De sphaera et cylindro

Archimedes

Archim├Ęde, De sphaera et cylindro, Mugler, Les Belles Lettres, 1970

Ἐὰν ῥόμβου ἐξ ἰσοσκελῶν κώνων συγκειμένου ὁ ἕτερος κῶνος ἐπιπέδῳ τμηθῇ παραλλήλῳ τῇ βάσει, ἀπὸ δὲ τοῦ γενομένου κύκλου κῶνος ἀναγραφῇ κορυφὴν ἔχων τὴν αὐτὴν τῷ ἑτέρῳ κώνῳ, ἀπὸ δε τοῦ ὅλου ὁόμβου ὁ γενόμενος ῥόμβος ἀφαιρεθῇ, τῷ περιλείμματι ἴσος ἔσται ὁ κῶνος ὁ βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων, ὕψος δὲ ἴσον τῇ ἀπὸ τῆς κορυφῆς τοῦ ἑτέρου κώνου ἐπὶ τὴν πλευρὰν τοῦ ἑτέρου κώνου καθέτῳ ἠγμένῃ.

Ἔστω ῥόμβος ἐξ ἰσοσκελῶν κώνων συγκείμενος ὁ ΑΒΓ△, καὶ τμηθήτω ὁ ἕτερος κῶνος ἐπιπέδῳ παραλλήλῳ τῇ βάσει, καὶ ποιείτω τομὴν τὴν ΕΖ, ἀπὸ δὲ τοῦ περὶ διάμετρον τὴν ΕΖ κύκλου κῶνος ἀναγεγράφθω τὴν κορυφὴν ἔχων τὸ μετρον σημεῖον· ἔσται δὴ γεγονὼς ῥόμβος ὁ ΕΒ△Ζ. Καὶ νοείσθω ἀφῃρημένος ἀπὸ τοῦ ὅλου ῥόμβου, ἐκκείσθω δέ τις κῶνος ὁ ΘΚΛ τὴν μὲν βάσιν ἴσην ἔχων τῇ ἐπιφανείᾳ τῇ μεταξὺ τῶν ΑΓ, ΕΖ, τὸ δὲ ὕψος ἴσον τῇ ἀπὸ τοῦ △ σημείου καθέτῳ ἀγομένῃ ἐπὶ τὴν ΒΑ ἢ τὴν ἐπʼ εὐθείας αὐτῇ· λέγω ὅτι ὁ ΘΚΛ κῶνος ἴσος ἐστὶ τῷ εἰρημένῳ περιλείμματι.

55

Ἐκκείσθωσαν γὰρ δύο κῶνοι οἱ ΜΝΞ, ΟΠΡ, καὶ ἡ μὲν βάσις τοῦ ΜΝΞ κώνου ἴση ἔστω τῇ ἐπιφανείᾳ τοῦ ΑΒΓ, τὸ δὲ ὕψος ἴσον τῇ △Η διὰ δὴ τὰ προδειχθέντα ἴσος ἐστὶν ὁ ΜΝΞ κῶνος τῷ ΑΒΓ△ ῥόμβῳ, τοῦ δὲ ΟΠΡ κώνου ἡ μὲν βάσις ἴση ἔστω τῇ ἐπιφανείᾳ τοῦ ΕΒΖ κώνου, τὸ δὲ ὕψος ἴσον τῇ △Η ὁμοίως δὴ ἴσος ἐστὶν ὁ ΟΠΡ κῶνος τῷ ΕΒ△Ζ ῥόμβῳ. Ἐπεὶ δὲ ὁμοίως ἡ ἐπιφάνεια τοῦ ΑΒΓ κώνου σύγκειται ἔκ τε τῆς τοῦ ΕΒΖ καὶ τῆς μεταξὺ τῶν ΕΖ, ΑΓ, ἀλλὰ ἡ μὲν τοῦ ΑΒΓ κώνου ἐπιφάνεια ἴση ἐστὶ τῇ βάσει τοῦ ΜΝΞ, ἡ δὲ τοῦ ΕΒΖ κώνου ἐπιφάνεια ἴση ἐστὶ τῇ βάσει τοῦ ΟΡΠ κώνου, ἡ δὲ μεταξὺ τῶν ΕΖ, ΑΓ ἴση ἐστὶ τῇ βάσει τοῦ ΘΚΛ, ἡ ἄρα βάσις τοῦ ΜΝΞ ἴση ἐστὶ ταῖς βάσεσιν τῶν ΟΠΡ, ΘΚΛ. Καί εἰσιν οἱ κῶνοι ὑπὸ τὸ αὐτὸ ὕψος· καὶ ὁ ΜΝΞ ἄρα κῶνος ἴσος ἐστὶ τοῖς ΘΚΛ, ΟΠΡ κώνοις. Ἀλλʼ ὁ μὲν ΜΝΞ κῶνος ἴσος ἐστὶ τῷ ΑΒΓ△ ῥόμβῳ, ὁ δὲ ΟΠΡ κῶνος τῷ ΕΒ△Ζ ῥόμβῳ· λοιπὸς ἄρα ὁ κῶνος ὁ ΘΚΛ ἴσος ἐστὶ τῷ περιλείμματι τῷ λοιπῷ.

56

Ἐὰν εἰς κύκλον πολύγωνον ἐγγραφῇ ἀρτιόπλευρόν τε καὶ ἰσόπλευρον, καὶ διαχθῶσιν εὐθεῖαι ἐπιζευγνύουσα τὰς πλευρὰς τοῦ πολυγώνου, ὥστε αὐτὰς παραλλήλους εἶναι μιᾷ ὁποιᾳοῦν τῶν ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινουσῶν, αἱ ἐπιζευγνύουσαι πᾶσαι πρὸς τὴν τοῦ κύκλου διάμετρον τοῦτον ἔχουσι τὸν λόγον, ὃν ἔχει ἡ ὑποτείνουσα τὰς μιᾷ ἐλάσσονας τῶν ἡμίσεων πρὸς τὴν πλευρὰν τοῦ πολυγώνου.

Ἔστω κύκλος ὁ ΑΒΓ△, καὶ ἐν αὐτῷ πολύγωνον ἐγγεγράφθω τὸ ΑΕΖΒΗΘΓΜΝ△ΛΚ, καὶ ἐπεζεύχθωσαν αἱ ΕΚ ΖΛ, Β△, ΗΝ, ΘΜ· δῆλον δὴ ὅτι παράλληλοί εἰσιν τῇ ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινούσῃ· λέγω οὖν ὅτι αἱ εἰρημέναι πᾶσαι πρὸς τὴν τοῦ κύκλου διάμετρον τὴν ΑΓ τὸν αὐτὸν λόγον ἔχουσι τῷ τῆς ΓΕ πρὸς ΕΑ.

Ἐπεζεύχθωσαν γὰρ αἱ ΖΚ, ΛΒ, Η△, ΘΝ· παράλληλος ἄρα ἡ μὲν ΖΚ τῇ ΕΑ, ἡ δὲ ΒΛ τῇ ΖΚ, καὶ ἔτι ἡ μὲν △Η τῇ ΒΛ, ἡ δὲ ΘΝ τῇ △Η, καὶ ἡ ΓΜ τῇ ΘΝ καὶ ἐπεὶ δύο παράλληλοί εἰσιν αἱ ΕΑ, ΚΖ, καὶ δύο διηγμέναι εἰσὶν αἱ ΕΚ,

57
ΑΟ, ἔστιν ἄρα, ὡς ἡ ΕΞ πρὸς ΞΑ, ἡ ΚΞ πρὸς ΞΟ. Ὡς δ᾿  ἡ ΚΞ πρὸς ΞΟ, ἡ ΖΠ πρὸς ΠΟ, ὡς δὲ ἡ ΖΠ πρὸς ΠΟ, ἡ ΛΠ πρὸς ΠΡ, ὡς δὲ ἡ ΛΠ πρὸς ΠΡ, οὕτως ἡ ΒΣ πρὸς ΣΡ, καὶ ἔτι ὡς ἡ μὲν ΒΣ πρὸς ΣΡ, ἡ △Σ πρὸς ΣΓ, ὡς δὲ ἡ △Σ πρὸς ΣΤ, ἡ ΗΥ πρὸς ΥΤ, καὶ ἔτι ὡς ἡ μὲν ΗΥ πρὸς ΥΤ, ἡ ΝΥ πρὸς ΥΦ, ὡς δὲ ἡ ΝΥ πρὸς ΥΦ, ἡ ΘΧ πρὸς ΧΦ, καὶ ἔτι ὡς μὲν ἡ ΘΧ πρὸς ΧΦ, ἡ ΜΧ πρὸς ΧΓ καὶ πάντα ἄρα πρὸς πάντα ἐστὶν ὡς εἷς τῶν λόγων πρὸς ἕνα· ὡς ἄρα ἡ ΕΞ πρὸς ΞΑ, οὕτως αἱ ΕΚ, ΖΛ, Β△, ΗΝ, ΘΜ πρὸς τὴν ΑΓ διάμετρον. Ὡς δὲ ἡ ΕΞ πρὸς ΞΑ, οὕτως ἡ ΓΕ πρὸς ΕΑ· ἔσται ἄρα καὶ ὡς ἡ ΓΕ πρὸς ΕΑ, οὕτω πᾶσαι αἱ ΕΚ, ΖΛ, Β△, ΗΝ, ΘΜ πρὸς τὴν ΑΓ διάμετρον.

Ἐὰν εἰς τμῆμα κύκλου πολύγωνον ἐγγραφῇ τὰς πλευρὰς ἔχον χωρὶς τῆς βάσεως ἴσας καὶ ἀρτίους, ἀχθῶσιν δὲ εὐθεῖαι παρὰ τὴν βάσιν τοῦ τμήματος αἱ τὰς πλευρὰς ἐπιζευγνύουσαι τοῦ πολυγώνου, αἱ ἀχθεῖσαι πᾶσαι καὶ ἡ ἡμίσεια τῆς βάσεως πρὸς τὸ ὕψος τοῦ τμήματος τὸν αὐτὸν λόγον ἔχουσιν, ὃν ἡ ἀπὸ τῆς διαμέτρου τοῦ κύκλου ἐπὶ τὴν πλευρὰν τοῦ πολυγώνου ἐπιζευγνυμένη πρὸς τὴν τοῦ πολυγώνου πλευράν.

