On Architecture

Vitruvius Pollio

Vitruvius Pollio, creator; Morgan, M. H. (Morris Hicky), 1859-1910, translator

11. Inside, behind the face of the dial, place a reservoir, and let the water run down into it through a pipe, and let it have a hole at the bottom. Fastened to it is a bronze drum with an opening through which the water flows into it from the reservoir. Enclosed in this drum there is a smaller one, the two being perfectly jointed together by tenon and socket, in such a way that the smaller drum revolves closely but easily in the larger, like a stopcock.

12. On the lip of the larger drum there are three hundred and sixty-five points, marked off at equal intervals. The rim of the smaller one has a tongue fixed on its circumference, with the tip directed towards those points; and also in this rim is a small opening, through which water runs into the drum and keeps the works going. The figures of the celestial signs being on the lip of the larger drum, and this drum being motionless, let the sign Cancer be drawn at the top, with Capricornus perpendicular to it at the bottom, Libra at the spectator's right, Aries at his left, and let the other signs be given places between them as they are seen in the heavens.

13. Hence, when the sun is in Capricornus, the tongue on the rim touches every day one of the points in Capricornus on the lip of the larger drum, and is perpendicular to the strong pressure of the running water. So the water is quickly driven through the opening in the rim to the inside of the vessel, which, receiving it and soon becoming full, shortens and diminishes the length of the days and hours. But when, owing to the daily revolution of the smaller drum, its tongue reaches the points in Aquarius, the opening will no longer be perpendicular, and the water must give up its vigorous flow and run in a slower stream. Thus, the less the

277
velocity with which the vessel receives the water, the more the length of the days is increased.

14. Then the opening in the rim passes from point to point in Aquarius and Pisces, as though going upstairs, and when it reaches the end of the first eighth of Aries, the fall of the water is of medium strength, indicating the equinoctial hours. From Aries the opening passes, with the revolution of the drum, through Taurus and Gemini to the highest point at the end of the first eighth of Cancer, and when it reaches that point, the power diminishes, and hence, with the slower flow, its delay lengthens the days in the sign Cancer, producing the hours of the summer solstice. From Cancer it begins to decline, and during its return it passes through Leo and Virgo to the points at the end of the first eighth of Libra, gradually shortening and diminishing the length of the hours, until it comes to the points in Libra, where it makes the hours equinoctial once more.

15. Finally, the opening comes down more rapidly through Scorpio and Sagittarius, and on its return from its revolution to the end of the first eighth of Capricornus, the velocity of the stream renews once more the short hours of the winter solstice. The rules and forms of construction employed in designing dials have now been described as well as I could. It remains to give an account of machines and their principles. In order to make my treatise on architecture complete, I will begin to write on this subject in the following book.

281

1. IN the famous and important Greek city of Ephesus there is said to be an ancient ancestral law, the terms of which are severe, but its justice is not inequitable. When an architect accepts the charge of a public work, he has to promise what the cost of it will be. His estimate is handed to the magistrate, and his property is pledged as security until the work is done. When it is finished, if the outlay agrees with his statement, he is complimented by decrees and marks of honour. If no more than a fourth has to be added to his estimate, it is furnished by the treasury and no penalty is inflicted. But when more than one fourth has to be spent in addition on the work, the money required to finish it is taken from his property.

2. Would to God that this were also a law of the Roman people, not merely for public, but also for private buildings. For the ignorant would no longer run riot with impunity, but men who are well qualified by an exact scientific training would unquestionably adopt the profession of architecture. Gentlemen would not be misled into limitless and prodigal expenditure, even to ejectments from their estates, and the architects themselves could be forced, by fear of the penalty, to be more careful in calculating and stating the limit of expense, so that gentlemen would procure their buildings for that which they had expected, or by adding only a little more. It is true that men who can afford to devote four hundred thousand to a work may hold on, if they have to add another hundred thousand, from the pleasure which the hope of finishing it gives them; but if they are loaded with a fifty per cent increase, or with an even greater expense, they lose hope, sacrifice what they have already spent, and are compelled to leave off, broken in fortune and in spirit.

