On Architecture

Vitruvius Pollio

Vitruvius Pollio, creator; Morgan, M. H. (Morris Hicky), 1859-1910, translator

7. But if there are timbers in the way, or lintels, or upper stories, then, make the opening higher up and introduce the light in this way. And as a general rule, we must arrange so as to leave places for windows on all sides on which a clear view of the sky can be had, for this will make our buildings light. Not only in dining rooms and other rooms for general use are windows very necessary, but also in passages, level or inclined, and on stairs; for people carrying burdens too often meet and run against each other in such places. I have now set forth the plans used for buildings in our native country so that they may be clear to builders. Next, I shall describe summarily how houses are planned in the Greek fashion, so that these also may be understood.

1. THE Greeks, having no use for atriums, do not build them, but make passage-ways for people entering from the front door,

186
not very wide, with stables on one side and doorkeepers' rooms on the other, and shut off by doors at the inner end. This place between the two doors is termed in Greek qurwrei=on. From it one enters the peristyle. This peristyle has colonnades on three sides, and on the side facing the south it has two antae, a considerable distance apart, carrying an architrave, with a recess for a distance one third less than the space between the antae. This space is called by some writers “prostas,” by others “pastas.”

2. Hereabouts, towards the inner side, are the large rooms in which mistresses of houses sit with their wool spinners. To the right and left of the prostas there are chambers, one of which is called the “thalamos,” the other the “amphithalamos.” All round the colonnades are dining rooms for everyday use, chambers, and rooms for the slaves. This part of the house is termed “gynaeconitis.”

3. In connexion with these there are ampler sets of apartments with more sumptuous peristyles, surrounded by four colonnades of equal height, or else the one which faces the south has higher columns than the others. A peristyle that has one such higher colonnade is called a Rhodian peristyle. Such apartments have fine entrance courts with imposing front doors of their own; the colonnades of the peristyles are decorated with polished stucco in relief and plain, and with coffered ceilings of woodwork; off the colonnades that face the north they have Cyzicene dining rooms and picture galleries; to the east, libraries; exedrae to the

187
west; and to the south, large square rooms of such generous dimensions that four sets of dining couches can easily be arranged in them, with plenty of room for serving and for the amusements.

4. Men's dinner parties are held in these large rooms; for it was not the practice, according to Greek custom, for the mistress of the house to be present. On the contrary, such peristyles are called the men's apartments, since in them the men can stay without interruption from the women. Furthermore, small sets of apartments are built to the right and left, with front doors of their own and suitable dining rooms and chambers, so that guests from abroad need not be shown into the peristyles, but rather into such guests' apartments. For when the Greeks became more luxurious, and their circumstances more opulent, they began to provide dining rooms, chambers, and store-rooms of provisions for their guests from abroad, and on the first day they would invite them to dinner, sending them on the next chickens, eggs, vegetables, fruits, and other country produce. This is why artists called pictures representing the things which were sent to guests “xenia.” Thus, too, the heads of families, while being entertained abroad, had the feeling that they were not away from home, since they enjoyed privacy and freedom in such guests' apartments.

5. Between the two peristyles and the guests' apartments are the passage-ways called “mesauloe,” because they are situated midway between two courts; but our people called them “andrones.” This, however, is a very strange fact, for the term does not fit either the Greek or the Latin use of it. The Greeks call the large

188
rooms in which men's dinner parties are usually held a)ndrw=nes, because women do not go there. There are other similar instances as in the case of “xystus,” “prothyrum,” “telamones,” and some others of the sort. As a Greek term, custo/s means a colonnade of large dimensions in which athletes exercise in the winter time. But our people apply the term “xysta” to uncovered walks, which the Greeks call paradromi/des. Again, pro/qura, means in Greek the entrance courts before the front doors; we, however, use the term “prothyra” in the sense of the Greek dia/qura.

6. Again, figures in the form of men supporting mutules or coronae, we term “telamones”—the reasons why or wherefore they are so called are not found in any story—but the Greeks name them a)/tlantes. For Atlas is described in story as holding up the firmament because, through his vigorous intelligence and ingenuity, he was the first to cause men to be taught about the courses of the sun and moon, and the laws governing the revolutions of all the constellations. Consequently, in recognition of

189
this benefaction, painters and sculptors represent him as holding up the firmament, and the Atlantides, his daughters, whom we call “Vergiliae” and the Greeks *pleia/des, are consecrated in the firmament among the constellations.