Εἰς γὰρ κύκλον τὸν ΑΒΓ△ διήχθω τις εὐθεῖα ἡ ΑΓ, καὶ ἐπὶ τῆς ΑΓ πολύγωνον ἐγγεγράφθω εἰς τὸ ΑΒΓ τμῆμα ἀρτιόπλευρόν τε καὶ ἴσας ἔχον τὰς πλευρὰς χωρὶς τῆς βάσεως τῆς ΑΓ, καὶ ἐπεζεύχθωσαν αἱ ΖΗ, ΕΘ, αἵ εἰσιν παράλληλοι τῇ βάσει τοῦ τμήματος· λέγω ὅτι ἐστὶν ὡς αἱ ΖΗ, ΕΘ, ΑΞ πρὸς ΒΞ, οὕτως ἡ △Ζ πρὸς ΖΒ.

58

Πάλιν γὰρ ὁμοίως ἐπεζεύχθωσαν αἱ ΗΕ, ΑΘ· παράλληλοι ἄρα εἰσὶν τῇ ΒΖ· διὰ δὴ ταὐτά ἐστιν, ὡς ἡ ΚΖ πρὸς ΚΒ, ἥ τε ΗΚ πρὸς ΚΛ καὶ ἡ ΕΜ πρὸς ΜΛ καὶ ἡ ΜΘ πρὸς ΜΝ καὶ ἡ ΞΑ πρὸς ΞΝ καὶ ὡς ἄρα πάντα πρὸς πάντα, εἷς τῶν λόγων πρὸς ἕνα· ὡς ἄρα αἱ ΖΗ, ΕΘ, ΑΞ πρὸς ΒΞ, οὕτως ἡ ΖΚ πρὸς ΚΒ. Ὡς δὲ ἡ ΖΚ πρὸς ΚΒ, οὕτως ἡ △Ζ πρὸς ΖΒ· ὡς ἄρα ἡ △Ζ πρὸς ΖΒ, οὕτως αἱ ΖΗ, ΕΘ, ΑΞ πρὸς ΞΒ.

Ἔστω ἐν σφαίρᾳ μέγιστος κύκλος ὁ ΑΒΓ△, καὶ ἐγγεγράφθω εἰς αὐτὸν πολύγωνον ἰσόπλευρον, τὸ δὲ πλῆθος τῶν πλευρῶν αὐτοῦ μετρείσθω ὑπὸ τετράδος, αἱ δὲ ΑΓ, △Β διάμετροι ἔστωσαν. Ἐὰν δὴ μενούσης τῆς ΑΓ διαμέτρου περιενεχθῇ ὁ ΑΒΓ△ κύκλος ἔχων τὸ πολύγωνον, δῆλον ὅτι ἡ μὲν περιφέρεια αὐτοῦ κατὰ τῆς ἐπιφανείας τῆς σφαίρας ἐνεχθήσεται, αἱ δὲ τοῦ πολυγώνου γωνίαι χωρὶς τῶν πρὸς τοῖς Α, Γ σημείοις κατὰ κύκλων περιφερειῶν ἐνεχθήσονται ἐν τῇ ἐπιφανείᾳ τῆς σφαίρας γεγραμμένων ὀρθῶν

59
πρὸς τὸν ΑΒΓ△ κύκλον· διάμετροι δὲ αὐτῶν ἔσονται αἱ ἐπιζευγνύουσαι τὰς γωνίας τοῦ πολυγώνου παρὰ τὴν Β△ οὖσαι. Αἱ δὲ τοῦ πολυγώνου πλευραὶ κατά τινων κώνων ἐνεχθήσονται, αἱ μὲν ΑΖ, ΑΝ κατʼ ἐπιφανείας κώνου, οὗ βάσις μὲν ὁ κύκλος ὁ περὶ διάμετρον τὴν ΖΝ, κορυφὴ δὲ τὸ Α σημεῖον, αἱ δὲ ΖΗ, ΜΝ κατά τινος κωνικῆς ἐπιφανείας οἰσθήσονται, ἧς βάσις μὲν ὁ κύκλος ὁ περὶ διάμετρον τὴν ΜΗ, κορυφὴ δὲ τὸ σημεῖον, καθʼ ὃ συμβάλλουσιν ἐκβαλλόμεναι αἱ ΖΗ, ΜΝ ἀλλήλαις τε καὶ τῇ ΑΓ, αἱ δὲ ΒΗ, Μ△ πλευραὶ κατὰ κωνικῆς ἐπιφανείας οἰσθήσονται, ἧς βάσις μέν ἐστιν ὁ κύκλος ὁ περὶ διάμετρον τὴν Β△ ὀρθὸς πρὸς τὸν ΑΒΓ△ κύκλον, κορυφὴ δὲ τὸ σημεῖον, καθ᾿  ὃ συμβάλλουσιν ἐκβαλλόμεναι αἱ ΒΗ, △Μ ἀλλήλαις τε καὶ τῇ ΓΑ· ὁμοίως δὲ καὶ αἱ ἐν τῷ ἑτέρῳ ἡμικυκλίῳ πλευραὶ κατὰ κωνικῶν ἐπιφανειῶν οἰσθήσονται πάλιν ὁμοίων ταύταις. Ἔσται δή τι σχῆμα ἐγγεγραμμένον ἐν τῇ σφαίρᾳ ὑπὸ κωνικῶν ἐπιφανειῶν περιεχόμενον τῶν προειρημένων, οὗ ἡ ἐπιφάνεια ἐλάσσων ἔσται τῆς ἐπιφανείας τῆς σφαίρας.

60

Διαιρεθείσης γὰρ τῆς σφαίρας ὑπὸ τοῦ ἐπιπέδου τοῦ κατὰ τὴν Β△ ὀρθοῦ πρὸς τὸν ΑΒΓ△ κύκλον ἡ ἐπιφάνεια τοῦ ἑτέρου ἡμισφαιρίου καὶ ἡ ἐπιφάνεια τοῦ σχήματος τοῦ ἐν αὐτῷ ἐγγεγραμμένου τὰ αὐτὰ πέρατα ἔχουσιν ἐν ἑνὶ ἐπιπέδῳ· ἀμφοτέρων γὰρ τῶν ἐπιφανειῶν πέρας ἐστὶν τοῦ κύκλου ἡ ἐπιφάνεια τοῦ περὶ διάμετρον τὴν Β△ ὀρθοῦ πρὸς τὸν ΑΒΓ△ κύκλον καί εἰσιν ἀμφότεραι ἐπὶ τὰ αὐτὰ κοῖλαι, καὶ περιλαμβάνεται αὐτῶν ἡ ἑτέρα ὑπὸ τῆς ἑτέρας ἐπιφανείας καὶ τῆς ἐπιπέδου τῆς τὰ αὐτὰ πέρατα ἐχούσης αὐτῇ. Ὁμοίως δὲ καὶ τοῦ ἐν τῷ ἑτέρῳ ἡμισφαιρίῳ σχήματος ἡ ἐπιφάνεια ἐλάσσων ἐστὶν τῆς τοῦ ἡμισφαιρίου ἐπιφανείας· καὶ ὅλη οὖν ἡ ἐπιφάνεια τοῦ σχήματος τοῦ ἐν τῇ σφαίρᾳ ἐλάσσων ἐστὶν τῆς ἐπιφανείας τῆς σφαίρας.

Ἡ τοῦ ἐγγραφομένου σχήματος εἰς τὴν σφαῖραν ἐπιφάνεια ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ περιεχόμενον ὑπό τε τῆς πλευρᾶς τοῦ σχήματος καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς πλευρὰς τοῦ πολυγώνου παραλλήλοις οὔσαις τῇ ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινούσῃ εὐθείᾳ.

Ἔστω ἐν σφαίρᾳ μέγιστος κύκλος ὁ ΑΒΓ△, καὶ ἐν αὐτῷ πολύγωνον ἐγγεγράφθω ἰσόπλευρον, οὗ αἱ πλευραὶ ὑπὸ τετράδος μετροῦνται, καὶ ἀπὸ τοῦ πολυγώνου τοῦ ἐγγεγραμμένου νοείσθω τι εἰς τὴν σφαῖραν ἐγγραφὲν σχῆμα, καὶ ἐπεζεύχθωσαν αἱ ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ παράλληλοι οὖσαι τῇ ὑπὸ δύο πλευρὰς ὑποτεινούσῃ εὐθείᾳ, κύκλος δέ τις ἐκκείσθω ὁ Ξ, οὗ ἡ ἐκ τοῦ κέντρου δυνάσθω

61
τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ τῆς ἴσης ταῖς ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ· λέγω ὅτι ὁ κύκλος οὗτος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ εἰς τὴν σφαῖραν ἐγγραφομένου σχήματος.

Ἐκκείσθωσαν γὰρ κύκλοι οἱ Ο, Π, Ρ, Σ, Τ, Υ, καὶ τοῦ μὲν Ο ἡ ἐκ τοῦ κέντρου δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΕΑ καὶ τῆς ἡμισείας τῆς ΕΖ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Π δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΕΑ καὶ τῆς ἡμισείας τῶν ΕΖ, ΗΘ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Ρ δυνάσθω τὸ περιεχόμενον ὑπὸ τῆς ΕΑ καὶ τῆς ἡμισείας τῶν ΗΘ, Γ△, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Σ δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΕΑ καὶ τῆς ἡμισείας τῶν Γ△, Κ△, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Τ δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ τῆς ἡμισείας τῶν ΚΛ, ΜΝ, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Υ δυνάσθω τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ τῆς ἡμισείας τῆς ΜΝ. Διὰ δὴ ταῦτα ὁ μὲν Ο κύκλος ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ ΑΕΖ κώνου, ὁ δὲ Π τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν ΕΖ, ΗΘ, ὁ δὲ Ρ τῇ μεταξὺ τῶν ΗΘ, Γ△, ὁ δὲ Σ τῇ μεταξὺ τῶν △Γ, ΚΛ, καὶ ἔτι ὁ μὲν Τ ἴσος ἐστὶ τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν ΚΛ, ΜΝ, ὁ δὲ Υ τῇ τοῦ ΜΒΝ κώνου ἐπιφανείᾳ ἴσος ἐστίν· οἱ πάντες ἄρα κύκλοι ἴσοι εἰσὶν τῇ τοῦ ἐγγεγραμμένου σχήματος ἐπιφανείᾳ. Καὶ φανερὸν ὅτι αἱ ἐκ τῶν κέντρων τῶν Ο, Π, Ρ, Σ, Τ

62
κύκλων δύνανται τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ δὶς τῶν ἡμίσεων τῆς ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ, αἳ ὅλαι εἰσὶν αἱ ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ· αἱ ἄρα ἐκ τῶν κέντρων τῶν Ο, Π, Ρ, Σ, Τ, Υ κύκλων δύνανται τὸ περιεχόμενον ὑπό τε τῆς ΑΕ καὶ πασῶν τῶν ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ. Ἀλλὰ καὶ ἡ ἐκ τοῦ κέντρου τοῦ Ξ κύκλου δύναται τὸ ὑπὸ τῆς ΑΕ καὶ τῆς συγκειμένης ἐκ πασῶν τῶν ΕΖ, ΗΘ, Γ△, ΚΛ, ΜΝ· ἡ ἄρα ἐκ τοῦ κέντρου τοῦ Ξ κύκλου δύναται τὰ ἀπὸ τῶν ἐκ τῶν κέντρων τῶν Ο, Π, Ρ, Σ, Τ, Υ κύκλων· καὶ ὁ κύκλος ἄρα ὁ Ξ ἴσος ἐστὶ τοῖς Ο, Π, Ρ, Σ, Τ, Υ κύκλοις. Οἱ δὲ Ο, Π, Ρ, Σ, Τ, Υ κύκλοι ἀπεδείχθησαν ἴσοι τῇ εἰρημένῃ τοῦ σχήματος ἐπιφανείᾳ· καὶ ὁ Ξ ἄρα κύκλος ἴσος ἔσται τῇ ἐπιφανείᾳ τοῦ σχήματος.

