of the architraves in the wheels. In the ends he fixed pivots and rings in the same way. So when the four-inch frames were drawn by oxen, the wheels turned on the pivots enclosed in the rings, and the architraves, which were enclosed like axles in

289
the wheels, soon reached the building, in the same way as the shafts. The rollers used for smoothing the walks in palaestrae will serve as an example of this method. But it could not have been employed unless the distance had been short; for it is not more than eight miles from the stone-quarries to the temple, and there is no hill, but an uninterrupted plain.

13. In our own times, however, when the pedestal of the colossal Apollo in his temple had cracked with age, they were afraid that the statue would fall and be broken, and so they contracted for the cutting of a pedestal from the same quarries. The contract was taken by one Paconius. This pedestal was twelve feet long, eight feet wide, and six feet high. Paconius, with confident pride, did not transport it by the method of Metagenes, but determined to make a machine of a different sort, though on the same principle.

14. He made wheels of about fifteen feet in diameter, and in these wheels he enclosed the ends of the stone; then he fastened two-inch crossbars from wheel to wheel round the stone, encompassing it, so that there was an interval of not more than one foot between bar and bar. Then he coiled a rope round the bars, yoked up his oxen, and began to draw on the rope. Consequently as it uncoiled, it did indeed cause the wheels to turn, but it could not draw them in a line straight along the road, but kept swerving out to one side. Hence it was necessary to draw the machine back again. Thus, by this drawing to and fro, Paconius got into such financial embarrassment that he became insolvent.

15. I will digress a bit and explain how these stone-quarries were discovered. Pixodorus was a shepherd who lived in that vicinity. When the people of Ephesus were planning to build the temple of Diana in marble, and debating whether to get the marble from Paros, Proconnesus, Heraclea, or Thasos, Pixodorus drove out his sheep and was feeding his flock in that very spot. Then two rams ran at each other, and, each passing the other, one of them, after his charge, struck his horns against a

290
rock, from which a fragment of extremely white colour was dislodged. So it is said that Pixodorus left his sheep in the mountains and ran down to Ephesus carrying the fragment, since that very thing was the question of the moment. Therefore they immediately decreed honours to him and changed his name, so that instead of Pixodorus he should be called Evangelus. And to this day the chief magistrate goes out to that very spot every month and offers sacrifice to him, and if he does not, he is punished.

1. I HAVE briefly set forth what I thought necessary about the principles of hoisting machines. In them two different things, unlike each other, work together, as elements of their motion and power, to produce these effects. One of them is the right line, which the Greeks call eu)qei=a the other is the circle, which call kuklwth/ but in point of fact, neither rectilinear without circular motion, nor revolutions, without rectilinear motion, can accomplish the raising of loads. I will explain this, so that it may be understood.

2. As centres, axles are inserted into the sheaves, and these are fastened in the blocks; a rope carried over the sheaves, drawn straight down, and fastened to a windlass, causes the load to move upward from its place as the handspikes are turned. The pivots of this windlass, lying as centres in right lines in its socket-pieces, and the handspikes inserted in its holes, make the load rise when the ends of the windlass revolve in a circle like a lathe. Just so, when an iron lever is applied to a weight which a great many hands cannot move, with the fulcrum, which the Greek call u(pomo/xlion, lying as a centre in a right line under the lever, and with the tongue of the lever placed under the weight, one man's strength, bearing down upon the head of it, heaves up the weight.