7. All this, however, I have not set forth for the purpose of changing the usual terminology or language, but I have thought that it should be explained so that it may be known to scholars. I have now explained the usual ways of planning houses both in the Italian fashion and according to the practices of the Greeks, and have described, with regard to their symmetry, the proportions of the different classes. Having, therefore, already written of their beauty and propriety, I shall next explain, with reference to durability, how they may be built to last to a great age without defects.

1. HOUSES which are set level with the ground will no doubt last to a great age, if their foundations are laid in the manner which we have explained in the earlier books, with regard to city walls and theatres. But if underground rooms and vaults are intended, their foundations ought to be thicker than the walls which are to be constructed in the upper part of the house, and the walls, piers, and columns of the latter should be set perpendicularly over the middle of the foundation walls below, so that they may have solid bearing; for if the load of the walls or columns rests on the middle of spans, they can have no permanent durability.

2. It will also do no harm to insert posts between lintels and sills where there are piers or antae; for where the lintels and beams have received the load of the walls, they may sag in the middle, and gradually undermine and destroy the walls. But

190
when there are posts set up underneath and wedged in there, they prevent the beams from settling and injuring such walls.

3. We must also manage to discharge the load of the walls by means of archings composed of voussoirs with joints radiating to the centre. For when arches with voussoirs are sprung from the ends of beams, or from the bearings of lintels, in the first place they will discharge the load and the wood will not sag; secondly, if in course of time the wood becomes at all defective, it can easily be replaced without the construction of shoring.

4. Likewise in houses where piers are used in the construction, when there are arches composed of voussoirs with joints radiating to the centre, the outermost piers at these points must be made broader than the others, so that they may have the strength to resist when the wedges, under the pressure of the load of the walls, begin to press along their joints towards the centre, and thus to thrust out the abutments. Hence, if the piers at the ends are of large dimensions, they will hold the voussoirs together, and make such works durable.

5. Having taken heed in these matters to see that proper attention is paid to them, we must also be equally careful that all walls are perfectly vertical, and that they do not lean forward anywhere. Particular pains, too, must be taken with substructures, for here an endless amount of harm is usually done by the earth used as filling. This cannot always remain of the same weight that it usually has in summer, but in winter time it increases in weight and bulk by taking up a great deal of rain water, and then it bursts its enclosing walls and thrusts them out.

6. The following means must be taken to provide against such a defect. First, let the walls be given a thickness proportionate to the amount of filling; secondly, build counterforts or buttresses at the same time as the wall, on the outer side, at distances from each other equivalent to what is to be the height of the substructure and with the thickness of the substructure. At the bottom let them run out to a distance corresponding to the thickness that has been determined for the substructure, and then gradually

191
diminish in extent so that at the surface their projection is equal to the thickness of the wall of the building.

7. Furthermore, inside, to meet the mass of earth, there should be saw-shaped constructions attached to the wall, the single teeth extending from the wall for a distance equivalent to what is to be the height of the substructure, and the teeth being constructed with the same thickness as the wall. Then at the outermost angles take a distance inwards, from the inside of the angle, equal to the height of the substructure, and mark it off on each side; from these marks build up a diagonal structure and from the middle of it a second, joined on to the angle of the wall. With this arrangement, the teeth and diagonal structures will not allow the filling to thrust with all its force against the wall, but will check and distribute the pressure.

8. I have now shown how buildings can be constructed without defects, and the way to take precautions against the occurrence

192
of them. As for replacing tiles, roof timbers, and rafters, we need not be so particular about them as about the parts just mentioned, because they can easily be replaced, however defective they may become. Hence, I have shown by what methods the parts which are not considered solid can be rendered durable, and how they are constructed.

9. As for the kind of material to be used, this does not depend upon the architect, for the reason that all kinds of materials are not found in all places alike, as has been shown in the first book. Besides, it depends on the owner whether he desires to build in brick, or rubble work, or dimension stone. Consequently the question of approving any work may be considered under three heads: that is, delicacy of workmanship, sumptuousness, and design. When it appears that a work has been carried out sumptuously, the owner will be the person to be praised for the great outlay which he has authorized; when delicately, the master workman will be approved for his execution; but when proportions and symmetry lend it an imposing effect, then the glory of it will belong to the architect.

10. Such results, however, may very well be brought about when he allows himself to take the advice both of workmen and of laymen. In fact, all kinds of men, and not merely architects, can recognize a good piece of work, but between laymen and the latter there is this difference, that the layman cannot tell what it is to be like without seeing it finished, whereas the architect, as soon as he has formed the conception, and before he begins the work, has a definite idea of the beauty, the convenience, and the propriety that will distinguish it. I have now described as clearly as I could what I thought necessary for private houses, and how to build them. In the following book I shall treat of the kinds of polished finish employed to make them elegant, and durable without defects to a great age.