Τοῦ ἐγγεγραμμένου σχήματος εἰς τὴν σφαῖραν ἡ ἐπιφάνεια ἡ περιεχομένη ὑπὸ τῶν κωνικῶν ἐπιφανειῶν ἐλάσσων ἐστὶν ἢ τετραπλασία τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ.

Ἔστω ἐν σφαίρᾳ μέγιστος κύκλος ὁ ΑΒΓ△, καὶ ἐν αὐτῷ ἐγγεγράφθω πολύγωνον ἀρτιόγωνον ἰσόπλευρον, οὗ αἱ πλευραὶ ὑπὸ τετράδος μετροῦνται, καὶ ἀπʼ αὐτοῦ νοείσθω ἐπιφάνεια ἡ ὑπὸ τῶν κωνικῶν ἐπιφανειῶν περιεχομένη· λέγω ὅτι ἡ ἐπιφάνεια τοῦ ἐγγραφέντος ἐλάσσων ἐστὶν ἢ τετραπλασία τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ.

63

Ἐπεζεύχθωσαν γὰρ αἱ ὑπὸ δύο πλευρὰς ὑποτείνουσαι τοῦ πολυγώνου αἱ ΕΙ, ΘΜ καὶ ταύταις παράλληλοι αἱ ΖΚ, △Β, ΗΛ, ἐκκείσθω δέ τις κύκλος ὁ Ρ, οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ ὑπὸ τῆς ΕΑ καὶ τῆς ἴσης πάσαις ταῖς ΕΙ, ΖΚ, Β△, ΗΛ, ΘΜ· διὰ δὴ τὸ προδειχθὲν ἴσος ἐστὶν ὁ κύκλος τῇ τοῦ εἰρημένου σχήματος ἐπιφανείᾳ. Καὶ ἐπεὶ ἐδείχθη ὅτι ἐστίν, ὡς ἡ ἴση πάσαις ταῖς ΕΙ, ΖΚ, Β△, ΗΛ, ΘΜ πρὸς τὴν διάμετρον τοῦ κύκλου τὴν ΑΓ, οὕτως ἡ ΓΕ πρὸς ΕΑ, τὸ ἄρα ὑπὸ τῆς ἴσης πάσαις ταῖς εἰρημέναις καὶ τῆς ΕΑ, τουτέστιν τὸ ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Ρ κύκλου, ἴσον ἐστὶν τῷ ὑπὸ τῶν ΑΓ, ΓΕ. Ἀλλὰ καὶ τὸ ὑπὸ ΑΓ, ΓΕ ἔλασσόν ἐστι τοῦ ἀπὸ τῆς ΑΓ· ἔλασσον ἄρα ἐστὶν τὸ ἀπὸ τῆς ἐκ τοῦ κέντρου τοῦ Ρ τοῦ ἀπὸ τῆς ΑΓ ἐλάσσων ἄρα ἐστὶν ἡ ἐκ τοῦ κέντρου τοῦ Ρ τῆς ΑΓ· ὥστε ἡ διάμετρος τοῦ Ρ κύκλου ἐλάσσων ἐστὶν ἢ διπλασία τῆς διαμέτρου τοῦ ΑΒΓ△ κύκλου, καὶ δύο ἄρα τοῦ ΑΒΓ△ κύκλου διάμετροι μείζους εἰσὶ τῆς διαμέτρου τοῦ Ρ κύκλου, καὶ τὸ τετράκις ἀπὸ τῆς διαμέτρου τοῦ ΑΒΓ△ κύκλου, τουτέστι τῆς ΑΓ, μεῖζόν ἐστι τοῦ ἀπὸ τῆς τοῦ Ρ κύκλου διαμέτρου. Ὡς δὲ τὸ τετράκις ἀπὸ τῆς ΑΓ πρὸς τὸ ἀπὸ τῆς τοῦ Ρ κύκλου διαμέτρου, οὕτως

64
τέσσαρες κύκλοι οἱ ΑΒΓ△ πρὸς τὸν Ρ κύκλον· τέσσαρες ἄρα κύκλοι οἱ ΑΒΓ△ μείζους εἰσὶν τοῦ Ρ κύκλου· ὁ ἄρα κύκλος ὁ Ρ ἐλάσσων ἐστὶν ἢ τετραπλάσιος τοῦ μεγίστου κύκλου. Ὁ δὲ Ρ κύκλος ἴσος ἐδείχθη τῇ εἰρημένῃ ἐπιφανείᾳ τοῦ σχήματος· ἡ ἄρα ἐπιφάνεια τοῦ σχήματος ἐλάσσων ἐστὶν ἢ τετραπλασία τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ.

Τῷ ἐγγραφομένῳ ἐν τῇ σφαίρᾳ σχήματι τῷ περιεχομένῳ ὑπὸ τῶν ἐπιφανειῶν τῶν κωνικῶν ἴσος ἐστὶν κῶνος ὁ βάσιν μὲν ἔχων τὸν κύκλον τὸν ἴσον τῇ ἐπιφανείᾳ τοῦ σχήματος τοῦ ἐγγραφέντος ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου καθέτῳ ἠγμένῃ.

65

Ἔστω ἡ σφαῖρα καὶ ὁ ἐν αὐτῇ μέγιστος κύκλος ὁ ΑΒΓ△ καὶ τὰ ἄλλα τὰ αὐτὰ τῷ πρότερον, ἔστω δὲ κῶνος ὀρθὸς ὁ Ρ βάσιν μὲν ἔχων τὴν ἐπιφάνειαν τοῦ σχήματος τοῦ ἐγγεγραμμένου ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου καθέτῳ ἠγμένῃ· δεικτέον ὅτι ὁ κῶνος ὁ Ρ ἴσος ἐστὶν τῷ ἐγγεγραμμένῳ ἐν τῇ σφαίρᾳ σχήματι.

Ἀπὸ γὰρ τῶν κύκλων, ὧν εἰσι διάμετροι αἱ ΖΝ, ΗΜ, ΘΛ, ΙΚ, κῶνοι ἀναγεγράφθωσαν κορυφὴν ἔχοντες τὸ τῆς σφαίρας κέντρον· ἔσται δὴ ῥόμβος στερεὸς ἔκ τε τοῦ κώνου, οὗ βάσις μὲν ἐστιν ὁ κύκλος ὁ περὶ τὴν ΖΝ, κορυφὴ δὲ τὸ Α σημεῖον, καὶ τοῦ κώνου, οὗ βάσις ὁ αὐτὸς κύκλος, κορυφὴ δὲ τὸ Χ σημεῖον· ἴσος ἐστὶ τῷ κώνῳ τῷ βάσιν μὲν ἔχοντι τὴν ἐπιφάνειαν τοῦ ΝΑΖ, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ Χ καθέτῳ ἠγμένῃ. Πάλιν δὲ καὶ τὸ περιλελειμμένον τοῦ ῥόμβου τὸ περιεχόμενον ὑπό τε τῆς ἐπιφανείας τοῦ κώνου τῆς μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΖΝ, ΗΜ καὶ τῶν ἐπιφανειῶν τῶν κώνων τοῦ τε ΖΝΧ καὶ τοῦ ΗΜΧ ἴσον ἐστὶ τῷ κώνῳ τῷ βάσιν μὲν ἔχοντι ἴσην τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΜΗ, ΖΝ, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ Χ ἐπὶ τὴν ΖΗ καθέτῳ ἠγμένῃ· δέδεικται γὰρ ταῦτα. Ἔτι δὲ καὶ τὸ περιλειπόμενον τοῦ κώνου τὸ περιεχόμενον ὑπό τε τῆς ἐπιφανείας τοῦ κώνου τῆς μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΗΜ, Β△ καὶ τῆς ἐπιφανείας τοῦ ΜΗΧ κώνου καὶ τοῦ κύκλου τοῦ περὶ διάμετρον τὴν Β△ ἴσον τῷ κώνῳ τῷ βάσιν μὲν ἔχοντι τὴν ἴσην τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν ἐπιπέδων τῶν κατὰ τὰς ΗΜ,

66
Β△, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ Χ ἐπὶ τὴν ΒΗ καθέτῳ ἠγμένῃ. Ὁμοίως δὲ καὶ ἐν τῷ ἑτέρῳ ἡμισφαιρίῳ ὅ τε ῥόμβος ὁ ΧΚΓΙ καὶ τὰ περιλείμματα τῶν κώνων ἴσα ἔσται τοσούτοις καὶ τηλικούτοις κώνοις, ὅσοι καὶ πρότερον ἐρρήθησαν· δῆλον οὖν ὅτι καὶ ὅλον τὸ σχῆμα τὸ ἐγγεγραμμένον ἐν τῇ σφαίρᾳ ἴσον ἐστὶν πᾶσιν τοῖς εἰρημένοις κώνοις. Οἱ δὲ κῶνοι ἴσοι εἰσὶν τῷ P κώνῳ, ἐπειδὴ ὁ Ρ κῶνος ὕψος μὲν ἔχει ἑκάστῳ ἴσον τῶν εἰρημένων κώνων, βάσιν δὲ ἴσην πάσαις ταῖς βάσεσιν αὐτῶν· δῆλον οὖν ὅτι τὸ ἐν τῇ σφαίρᾳ ἐγγεγραμμένον ἴσον ἐστὶν τῷ ἐκκειμένῳ κώνῳ.