282

3. This fault appears not only in the matter of buildings, but also in the shows given by magistrates, whether of gladiators in the forum or of plays on the stage. Here neither delay nor postponement is permissible, but the necessities of the case require that everything should be ready at a fixed time,—the seats for the audience, the awning drawn over them, and whatever, in accordance with the customs of the stage, is provided by machinery to please the eye of the people. These matters require careful thought and planning by a well trained intellect; for none of them can be accomplished without machinery, and without hard study skilfully applied in various ways.

4. Therefore, since such are our traditions and established practices, it is obviously fitting that the plans should be worked out carefully, and with the greatest attention, before the structures are begun. Consequently, as we have no law or customary practice to compel this, and as every year both praetors and aediles have to provide machinery for the festivals, I have thought it not out of place, Emperor, since I have treated of buildings in the earlier books, to set forth and teach in this, which forms the final conclusion of my treatise, the principles which govern machines.

283

1. A MACHINE a combination of timbers fastened together, chiefly efficacious in moving great weights. Such a machine is set in motion on scientific principles in circular rounds, which the Greeks call kuklikh\ ki/nhsis There is, however, a class intended for climbing, termed in Greek a)krobatiko/n another worked by air, which with them is called pneumatiko/n and a third for hoisting; this the Greeks named bapoulko/sIn the climbing class are machines so disposed that one can safely climb up high, by means of timbers set up on end and connected by crossbeams, in order to view operations. In the pneumatic class, air is forced by pressure to produce sounds and tones as in an o)/pgavov.

2. In the hoisting class, heavy weights are removed by machines which raise them up and set them in position. The climbing machine displays no scientific principle, but merely a spirit of daring. It is held together by dowels and crossbeams and twisted lashings and supporting props. A machine that gets its motive power by pneumatic pressure will produce pretty effects by scientific refinements. But the hoisting machine has opportunities for usefulness which are greater and full of grandeur, and it is of the highest efficacy when used with intelligence.

3. Some of these act on the principle of the mhxanh/ , others on that of the o)/pganon. The difference between “machines” and “engines” is obviously this, that machines need more workmen and greater power to make them take effect, as for instance ballistae and the beams of presses. Engines, on the other hand, accomplish their purpose at the intelligent touch of a single workman, as the scorpio or anisocycli when they are turned. Therefore engines, as well as machines, are, in principle, practical necessities, without which nothing can be unattended with difficulties.

284

4. All machinery is derived from nature, and is founded on the teaching and instruction of the revolution of the firmament. Let us but consider the connected revolutions of the sun, the moon, and the five planets, without the revolution of which, due to mechanism, we should not have had the alternation of day and night, nor the ripening of fruits. Thus, when our ancestors had seen that this was so, they took their models from nature, and by imitating them were led on by divine facts, until they perfected the contrivances which are so serviceable in our life. Some things, with a view to greater convenience, they worked out by means of machines and their revolutions, others by means of engines, and so, whatever they found to be useful for investigations, for the arts, and for established practices, they took care to improve step by step on scientific principles.

5. Let us take first a necessary invention, such as clothing, and see how the combination of warp and woof on the loom, which does its work on the principle of an engine, not only protects the body by covering it, but also gives it honourable apparel. We should not have had food in abundance unless yokes and ploughs for oxen, and for all draught animals, had been invented. If there had been no provision of windlasses, pressbeams, and levers for presses, we could not have had the shining oil, nor the fruit of the vine to give us pleasure, and these things could not be transported on land without the invention of the mechanism of carts or waggons, nor on the sea without that of ships.

6. The discovery of the method of testing weights by steelyards and balances saves us from fraud, by introducing honest practices into life. There are also innumerable ways of employing machinery about which it seems unnecessary to speak, since they are at hand every day; such as mills, blacksmiths' bellows, carriages, gigs, turning lathes, and other things which are habitually used as general conveniences. Hence, we shall begin by explaining those that rarely come to hand, so that they may be usderstood.