On Architecture

Vitruvius Pollio

Vitruvius Pollio, creator; Morgan, M. H. (Morris Hicky), 1859-1910, translator

2. Bricks should be made in Spring or Autumn, so that they may dry uniformly. Those made in Summer are defective, because the fierce heat of the sun bakes their surface and makes the brick seem dry while inside it is not dry. And so the shrinking, which follows as they dry, causes cracks in the parts which were dried before, and these cracks make the bricks weak. Bricks will be most serviceable if made two years before using; for they cannot dry thoroughly in less time. When fresh undried bricks are used in a wall, the stucco covering stiffens and hardens into a permanent mass, but the bricks settle and cannot keep the same height as the stucco; the motion caused by their shrinking prevents them from adhering to it, and they are separated from their union with it. Hence the stucco, no longer joined to the core of the wall, cannot stand by itself because it is so thin; it breaks off, and the walls themselves may perhaps be ruined by their settling. This is so true that at Utica in constructing walls they use brick only if it is dry and made five years previously, and approved as such by the authority of a magistrate.

3. There are three kinds of bricks. First, the kind called in Greek Lydian, being that which our people use, a foot and a half long and one foot wide. The other two kinds are used by the Greeks in their buildings. Of these, one is called penta/dwron, is the Greek for “palm,” for in Greek dw=ron means the giving of gifts, and the gift is always presented in the palm of the hand. A brick five palms square is called Public buildings are constructed of penta/dwra, private of tetra/dwra.

4. With these bricks there are also half-bricks. When these are used in a wall, a course of bricks is laid on one face and a course

44
of half-bricks on the other, and they are bedded to the line on each face. The walls are bonded by alternate courses of the two different kinds, and as the bricks are always laid so as lends strength and a not unattractive appearance to both sides of such walls.

In the states of Maxilua and Callet, in Further Spain, as well as in Pitane in Asia Minor, there are bricks which, when finished and dried, will float on being thrown into water. The reason why they can float seems to be that the clay of which they are made is like pumice-stone. So it is light, and also it does not, after being hardened by exposure to the air, take up or absorb liquid. So these bricks, being of this light and porous quality, and admitting no moisture into their texture, must by the laws of nature float in water, like pumice, no matter what their weight may be. They have therefore great advantages; for they are not heavy to use in building and, once made, they are not spoiled by bad weather.

1. IN walls of masonry the first question must be with regard to the sand, in order that it may be fit to mix into mortar and have no dirt in it. The kinds of pitsand are these: black, gray, red, and carbuncular. Of these the best will be found to be that which crackles when rubbed in the hand, while that which has much dirt in it will not be sharp enough. Again: throw some sand upon a white garment and then shake it out; if the garment is not soiled and no dirt adheres to it, the sand is suitable.

2. But if there are no sandpits from which it can be dug, then we must sift it out from river beds or from gravel or even from the sea beach. This kind, however, has these defects when used in

45
masonry: it dries slowly; the wall cannot be built up without interruption but from time to time there must be pauses in the work; and such a wall cannot carry vaultings. Furthermore, when sea-sand is used in walls and these are coated with stucco, a salty efflorescence is given out which spoils the surface.

3. But pitsand used in masonry dries quickly, the stucco coating is permanent, and the walls can support vaultings. I am speaking of sand fresh from the sandpits. For if it lies unused too long after being taken out, it is disintegrated by exposure to sun, moon, or hoar frost, and becomes earthy. So when mixed in masonry, it has no binding power on the rubble, which consequently settles and down comes the load which the walls can no longer support. Fresh pitsand, however, in spite of all its excellence in concrete structures, is not equally useful in stucco, the richness of which, when the lime and straw are mixed with such sand, will cause it to crack as it dries on account of the great strength of the mixture. But river sand, though useless in “signinum” on account of its thinness, becomes perfectly solid in stucco when thoroughly worked by means of polishing instruments.