Τὸ ἐγγεγραμμένον σχῆμα ἐν τῇ σφαίρᾳ τὸ περιεχόμενον ὑπὸ τῶν ἐπιφανειῶν τῶν κωνικῶν ἔλασσόν ἐστιν ἢ τετραπλάσιον τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος ἴσην τῷ μεγίστῳ κύκλῳ τῶν ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας.

Ἔστω γὰρ γινόμενος κῶνος ἴσος τῷ σχήματι τῷ ἐγγεγραμμένῳ ἐν τῇ σφαίρᾳ τὴν βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ τοῦ ἐγγεγραμμένου σχήματος, τὸ δὲ ὕψος ἴσον τῇ ἀπὸ τοῦ κέντρου τοῦ κύκλου καθέτῳ ἀγομένῃ ἐπὶ μίαν πλευρὰν τοῦ ἐγγραφέντος πολυγώνου ὁ Ρ, ὁ δὲ κῶνος ὁ Ξ ἔστω βάσιν ἔχων ἴσην τῷ ΑΒΓ△ κύκλῳ, ὕψος δὲ τὴν ἐκ τοῦ κέντρου τοῦ ΑΒΓ△ κύκλου.

Ἐπεὶ οὖν ὁ Ρ κῶνος βάσιν ἔχει ἴσην τῇ ἐπιφανείᾳ τοῦ ἐγγεγραμμένου σχήματος ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ Χ καθέτῳ ἀγομένῃ ἐπὶ τὴν ΑΖ, ἐδείχθη δὲ ἡ ἐπιφάνεια τοῦ ἐγγεγραμμένου σχήματος ἐλάσσων ἢ

67
τετραπλασία τοῦ ἐν τῇ σφαίρᾳ μεγίστου κύκλου, ἔσται ἄρα ἡ τοῦ Ρ κώνου βάσις ἐλάσσων ἢ τετραπλασία τῆς βάσεως τοῦ Ξ κώνου. Ἔστιν δὲ καὶ τὸ ὕψος τοῦ Ρ ἔλασσον τοῦ ὕψους τοῦ Ξ κώνου· ἐπεὶ οὖν ὁ Ρ κῶνος τὴν μὲν βάσιν ἔχει ἐλάσσονα ἢ τετραπλασίαν τῆς τοῦ Ξ βάσεως, τὸ δὲ ὕψος ἔλασσον τοῦ ὕψους, δῆλον ὡς καὶ αὐτὸς ὁ Ρ κῶνος ἐλάσσων ἐστὶν ἢ τετραπλάσιος τοῦ Ξ κώνου. Ἀλλὰ καὶ ὁ Ρ κῶνος ἴσος ἐστὶ τῷ ἐγγεγραμμένῳ σχήματι· τὸ ἄρα ἐγγεγραμμένον σχῆμα ἔλασσόν ἐστὶν ἢ τετραπλάσιον τοῦ Ξ κώνου.

Ἔστω ἐν σφαίρᾳ μέγιστος κύκλος ὁ ΑΒΓ△, περὶ δὲ τὸν ΑΒΓ△ κύκλον περιγεγράφθω πολύγωνον ἰσόπλευρόν τε καὶ ἰσογώνιον, τὸ δὲ πλῆθος τῶν πλευρῶν αὐτοῦ μετρείσθω ὑπὸ τετράδος, τὸ δὲ περὶ τὸν κύκλον περιγεγραμμένον πολύγωνον κύκλος περιγεγραμμένος περιλαμβανέτω περὶ

68
τὸ αὐτὸ κέντρον γενόμενος τῷ ΑΒΓ△. Μενούσης δὴ τῆς ΕΗ περιενεχθήτω τὸ ΕΖΗΘ ἐπίπεδον, ἐν ᾧ τό τε πολύγωνον καὶ ὁ κύκλος· δῆλον οὖν ὅτι ἡ μὲν περιφέρεια τοῦ ΑΒΓ△ κύκλου κατὰ τῆς ἐπιφανείας τῆς σφαίρας οἰσθήσεται, ἡ δὲ περιφέρεια τοῦ ΕΖΗΘ κατʼ ἄλλης ἐπιφανείας σφαίρας τὸ αὐτὸ κέντρον ἐχούσης τῇ ἐλάσσονι οἰσθήσεται, αἱ δὲ ἁφαί, καθʼ ἃς ἐπιψαύουσιν αἱ πλευραί, γράφουσιν κύκλους ὀρθοὺς πρὸς τὸν ΑΒΓ△ κύκλον ἐν τῇ ἐλάσσονι σφαίρᾳ, αἱ δὲ γωνίαι τοῦ πολυγώνου χωρὶς τῶν πρὸς τοῖς Ε, Η σημείοις κατὰ κύκλων περιφερειῶν οἰσθήσονται ἐν τῇ ἐπιφανείᾳ τῆς μείζονος σφαίρας γεγραμμένων ὀρθῶν πρὸς τὸν ΕΖΗΘ κύκλον, αἱ δὲ πλευραὶ τοῦ πολυγώνου κατὰ κωνικῶν ἐπιφανειῶν οἰσθήσονται, καθάπερ ἐπὶ τῶν πρὸ τούτου· ἔσται οὖν τὸ σχῆμα τὸ περιεχόμενον ὑπὸ τῶν ἐπιφανειῶν τῶν κωνικῶν περὶ μὲν τὴν ἐλάσσονα σφαῖραν περιγεγραμμένον, ἐν δὲ τῇ μείζονι ἐγγεγραμμένον. Ὅτι δὲ ἡ ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος μείζων ἐστὶ τῆς ἐπιφανείας τῆς σφαίρας οὕτως δειχθήσεται· ἔστω γὰρ ἡ Κ△ διάμετρος κύκλου τινὸς τῶν ἐν τῇ ἐλάσσονι
69
σφαίρᾳ τῶν Κ, △ σημείων ὄντων, καθʼ ἃ ἅπτονται τοῦ ΑΒΓ△ κύκλου αἱ πλευραὶ τοῦ περιγεγραμμένου πολυγώνου. Διῃρημένης δὴ τῆς σφαίρας ὑπὸ τοῦ ἐπιπέδου τοῦ κατὰ τὴν Κ△ ὀρθοῦ πρὸς τὸν ΑΒΓ△ κύκλον καὶ ἡ ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος περὶ τὴν σφαῖραν διαιρεθήσεται ὑπὸ τοῦ ἐπιπέδου. Καὶ φανερὸν ὅτι τὰ αὐτὰ πέρατα ἔχουσιν ἐν ἐπιπέδῳ· ἀμφοτέρων γὰρ τῶν ἐπιπέδων πέρας ἐστὶν ἡ τοῦ κύκλου περιφέρεια τοῦ περὶ διάμετρον τὴν Κ△ ὀρθοῦ πρὸς τὸν ΑΒΓ△ κύκλον· καί εἰσιν ἀμφότεραι ἐπὶ τὰ αὐτὰ κοῖλαι, καὶ περιλαμβάνεται ἡ ἑτέρα αὐτῶν ὑπὸ τῆς ἑτέρας ἐπιφανείας καὶ τῆς ἐπιπέδου τῆς τὰ αὐτὰ πέρατα ἐχούσης· ἐλάσσων οὖν ἐστιν ἡ περιλαμβανομένη τοῦ τμήματος τῆς σφαίρας ἐπιφάνεια τῆς ἐπιφανείας τοῦ σχήματος τοῦ περιγεγεγραμμένου περὶ αὐτήν, Ὁμοίως δὲ καὶ ἡ τοῦ λοιποῦ τμήματος τῆς σφαίρας ἐπιφάνεια ἐλάσσων ἐστὶν τῆς ἐπιφανείας τοῦ σχήματος τοῦ περιγεγραμμένου περὶ αὐτήν· δῆλον οὖν ὅτι καὶ ὅλη ἡ ἐπιφάνεια τῆς σφαίρας ἐλάσσων ἐστὶ τῆς ἐπιφανείας τοῦ σχήματος τοῦ περιγεγραμμένου περὶ αὐτήν.

Τῇ ἐπιφανείᾳ τοῦ περιγεγραμμένου σχήματος περὶ τὴν σφαῖραν ἴσος ἐστὶ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου ἴσον δύναται τῷ περιεχομένῳ ὑπό τε μιᾶς πλευρᾶς τοῦ πολυγώνου καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς γωνίας τοῦ πολυγώνου οὔσαις παρά τινα τῶν ὑπὸ δύο πλευρὰς τοῦ πολυγώνου ὑποτεινουσῶν.

Τὸ γὰρ περιγεγραμμένον περὶ τὴν ἐλάσσονα σφαῖραν ἐγγέγραπται εἰς τὴν μείζονα σφαῖραν· τοῦ δὲ ἐγγεγραμμένου ἐν τῇ σφαίρᾳ περιεχομένου ὑπὸ τῶν ἐπιφανειῶν

70
τῶν κωνικῶν δέδεικται ὅτι τῇ ἐπιφανείᾳ ἴσος ἐστὶν ὁ κύκλος, οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ περιεχόμενον ὑπό τε μιᾶς πλευρᾶς τοῦ πολυγώνου καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς γωνίας τοῦ πολυγώνου οὔσαις παρά τινα τῶν ὑπὸ δύο πλευρὰς ὑποτεινουσῶν· δῆλον οὖν ἐστι τὸ προειρημένον.

Τοῦ σχήματος τοῦ περιγεγραμμένου περὶ τὴν σφαῖραν ἡ ἐπιφάνεια μείζων ἐστὶν ἢ τετραπλασία τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ.

Ἔστω γὰρ ἥ τε σφαῖρα καὶ ὁ κύκλος καὶ τὰ ἄλλα τὰ αὐτὰ τοῖς πρότερον προκειμένοις, καὶ ὁ Λ κύκλος ἴσος τῇ ἐπιφανείᾳ ἔστω τοῦ προκειμένου περιγεγραμμένου περὶ τὴν ἐλάσσονα σφαῖραν.

Ἐπεὶ οὖν ἐν τῷ ΕΖΗΘ κύκλῳ πολύγωνον ἰσόπλευρον

71
ἐγγέγραπται καὶ ἀρτιογώνιον, αἱ ἐπιζευγνύουσαι τὰς τοῦ πολυγώνου πλευρὰς παράλληλοι οὖσαι τῇ ΖΘ πρὸς τὴν ΖΘ τὸν αὐτὸν λόγον ἔχουσιν, ὃν ἡ ΘΚ πρὸς ΚΖ· ἴσον ἄρα ἐστὶν τὸ περιεχόμενον σχῆμα ὑπό τε μιᾶς πλευρᾶς τοῦ πολυγώνου καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς γωνίας τοῦ πολυγώνου τῷ περιεχομένῳ ὑπὸ τῶν ΖΘΚ· ὥστε ἡ ἐκ τοῦ κέντρου τοῦ Λ κύκλου ἴσον δύναται τῷ ὑπὸ ΖΘΚ· μείζων ἄρα ἐστὶν ἡ ἐκ τοῦ κέντρου τοῦ Λ κύκλου τῆς ΘΚ. Ἡ δὲ ΘΚ ἴση ἐστὶ τῇ διαμέτρῳ τοῦ ΑΒΓ△ κύκλου διπλασία γάρ ἐστιν τῆς ΧΣ οὕσης ἐκ τοῦ κέντρου τοῦ ΑΒΓ△ κύκλου· δῆλον οὖν ὅτι μείζων ἐστὶν ἢ τετραπλάσιος ὁ Λ κύκλος, τουτέστιν ἡ ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος περὶ τὴν ἐλάσσονα σφαῖραν, τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ.

Τῷ περιγεγραμμένῳ σχήματι περὶ τὴν ἐλάσσονα σφαῖραν ἴσος ἐστὶ κῶνος ὁ βάσιν μὲν ἔχων τὸν κύκλον τὸν ἴσον τῇ ἐπιφανείᾳ τοῦ σχήματος, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας.

Τὸ γὰρ περιγεγραμμένον σχῆμα περὶ τὴν ἐλάσσονα σφαῖραν ἐγγέγραπται ἐν τῇ μείζονι σφαίρᾳ· τῷ δὲ ἐγγεγραμμένῳ σχήματι περιεχομένῳ ὑπὸ τῶν κωνικῶν ἐπιφανειῶν δέδεικται ἴσος κῶνος ὁ βάσιν μὲν ἔχων τὸν κύκλον τὸν ἴσον τῇ ἐπιφανείᾳ τοῦ σχήματος, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου καθέτῳ ἠγμένῃ· αὕτη δέ ἐστιν ἴση τῇ ἐκ τοῦ κέντρου τῆς ἐλάσσονος σφαίρας· δῆλον οὖν ἐστι τὸ προτεθέν.

72

ΠΟΡΙΣΜΑ.

Ἐκ τούτου δὲ φανερὸν ὅτι τὸ σχῆμα τὸ περιγραφόμενον περὶ τὴν ἐλάσσονα σφαῖραν μεῖζόν ἐστιν ἢ τετραπλάσιον κώνου τοῦ βάσιν μὲν ἔχοντος τὸν μέγιστον κύκλον τῶν ἐν τῇ σφαίρᾳ, ὕψος δὲ τὴν ἐκ τοῦ κέντρου τῆς σφαίρας. Ἐπειδὴ γὰρ ἴσος ἐστὶ τῷ σχήματι κῶνος ὁ βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ αὐτοῦ, ὕψος δὲ ἴσον τῇ ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου καθέτῳ ἠγμένῃ, τουτέστιν τῇ ἐκ τοῦ κέντρου τῆς ἐλάσσονος σφαίρας, ἔστι δὲ ἡ ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος περὶ τὴν σφαῖραν μείζων ἢ τετραπλασία τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ, μεῖζον ἄρα ἢ τετραπλάσιον ἔσται τὸ σχῆμα τὸ περιγεγραμμένον περὶ τὴν σφαῖραν τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος τὸν μέγιστον κύκλον, ὕψος δὲ τὴν ἐκ τοῦ κέντρου τῆς σφαίρας, ἐπειδὴ καὶ ὁ κῶνος ὁ ἴσος αὐτῷ μείζων ἢ τετραπλάσιος γίνεται τοῦ εἰρημένου κώνου βάσιν τε γὰρ μείζονα ἢ τετραπλασίαν ἔχει καὶ ὕψος ἴσαν.

Ἐὰν ᾖ ἐν σφαίρᾳ σχῆμα ἐγγεγραμμένον καὶ ἄλλο περιγεγραμμένον ὑπὸ ὁμοίων πολυγώνων τὸν αὐτὸν τρόπον τοῖς πρότερον κατεσκευασμένα, ἡ ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος πρὸς τὴν τοῦ ἐγγεγραμμένου ἐπιφάνειαν διπλασίονα λόγον ἔχει ἤπερ ἡ πλευρὰ τοῦ περιγεγραμμένου πολυγώνου περὶ τὸν μέγιστον κύκλον πρὸς τὴν πλευρὰν τοῦ ἐγγεγραμμένου πολυγώνου ἐν τῷ αὐτῷ κύκλῳ, αὐτὸ δὲ τὸ σχῆμα τὸ περιγεγραμμένον

73
πρὸς τὸ σχῆμα τριπλασίονα λόγον ἔχει τοῦ αὐτοῦ λόγου.

Ἔστω ἐν σφαίρᾳ κύκλος ὁ ΑΒΓ△, καὶ ἐγγεγράφθω εἰς αὐτὸν πολύγωνον ἰσόπλευρον, τὸ δὲ πλῆθος τῶν πλευρῶν αὐτοῦ μετρείσθω ὑπὸ τετράδος, καὶ ἄλλο περιγεγράφθω περὶ τὸν κύκλον ὅμοιον τῷ ἐγγεγραμένῳ, ἔτι δὲ αἱ τοῦ περιγεγραμμένου πολυγώνου πλευραὶ ἐπιψαυέτωσαν τοῦ κύκλου κατὰ μέσα τῶν περιφερειῶν τῶν ἀποτεμνομένων ὑπὸ τῶν τοῦ ἐγγεγραμμένου πολυγώνου πλευρῶν, αἱ δὲ ΕΗ, ΖΘ διάμετροι πρὸς ὀρθὰς ἔστωσαν ἀλλήλαις τοῦ κύκλου τοῦ περιλαμβάνοντος τὸ περιγεγραμμένον πολύγωνον καὶ ὁμοίως κείμεναι ταῖς ΑΓ, Β△ διαμέτροις, καὶ νοείσθωσαν ἐπιζευγνύμεναι ἐπὶ τὰς ἀπεναντίον γωνίας τοῦ πολυγώνου, αἳ γίγνονται ἀλλήλαις τε καὶ τῇ ΖΒ△Θ παράλληλοι. Μενούσης δὴ τῆς ΕΗ διαμέτρου καὶ περιενεχθεισῶν τῶν περιμέτρων τῶν πολυγώνων περὶ τὴν τοῦ κύκλου περιφέρειαν τὸ μὲν ἐγγεγραμμένον σχῆμα ἔσται ἐν τῇ σφαίρᾳ, τὸ δὲ περιγεγραμμένον· δεικτέον οὖν ὅτι ἡ μὲν ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος πρὸς τὴν ἐπιφάνειαν τοῦ ἐγγεγραμμένου διπλασίονα λόγον ἔχει ἤπερ ἡ ΕΛ πρὸς ΑΚ, τὸ δὲ σχῆμα τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον τριπλασίονα λόγον ἔχει τοῦ αὐτοῦ λόγου.

Ἔστω γὰρ ὁ μὲν Μ κύκλος ἴσος τῇ ἐπιφανείᾳ τοῦ περιγεγραμμένου περὶ τὴν σφαῖραν, ὁ δὲ Ν ἴσος τῇ ἐπιφανείᾳ τοῦ ἐγγεγραμμένου· δύναται ἄρα τοῦ μὲν Μ ἡ ἐκ τοῦ κέντρου τὸ περιεχόμενον ὑπὸ τῆς ΕΛ καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς γωνίας τοῦ πολυγώνου τοῦ περιγεγραμμένου, ἡ δὲ ἐκ τοῦ κέντρου τοῦ Ν τὸ ὑπὸ

74
τῆς ΑΚ καὶ τῆς ἴσης πάσαις ταῖς ἐπιζευγνυούσαις τὰς γωνίας. Καὶ ἐπεὶ ὅμοιά ἐστιν τὰ πολύγωνα, ὅμοια ἂν εἴη καὶ τὰ περιεχόμενα χωρία ὑπὸ τῶν εἰρημένων γραμμῶν τουτέστι τῶν ἐπὶ τὰς γωνίας καὶ τῶν πλευρῶν τῶν πολυγώνων, ὥστε τὸν αὐτὸν λόγον ἔχειν πρὸς ἄλληλα, ὃν ἔχουσιν αἱ τῶν πολυγώνων πλευραὶ δυνάμει. Ἀλλὰ καὶ ὃν ἔχει λόγον τὰ περιεχόμενα ὑπὸ τῶν εἰρημένων γραμμῶν, τοῦτον ἔχουσιν αἱ ἐκ τῶν κέντρων τῶν Μ, Ν κύκλων πρὸς ἀλλήλας δυνάμει· ὥστε καὶ αἱ τῶν Μ, Ν διάμετροι τὸν
75
αὐτὸν ἔχουσι λόγον ταῖς τῶν πολυγώνων πλευραῖς. Οἱ δὲ κύκλοι πρὸς ἀλλήλους διπλασίονα λόγον ἔχουσιν τῶν διαμέτρων, οἵτινες ἴσοι εἰσὶν ταῖς ἐπιφανείαις τοῦ περιγεγραμμένου καὶ τοῦ ἐγγεγραμμένου· δῆλον οὖν ὅτι ἡ ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος περὶ τὴν σφαῖραν πρὸς τὴν ἐπιφάνειαν τοῦ ἐγγεγραμμένου σχήματος εἰς τὴν σφαῖραν διπλασίονα λόγον ἔχει ἤπερ ἡ ΕΛ πρὸς ΑΚ.