1. SAND and its sources having been thus treated, next with regard to lime we must be careful that it is burned from a stone which, whether soft or hard, is in any case white. Lime made of close-grained stone of the harder sort will be good in structural parts; lime of porous stone, in stucco. After slaking it, mix your mortar, if using pitsand, in the proportions of three parts of sand to one of lime; if using river or sea-sand, mix two parts of sand with one of lime. These will be the right proportions for the composition of the mixture. Further, in using river or sea-sand, the addition of a third part composed of burnt brick, pounded up and sifted, will make your mortar of a better composition to use.

46

2. The reason why lime makes a solid structure on being combined with water and sand seems to be this: that rocks, like all other bodies, are composed of the four elements. Those which contain a larger proportion of air, are soft; of water, are tough from the moisture; of earth, hard; and of fire, more brittle. Therefore, if limestone, without being burned, is merely pounded up small and then mixed with sand and so put into the work, the mass does not solidify nor can it hold together. But if the stone is first thrown into the kiln, it loses its former property of solidity by exposure to the great heat of the fire, and so with its strength burnt out and exhausted it is left with its pores open and empty. Hence, the moisture and air in the body of the stone being burned out and set free, and only a residuum of heat being left lying in it, if the stone is then immersed in water, the moisture, before the water can feel the influence of the fire, makes its way into the open pores; then the stone begins to get hot, and finally, after it cools off, the heat is rejected from the body of the lime.

3. Consequently, limestone when taken out of the kiln cannot be as heavy as when it was thrown in, but on being weighed, though its bulk remains the same as before, it is found to have lost about a third of its weight owing to the boiling out of the water. Therefore, its pores being thus opened and its texture rendered loose, it readily mixes with sand, and hence the two materials cohere as they dry, unite with the rubble, and make a solid structure.

1. THERE is also a kind of powder which from natural causes produces astonishing results. It is found in the neighbourhood of Baiae and in the country belonging to the towns round about Mt. Vesuvius. This substance, when mixed with lime and rubble,

47
not only lends strength to buildings of other kinds, but even when piers of it are constructed in the sea, they set hard under water. The reason for this seems to be that the soil on the slopes of the mountains in these neighbourhoods is hot and full of hot springs. This would not be so unless the mountains had beneath them huge fires of burning sulphur or alum or asphalt. So the fire and the heat of the flames, coming up hot from far within through the fissures, make the soil there light, and the tufa found there is spongy and free from moisture. Hence, when the three substances, all formed on a similar principle by the force of fire, are mixed together, the water suddenly taken in makes them cohere, and the moisture quickly hardens them so that they set into a mass which neither the waves nor the force of the water can dissolve.

2. That there is burning heat in these regions may be proved by the further fact that in the mountains near Baiae, which belongs to the Cumaeans, there are places excavated to serve as sweating-baths, where the intense heat that comes from far below bores its way through the earth, owing to the force of the fire, and passing up appears in these regions, thus making remarkably good sweating-baths. Likewise also it is related that in ancient times the tides of heat, swelling and overflowing from under Mt. Vesuvius, vomited forth fire from the mountain upon the neighbouring country. Hence, what is called “sponge-stone” or “Pompeian pumice” appears to have been reduced by burning from another kind of stone to the condition of the kind which we see.

3. The kind of sponge-stone taken from this region is not produced everywhere else, but only about Aetna and among the hills of Mysia which the Greeks call the “Burnt District,” and in other places of the same peculiar nature. Seeing that in such places there are found hot springs and warm vapour in excavations on the mountains, and that the ancients tell us that there were once fires spreading over the fields in those very regions, it seems to be certain that moisture has been extracted from the

48
tufa and earth, by the force of fire, just as it is from limestone in kilns.

4. Therefore, when different and unlike things have been subjected to the action of fire and thus reduced to the same condition, if after this, while in a warm, dry state, they are suddenly saturated with water, there is an effervescence of the heat latent in the bodies of them all, and this makes them firmly unite and quickly assume the property of one solid mass. There will still be the question why Tuscany, although it abounds in hot springs, does not furnish a powder out of which, on the same principle, a wall can be made which will set fast under water. I have therefore thought best to explain how this seems to be, before the question should be raised.