Εἰλήφθωσαν δὴ δύο κῶνοι οἱ Ο, Ξ, καὶ ἔστω ὁ μὲν Ξ κῶνος βάσιν ἔχων τὸν Ξ κύκλον ἴσον τῷ Μ, ὁ δὲ Ο βάσιν ἔχων τὸν Ο κύκλον ἴσον τῷ Ν, ὕψος δὲ ὁ μὲν Ξ κῶνος τὴν ἐκ τοῦ κέντρου τῆς σφαίρας, ὁ δὲ Ο τὴν ἀπὸ τοῦ κέντρου ἐπὶ τὴν ΑΚ κάθετον ἠγμένην· ἴσος ἄρα ὁ μὲν Ξ κῶνος τῷ σχήματι τῷ περιγεγραμμένῳ περὶ τὴν σφαῖραν, ὁ δὲ Ο τῷ ἐγγεγραμμένῳ δέδεικται οὖν ταῦτα. Καὶ ἐπεὶ ὅμοιά ἐστι τὰ πολύγωνα, τὸν αὐτὸν ἔχει λόγον ἡ ΕΛ πρὸς τὴν ΑΚ, ὃν ἡ ἐκ τοῦ κέντρου τῆς σφαίρας πρὸς τὴν ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ τὴν ΑΚ κάθετον ἀγομένην· τὸν αὐτὸν ἄρα λόγον ἔχει τὸ ὕψος τοῦ Ξ κώνου πρὸς τὸ ὕψος τοῦ Ο κώνου, ὃν ἡ ΕΛ πρὸς ΑΚ. Ἔχει δὲ καὶ ἡ διάμετρος τοῦ Μ κύκλου πρὸς τὴν διάμετρον τοῦ Ν κύκλου λόγον, ὃν ἔχει ἡ ΕΛ πρὸς ΑΚ· τῶν ἄρα Ξ, Ο κώνων αἱ διάμετροι τῶν βάσεων τοῖς ὕψεσι τὸν αὐτὸν ἔχουσι λόγον ὅμοιοι ἄρα εἰσίν, καὶ διὰ τοῦτο τριπλασίονα λόγον ἕξει ὁ Ξ κῶνος πρὸς τὸν Ο κῶνον ἤπερ ἡ διάμετρος τοῦ Μ κύκλου πρὸς τὴν διάμετρον τοῦ Ν κύκλου. Δῆλον οὖν ὅτι καὶ τὸ σχῆμα τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον τριπλασίονα λόγον ἕξει ἤπερ ἡ ΕΛ πρὸς ΑΚ.

76

Πάσης σφαίρας ἡ ἐπιφάνεια τετραπλασία ἐστὶ τοῦ μεγίστου κύκλου τῶν ἐν αὐτῇ.

Ἔστω γὰρ σφαῖρά τις καὶ ἔστω τετραπλάσιος τοῦ μεγίστου κύκλου ὁ Α· λέγω ὅτι ὁ Α ἴσος ἐστὶ τῇ ἐπιφανεία τῆς σφαίρας.

Εἰ γὰρ μή, ἤτοι μείζων ἐστὶν ἢ ἐλάσσων. Ἔστω πρότερον μείζων ἡ ἐπιφάνεια τῆς σφαίρας τοῦ κύκλου. Ἔστι δὴ δύο μεγέθη ἄνισα ἥ τε ἐπιφάνεια τῆς σφαίρας καὶ ὁ Α κύκλος· δυνατὸν ἄρα ἐστὶ λαβεῖν δύο εὐθείας ἀνίσους, ὥστε τὴν μείζονα πρὸς τὴν ἐλάσσονα λόγον ἔχειν ἐλάσσονα τοῦ ὃν ἔχει ἡ ἐπιφάνεια τῆς σφαίρας πρὸς τὸν κύκλον. Εἰλήφθωσαν αἱ Β, Γ, καὶ τῶν Β, Γ μέση ἀνάλογον ἔστω ἡ △, νοείσθω δὲ καὶ ἡ σφαῖρα ἐπιπέδῳ τετμημένη διὰ τοῦ κέντρου κατὰ τὸν ΕΖΗΘ κύκλον, νοείσθω δὲ καὶ εἰς τὸν κύκλον ἐγγεγραμμένον καὶ περιγεγραμμένον πολύγωνον, ὥστε ὅμοιον εἶναι τὸ περιγεγραμμένον τῷ ἐγγεγραμμένῳ πολυγώνῳ καὶ τὴν τοῦ περιγεγραμμένου πλευρὰν ἐλάσσονα λόγον ἔχειν τοῦ ὃν ἔχει ἡ Β πρὸς △ καὶ ὁ διπλάσιος ἄρα λόγος τοῦ διπλασίου λόγου ἐστὶν ἐλάσσων. Καὶ τοῦ μὲν τῆς Β πρὸς △ διπλάσιός ἐστιν ὁ τῆς Β πρὸς τὴν Γ, τῆς δὲ πλευρᾶς τοῦ περιγεγραμμένου πολυγώνου πρὸς τὴν πλευρὰν τοῦ ἐγγεγραμμένου διπλάσιος ὁ τῆς ἐπιφανείας τοῦ περιγεγραμμένου στερεοῦ πρὸς τὴν ἐπιφάνειαν τοῦ ἐγγεγραμμένου· ἡ ἐπιφάνεια ἄρα τοῦ περιγεγραμμένου σχήματος περὶ τὴν σφαῖραν πρὸς τὴν ἐπιφάνειαν τοῦ ἐγγεγραμμένου σχήματος ἐλάσσονα λόγον ἔχει ἤπερ ἡ ἐπιφάνεια τῆς σφαίρας πρὸς τὸν Α κύκλον· ὅπερ ἄτοπον· ἡ μὲν γὰρ ἐπιφάνεια τοῦ περιγεγραμμένου τῆς ἐπιφανείας τῆς

77
σφαίρας μείζων ἐστίν, ἡ δὲ ἐπιφάνεια τοῦ ἐγγεγραμμένου σχήματος τοῦ Α κύκλου ἐλάσσων ἐστί δέδεικται γὰρ ἡ ἐπιφάνεια τοῦ ἐγγεγραμμένου ἐλάσσων τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ ἢ τετραπλασία, τοῦ δὲ μεγίστου κύκλου τετραπλάσιός ἐστιν ὁ Α κύκλος. Οὐκ ἄρα ἡ ἐπιφάνεια τῆς σφαίρας μείζων ἐστὶ τοῦ Α κύκλου.

Λέγω δὴ ὅτι οὐδὲ ἐλάσσων. Εἰ γὰρ δυνατόν, ἔστω· καὶ ὁμοίως εὑρήσθωσαν αἱ Β, Γ εὐθεῖαι ὥστε τὴν Β πρὸς Γ ἐλάσσονα λόγον ἔχειν τοῦ ὃν ἔχει ὁ Α κύκλος πρὸς τὴν ἐπιφάνειαν τῆς σφαίρας, καὶ τῶν Β, Γ μέση ἀνάλογον ἡ △, καὶ ἐγγεγράφθω καὶ περιγεγράφθω πάλιν, ὥστε τὴν τοῦ περιγεγραμμένου ἐλάσσονα λόγον ἔχειν τοῦ τῆς Β πρὸς △ καὶ τὰ διπλάσια ἄρα· ἡ ἐπιφάνεια ἄρα τοῦ περιγεγραμμένου πρὸς τὴν ἐπιφάνειαν τοῦ ἐγγεγραμμένου ἐλάσσονα λόγον ἔχει ἤπερ ἡ Β πρὸς Γ. Ἡ δὲ Β πρὸς Γ ἐλάσσονα λόγον ἔχει ἤπερ ὁ Α κύκλος πρὸς τὴν ἐπιφάνειαν τῆς σφαίρας· ὅπερ ἄτοπον ἡ μὲν γὰρ τοῦ περιγεγραμμένου

78
ἐπιφάνεια μείζων ἐστὶ τοῦ Α κύκλου, ἡ δὲ τοῦ ἐγγεγραμμένου ἐλάσσων τῆς ἐπιφανείας τῆς σφαίρας.

Οὐκ ἄρα οὐδὲ ἐλάσσων ἡ ἐπιφάνεια τῆς σφαίρας τοῦ Α κύκλου. Ἐδείχθη δὲ ὅτι οὐδὲ μείζων· ἡ ἄρα ἐπιφάνεια τῆς σφαίρας ἴση ἐστὶ τῷ Α κύκλῳ, τουτέστι τῷ τετραπλασίῳ τοῦ μεγίστου κύκλου.

Πᾶσα σφαῖρα τετραπλασία ἐστὶ κώνου τοῦ βάσιν μὲν ἔχοντος ἴσην τῷ μεγίστω κύκλῳ τῶν ἐν τῇ σφαίρᾳ, ὕψος δὲ τὴν ἐκ τοῦ κέντρου τῆς σφαίρας. Ἔστω γὰρ σφαῖρά τις καὶ ἐν αὐτῇ μέγιστος κύκλος ὁ ΑΒΓ△. Εἰ οὖν μή ἐστιν ἡ σφαῖρα τετραπλασία τοῦ εἰρημένου κώνου, ἔστω, εἰ δυνατόν, μείζων ἢ τετραπλασία· ἔστω δὲ ὁ Ξ κῶνος βάσιν μὲν ἔχων τετραπλασίαν τοῦ ΑΒΓ△ κύκλου, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας· μείζων οὖν ἐστιν ἡ σφαῖρα τοῦ Ξ κώνου. Ἔσται δὴ δύο μεγέθη ἄνισα ἥ τε σφαῖρα καὶ ὁ κῶνος· δυνατὸν οὖν δύο εὐθείας λαβεῖν ἀνίσους, ὥστε ἔχειν τὴν μείζονα πρὸς τὴν ἐλάσσονα ἐλάσσονα λόγον τοῦ ὃν ἔχει ἡ σφαῖρα πρὸς τὸν Ξ κῶνον. Ἔστωσαν οὖν αἱ Κ, Η, αἱ δὲ Ι, Θ εἰλημμέναι, ὥστε τῷ ἴσῳ ἀλλήλων ὑπερέχειν τὴν Κ τῆς I καὶ τὴν I τῆς Θ καὶ τὴν Θ τῆς Η, νοείσθω δὲ καὶ εἰς τὸν ΑΒΓ△ κύκλον ἐγγεγραμμένον πολύγωνον, οὗ τὸ πλῆθος τῶν πλευρῶν μετρείσθω ὑπὸ τετράδος, καὶ ἄλλο περιγεγραμμένον ὅμοιον τῷ ἐγγεγραμμένῳ, καθάπερ ἐπὶ τῶν πρότερον, ἡ δὲ τοῦ περιγεγραμμένου πολυγώνου πλευρὰ πρὸς τὴν τοῦ ἐγγεγραμμένου ἐλάσσονα λόγον ἐχέτω τοῦ ὃν ἔχει ἡ Κ πρὸς I, καὶ ἔστωσαν αἱ ΑΓ, Β△ διάμετροι πρὸς ὀρθὰς ἀλλήλαις. Εἰ οὖν μενούσης τῆς ΑΓ διαμέτρου

79
περιενεχθείη τὸ ἐπίπεδον, ἐν ᾧ τὰ πολύγωνα, ἔσται σχήματα τὸ μὲν ἐγγεγραμμένον ἐν τῇ σφαίρᾳ, τὸ δὲ περιγεγραμμένον, καὶ ἕξει τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον τριπλασίονα λόγον ἤπερ ἡ πλευρὰ τοῦ περιγεγραμμένου πρὸς τὴν τοῦ ἐγγεγραμμένου εἰς τὸν ΑΒΓ△ κύκλον, Ἡ δὲ πλευρὰ πρὸς τὴν πλευρὰν ἐλάσσονα λόγον ἔχει ἤπερ ἡ Κ πρὸς τὴν Ι· ὥστε τὸ σχῆμα τὸ περιγεγραμμένον ἐλασσονα λόγον ἔχει ἢ τριπλασίονα τοῦ Κ πρὸς Ι. Ἔχει δὲ καὶ ἡ Κ πρὸς Η μείζονα λόγον ἢ τριπλάσιον τοῦ ὃν ἔχει ἡ Κ πρὸς Ι τοῦτο γὰρ φανερὸν διὰ λημμάτων· πολλῷ ἄρα τὸ περιγραφὲν πρὸς τὸ ἐγγραφὲν ἐλάσσονα λόγον ἔχει τοῦ ὃν ἔχει ἡ Κ πρὸς Η. Ἡ δὲ Κ πρὸς Η ἐλάσσονα λόγον ἔχει ἤπερ ἡ σφαῖρα πρὸς τὸν Ξ κῶνον· καὶ ἐναλλάξ·
80
ὅπερ ἀδύνατον· τὸ γὰρ σχῆμα τὸ περιγεγραμμένον μεῖζόν ἐστι τῆς σφαίρας, τὸ δὲ ἐγγεγραμμένον ἔλασσον τοῦ Ξ κώνου διότι ὁ μὲν Ξ κῶνος τετραπλάσιός ἐστι τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος ἴσην τῷ ΑΒΓ△ κύκλῳ, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας, τὸ δὲ ἐγγεγραμμένον σχῆμα ἔλασσον τοῦ εἰρημένου κώνου ἢ τετραπλάσιον. Οὐκ ἄρα μείζων ἢ τετραπλασία ἡ σφαῖρα τοῦ εἰρημένου.

Ἔστω, εἰ δυνατόν, ἐλάσσων ἢ τετραπλασία· ὥστε ἐλάσσων ἐστὶν ἡ σφαῖρα τοῦ Ξ κώνου. Εἰλήφθωσαν δὴ αἱ Κ, Η εὐθεῖαι, ὥστε τὴν Κ μείζονα εἶναι τῆς Η καὶ ἐλάσσονα λόγον ἔχειν πρὸς αὐτὴν τοῦ ὃν ἔχει ὁ Ξ κῶνος πρὸς τὴν σφαῖραν, καὶ αἱ Θ, Ι ἐκκείσθωσαν, καθὼς πρότερον, καὶ εἰς τὸν ΑΒΓ△ κύκλον νοείσθω πολύγωνον ἐγγεγραμμένον καὶ ἄλλο περιγεγραμμένον, ὥστε τὴν πλευρὰν τοῦ περιγεγραμμένου πρὸς τὴν πλευρὰν τοῦ ἐγγεγραμμένου ἐλάσσονα λόγον ἔχειν ἤπερ ἡ Κ πρὸς Ι, καὶ τὰ ἄλλα κατεσκευασμένα τὸν αὐτὸν τρόπον τοῖς πρότερον· ἕξει ἄρα καὶ τὸ περιγεγραμμένον στερεὸν σχῆμα πρὸς τὸ ἐγγεγραμμένον τριπλασίονα λόγον ἤπερ ἡ πλευρὰ τοῦ περιγεγραμμένου περὶ τὸν ΑΒΓ△ κύκλον πρὸς τὴν τοῦ ἐγγεγραμμένου. Ἡ δὲ πλευρὰ πρὸς τὴν πλευρὰν ἐλάσσονα λόγον ἔχει ἤπερ ἡ Κ πρὸς Ι· ἕξει οὖν τὸ σχῆμα τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον ἐλάσσονα λόγον ἢ τριπλάσιον τοῦ ὃν ἔχει ἡ Κ πρὸς τὴν Ι. Ἡ δὲ Κ πρὸς τὴν Η μείζονα λόγον ἔχει ἢ τριπλάσιον τοῦ ὃν ἔχει ἡ Κ πρὸς τὴν Ι· ὥστε ἐλάσσονα λόγον ἔχει τὸ σχῆμα τὸ περιγεγραμμένον πρὸς τὸ ἐγγεγραμμένον ἢ ἡ Κ πρὸς τὴν Η. Ἡ δὲ Κ πρὸς τὴν Η ἐλάσσονα λόγον ἔχει ἢ ὁ Ξ κῶνος

81
πρὸς τὴν σφαῖραν· ὅπερ ἀδύνατον· τὸ μὲν γὰρ ἐγγεγραμμένον ἔλασσόν ἐστι τῆς σφαίρας, τὸ δὲ περιγεγραμμένον μεῖζον τοῦ Ξ κώνου. Οὐκ ἄρα οὐδὲ ἐλάσσων ἐστὶν ἢ τετραπλασία ἡ σφαῖρα τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος ἴσην τῷ ΑΒΓ△ κύκλῳ, ὕψος δὲ τὴν ἴσην τῇ ἐκ τοῦ κέντρου τῆς σφαίρας. Ἐδείχθη δὲ, ὅτι οὐδὲ μείζων· τετραπλασία ἄρα.

ΠΟΡΙΣΜΑ.

Προδεδειγμένων δὲ τούτων φανερὸν ὅτι πᾶς κύλινδρος βάσιν μὲν ἔχων τὸν μέγιστον κύκλον τῶν ἐν τῇ σφαίρᾳ, ὕψος δὲ ἴσον τῇ διαμέτρῳ τῆς σφαίρας, ἡμιόλιός ἐστι τῆς σφαίρας καὶ ἡ ἐπιφάνεια αὐτοῦ μετὰ τῶν βάσεων ἡμιολία τῆς ἐπιφανείας τῆς σφαίρας.

Ὁ μὲν γὰρ κύλινδρος ὁ προειρημένος ἑξαπλάσιός ἐστι τοῦ κώνου τοῦ βάσιν μὲν ἔχοντος τὴν αὐτήν, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου, ἡ δὲ σφαῖρα δέδεικται τοῦ αὐτοῦ κώνου τετραπλασία οὖσα· δῆλον οὖν ὅτι ὁ κύλινδρος ἡμιόλιός ἐστι τῆς σφαίρας. Πάλιν, ἐπεὶ ἡ ἐπειφάνεια τοῦ κυλίνδρου χωρὶς τῶν βάσεων ἴση δέδεικται κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου μέση ἀνάλογόν ἐστι τῆς τοῦ κυλίνδρου πλευρᾶς καὶ τῆς διαμέτρου τῆς βάσεως, τοῦ δὲ εἰρημένου κυλίνδρου τοῦ περὶ τὴν σφαῖραν ἡ πλευρὰ ἴση ἐστὶ τῇ διαμέτρῳ τῆς βάσεως δῆλον ὅτι ἡ μέση αὐτῶν ἀνάλογον ἴση γίνεται τῇ διαμέτρῳ τῆς βάσεως, ὁ δὲ κύκλος ὁ τὴν ἐκ τοῦ κέντρου ἔχων ἴσην τῇ διαμέτρῳ τῆς βάσεως τετραπλάσιός ἐστι τῆς βάσεως, τουτέστι τοῦ μεγίστου κύκλου τῶν ἐν τῇ σφαίρᾳ, ἔσται ἄρα καὶ ἡ ἐπιφάνεια τοῦ κυλίνδρου χωρὶς τῶν βάσεων τετραπλασία τοῦ μεγίστου κύκλου· ὅλη ἄρα μετὰ τῶν βάσεων ἡ ἐπιφάνεια τοῦ κυλίνδρου ἑξαπλασία

82
ἔσται τοῦ μεγίστου κύκλου. Ἔστιν δὲ καὶ ἡ τῆς σφαίρας ἐπιφάνεια τετραπλασία τοῦ μεγίστου κύκλου. Ὅλη ἄρα ἡ ἐπιφάνεια τοῦ κυλίνδρου ἡμιολία ἐστὶ τῆς ἐπιφανείας τῆς σφαίρας.

Ἡ ἐπιφάνεια τοῦ ἐγγεγραμμένου σχήματος εἰς τὸ τμῆμα τῆς σφαίρας ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου ἴσον δύναται τῷ περιεχομένῳ ὑπό τε μιᾶς πλευρᾶς τοῦ ἐγγεγραμμένου πολυγώνου ἐν τῷ τμήματι τοῦ μεγίστου κύκλου καὶ τῆς ἴσης πάσαις ταῖς παραλλήλοις τῇ βάσει τοῦ τμήματος σὺν τῇ ἡμισείᾳ τῆς τοῦ τμήματος βάσεως. Ἔστω σφαῖρα καὶ ἐν αὐτῇ τμῆμα, οὗ βάσις ὁ περὶ τὴν ΑΗ κύκλος ἐγγεγράφθω σχῆμα εἰς αὐτό, οἷον εἴρηται, περιεχόμενον ὑπὸ κωνικῶν ἐπιφανειῶν, καὶ μέγιστος κύκλος ὁ ΑΗΘ καὶ ἀρτιόπλευρον πολύγωνον τὸ ΑΓΕΘΖ△Η χωρὶς τῆς ΑΗ πλευρᾶς, καὶ εἰλήφθω κύκλος ὁ Λ, οὗ ἡ ἐκ τοῦ κέντρου ἴσον δύναται τῷ περιεχομένῳ ὑπό τε τῆς ΑΓ πλευρᾶς καὶ ὑπὸ πασῶν τῶν ΕΖ, Γ△ καὶ ἔτι τῆς ἡμισείας τῆς βάσεως, τουτέστι τῆς ΑΚ· δεικτέον ὅτι ὁ κύκλος ἴσος ἐστὶ τῇ τοῦ σχήματος ἐπιφανείᾳ.