5. The same kinds of soil are not found in all places and countries alike, nor is stone found everywhere. Some soils are earthy; others gravelly, and again pebbly; in other places the material is sandy; in a word, the properties of the soil are as different and unlike as are the various countries. In particular, it may be observed that sandpits are hardly ever lacking in any place within the districts of Italy and Tuscany which are bounded by the Apennines; whereas across the Apennines toward the Adriatic none are found, and in Achaea and Asia Minor or, in short, across the sea, the very term is unknown. Hence it is not in all the places where boiling springs of hot water abound, that there is the same combination of favourable circumstances which has been described above. For things are produced in accordance with the will of nature; not to suit man's pleasure, but as it were by a chance distribution.

6. Therefore, where the mountains are not earthy but consist of soft stone, the force of the fire, passing through the fissures in the stone, sets it afire. The soft and delicate part is burned out, while the hard part is left. Consequently, while in Campania the burning of the earth makes ashes, in Tuscany the combustion of the stone makes carbuncular sand. Both are excellent in walls, but one is better to use for buildings on land, the other for piers

49
under salt water. The Tuscan stone is softer in quality than tufa but harder than earth, and being thoroughly kindled by the violent heat from below, the result is the production in some places of the kind of sand called carbuncular.

1. I HAVE now spoken of lime and sand, with their varieties and points of excellence. Next comes the consideration of stone-quarries from which dimension stone and supplies of rubble to be used in building are taken and brought together. The stone in quarries is found to be of different and unlike qualities. In some it is soft: for example, in the environs of the city at the quarries of Grotta Rossa, Palla, Fidenae, and of the Alban hills; in others, it is medium, as at Tivoli, at Amiternum, or Mt. Soracte, and in quarries of this sort; in still others it is hard, as in lava quarries. There are also numerous other kinds: for instance, in Campania, red and black tufas; in Umbria, Picenum, and Venetia, white tufa which can be cut with a toothed saw, like wood.

2. All these soft kinds have the advantage that they can be easily worked as soon as they have been taken from the quarries. Under cover they play their part well; but in open and exposed situations the frost and rime make them crumble, and they go to pieces. On the seacoast, too, the salt eats away and dissolves them, nor can they stand great heat either. But travertine and all stone of that class can stand injury whether from a heavy load laid upon it or from the weather; exposure to fire, however, it cannot bear, but splits and cracks to pieces at once. This is because in its natural composition there is but little moisture and not much of the earthy, but a great deal of air and of fire. Therefore, it is not only without the earthy and watery elements, but when fire, expelling the air from it by the operation and force of heat, penetrates into its inmost parts and occupies the empty spaces of the

50
fissures, there comes a great glow and the stone is made to burn as fiercely as do the particles of fire itself.

3. There are also several quarries called Anician in the territory of Tarquinii, the stone being of the colour of peperino. The principal workshops lie round the lake of Bolsena and in the prefecture of Statonia. This stone has innumerable good qualities. Neither the season of frost nor exposure to fire can harm it, but it remains solid and lasts to a great age, because there is only a little air and fire in its natural composition, a moderate amount of moisture, and a great deal of the earthy. Hence its structure is of close texture and solid, and so it cannot be injured by the weather or by the force of fire.

4. This may best be seen from monuments in the neighbourhood of the town of Ferento which are made of stone from these quarries. Among them are large statues exceedingly well made, images of smaller size, and flowers and acanthus leaves gracefully carved. Old as these are, they look as fresh as if they were only just finished. Bronze workers, also, make moulds for the casting of bronze out of stone from these quarries, and find it very useful in bronze-founding. If the quarries were only near Rome, all our buildings might well be constructed from the products of these workshops.

5. But since, on account of the proximity of the stone-quarries of Grotta Rossa, Palla, and the others that are nearest to the city, necessity drives us to make use of their products, we must proceed as follows, if we wish our work to be finished without flaws. Let the stone be taken from the quarry two years before building is to begin, and not in winter but in summer. Then let it lie exposed in an open place. Such stone as has been damaged by the two years of exposure should be used in the foundations. The rest, which remains unhurt, has passed the test of nature and will endure in those parts of the building which are above ground. This precaution should be observed, not only with dimension stone, but also with the rubble which is to be used in walls.