83

Εἰλήφθω γὰρ κύκλος ὁ Μ, οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ περιεχόμενον ὑπό τε τῆς ΕΘ πλευρᾶς καὶ τῆς ἡμισείας τῆς ΕΖ· γίνεται δὴ ὁ Μ κύκλος ἴσος τῇ ἐπιφανείᾳ τοῦ κώνου, οὗ βάσις μὲν ὁ περὶ τὴν ΕΖ κύκλος, κορυφὴ δὲ τὸ Θ σημεῖον. Εἰλήφθω δὲ καὶ ἄλλος ὁ Ν, οὗ ἡ ἐκ τοῦ κέντρου ἴσον δύναται τῷ περιεχομένῳ ὑπό τε τῆς ΕΓ καὶ τῆς ἡμισείας συναμφοτέρου τῆς ΕΖ, Γ△· ἔσται οὖν οὗτος ἴσος τῇ ἐπιφανείᾳ τοῦ κώνου τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΕΖ, Γ△. Καὶ ἄλλος ὁμοίως ὁ Ξ εἰλήφθω κύκλος, οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ περιεχόμενον ὑπό τε τῆς ΑΓ καὶ τῆς ἡμισείας συναμφοτέρων τῶν Γ△, ΑΗ· καὶ αὐτὸς οὖν ἴσος ἐστὶ τῇ κωνικῇ ἐπιφανείᾳ τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΑΗ, Γ△. Πάντες οὖν οἱ κύκλοι ἴσοι ἔσονται τῇ ὅλῃ τοῦ σχήματος ἐπιφανείᾳ, καὶ αἱ ἐκ τῶν κέντρων αὐτῶν ἴσον δυνήσονται τῷ περιεχομένῳ ὑπὸ μιᾶς πλευρᾶς τῆς ΑΓ καὶ τῆς ἴσης ταῖς ΕΖ, Γ△ καὶ τῇ ἡμισείᾳ τῆς βάσεως τῇ ΑΚ. Ἐδύνατο δὲ καὶ ἡ ἐκ τοῦ κέντρου τοῦ Λ κύκλου ἴσον τῷ αὐτῷ χωρίῳ· ὁ ἄρα Λ κύκλος ἴσος ἔσται τοῖς Μ, Ν, Ξ κύκλοις· ὥστε καὶ τῇ ἐπιφανείᾳ τοῦ ἐγγεγραμμένου σχήματος.

Τετμήσθω σφαῖρα μὴ διὰ τοῦ κέντρου ἐπιπέδῳ, καὶ ἐν αὐτῇ μέγιστος κύκλος ὁ ΑΕΖ τέμνων πρὸς ὀρθὰς τὸ ἐπίπεδον τὸ τέμνον, καὶ ἐγγεγράφθω εἰς τὸ ΑΒΓ τμῆμα πολύγωνον ἰσόπλευρόν τε καὶ ἀρτιόγωνον χωρὶς τῆς βάσεως τῆς ΑΒ. Ὁμοίως δὴ τοῖς πρότερον, ἐὰν μενούσης τῆς ΓΖ περιενεχθῇ τὸ σχῆμα, αἱ μὲν △, Ε, Α, Β γωνίαι κατὰ κύκλων οἰσθήσονται, ὧν διάμετροι αἱ △Ε, ΑΒ, αἱ δὲ

84
πλευραὶ τοῦ τμήματος κατὰ κωνικῆς ἐπιφανείας, καὶ ἔσται τὸ γενηθὲν σχῆμα στερεὸν ὑπὸ κωνικῶν ἐπιφανειῶν περιεχόμενον βάσιν μὲν ἔχον κύκλον, οὗ διάμετρος ἡ ΑΒ, κορυφὴν δὲ τὸ Γ. Ὁμοίως δὴ τοῖς πρότερον τὴν ἐπιφάνειαν ἐλάσσονα ἕξει τῆς τοῦ τμήματος ἐπιφανείας τοῦ περιλαμβάνοντος· τὸ γὰρ αὐτὸ πέρας αὐτῶν ἐστιν ἐν ἐπιπέδῳ τοῦ τε τμήματος καὶ τοῦ σχήματος ἡ περιφέρεια τοῦ κύκλου, οὗ διάμετρος ἡ ΑΒ, καὶ ἐπὶ τὰ αὐτὰ κοῖλαι ἀμφότεραί εἰσιν αἱ ἐπιφάνειαι, καὶ περιλαμβάνεται ἡ ἑτέρα ὑπὸ τῆς ἑτέρας.

Ἡ ἐπιφάνεια τοῦ ἐγγεγραμμένου σχήματος ἐν τῷ τμήματι τῆς σφαίρας ἐλάσσων ἐστὶ τοῦ κύκλου, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ἀπὸ τῆς κορυφῆς τοῦ τμήματος ἐπὶ τὴν περιφέρειαν ἠγμένῃ τοῦ κύκλου, ὅς ἐστι βάσις τοῦ τμήματος.

Ἔστω σφαῖρα καὶ ἐν αὐτῇ μέγιστος κύκλος ὁ ΑΒΕΖ, καὶ ἔστω τμῆμα ἐν τῇ σφαίρᾳ, οὗ βάσις ὁ περὶ διάμετρον τὴν ΑΒ καὶ ἐγγεγράφθω εἰς αὐτὸ τὸ εἰρημένον σχῆμα, καὶ ἐν τῷ τμήματι τοῦ κύκλου πολύγωνον, καὶ τὰ λοιπὰ τὰ αὐτὰ

85
διαμέτρου μὲν τῆς σφαίρας οὔσης τῆς ΘΛ, ἐπεζευγμένων δὲ τῶν ΛΕ, ΘΑ, καὶ ἔστω κύκλος ὁ Μ, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἔστω τῇ ΑΘ· δεικτέον ὅτι ὁ Μ κύκλος μείζων ἐστὶ τῆς τοῦ σχήματος ἐπιφανείας.

Ἡ γὰρ ἐπιφάνεια τοῦ σχήματος δέδεικται ἴση οὖσα κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου ἴσον δύναται τῷ περιεχομένῳ ὑπό τε τῆς ΕΘ καὶ τῶν ΕΖ, Γ△, ΚΑ· τὸ δὲ ὑπὸ τῆς ΕΘ καὶ τῶν ΕΖ, Γ△, ΚΑ δέδεικται ἴσον· τῷ ὑπὸ τῶν ΕΛ, ΚΘ περιεχομένῳ· τὸ δὲ ὑπὸ τῶν ΕΛ, ΚΘ ἔλασσόν ἐστι τοῦ ἀπὸ τῆς ΑΘ καὶ γὰρ τοῦ ΛΘ, ΚΘ· φανερὸν οὖν ὅτι ἡ ἐκ τοῦ κέντρου τοῦ κύκλου, ὅς ἐστιν ἴσος τῇ ἐπιφανείᾳ τοῦ σχήματος, ἐλάσσων ἐστὶ τῆς ἐκ τοῦ κέντρου τοῦ Μ· δῆλον ἄρα ὅτι ὁ Μ κύκλος μείζων ἐστὶ τῆς ἐπιφανείας τοῦ σχήματος.

Τὸ ἐγγεγραμμένον σχῆμα ἐν τῷ τμήματι ὑπὸ κωνικῶν ἐπιφανειῶν περιεχόμενον σὺν τῷ κώνῳ τῷ βάσιν μὲν τὴν αὐτὴν ἔχοντι τῷ σχήματι, κορυφὴν δὲ τὸ κέντρον τῆς

86
σφαίρας, ἴσον ἐστὶ τῷ κώνῳ τῷ βάσιν ἔχοντι ἴσην τῇ ἐπιφανείᾳ τοῦ σχήματος, ὕψος δὲ τῇ ἀπὸ τοῦ κέντρου τῆς σφαίρας ἐπὶ μίαν πλευρὰν τῶν τοῦ πολυγώνου καθέτῳ ἠγμένῃ.

Ἔστω γὰρ σφαῖρα καὶ ἐν αὐτῇ μέγιστος κύκλος καὶ τμῆμα ἔλασσον ἡμικυκλίου τὸ ΑΒΓ καὶ κέντρον τὸ Ε, καὶ ἐγγεγράφθω εἰς τὸ ΑΒΓ τμῆμα πολύγωνον ἀρτιόπλευρον χωρὶς τῆς ΑΓ ὁμοίως τοῖς πρότερον, καὶ μενούσης τῆς ΒΛ περιενεχθεῖσα ἡ σφαῖρα ποιείτω σχῆμά τι ὑπὸ κωνικῶν ἐπιφανειῶν περιεχόμενον, καὶ ἀπὸ τοῦ κύκλου τοῦ περὶ διάμετρον τὴν ΑΓ κῶνος ἀναγεγράφθω κορυφὴν ἔχων τὸ κέντρον, καὶ εἰλήφθω κῶνος ὁ Κ βάσιν μὲν ἔχων ἴσην τῇ ἐπιφανείᾳ τοῦ σχήματος, ὕψος δὲ τῇ ἀπὸ τοῦ Ε κέντρου ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου καθέτῳ ἠγμένῃ· δεικτέον ὅτι ὁ Κ κῶνος ἴσος ἐστὶ τῷ περιεχομένῳ σχήματι σὺν τῷ κώνῳ τῷ ΑΕΓ.

Ἀναγεγράφθωσαν δὴ καὶ κῶνοι ἀπὸ τῶν κύκλων τῶν περὶ διαμέτρους τὰς ΘΗ, △Ζ κορυφὴν ἔχοντες τὸ Ε σημεῖον· οὐκοῦν ὁ μὲν ΗΒΘΕ ὁόμβος στερεὸς ἴσος ἐστὶ κώνῳ, οὗ ἡ μὲν βάσις ἴση ἐστὶ τῇ ἐπιφανείᾳ τοῦ

87
ΗΒΘ κὼνου, τὸ ὕψος δὲ τῇ ἀπὸ τοῦ Ε ἐπὶ τὴν ΗΒ ἀγομένῃ καθέτῳ, τὸ δὲ περίλειμμα τὸ περιεχόμενον ὑπὸ τῆς ἐπιφανείας τῆς μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΗΘ, Ζ△ καὶ τῶν κωνικῶν τῶν ΖΕ△, ΗΕΘ ἴσον ἐστὶ κώνῳ, οὗ ἡ βάσις μέν ἐστιν ἴση τῇ ἐπιφανείᾳ τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς ΗΘ, Ζ△, ὕψος δὲ τῇ ἀπὸ τοῦ Ε ἐπὶ τὴν ΖΗ καθέτῳ ἠγμένῃ, Πάλιν τὸ περίλειμμα τὸ περιεχόμενον ὑπό τε τῆς ἐπιφανείας τῆς μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς Ζ△, ΑΓ καὶ τῶν κωνικῶν τῶν ΑΕΓ, ΖΕ△ ἴσον ἐστὶ κώνῳ, οὗ ἡ μὲν βάσις ἴση ἐστὶ τῇ ἐπιφανείᾳ τῇ μεταξὺ τῶν παραλλήλων ἐπιπέδων τῶν κατὰ τὰς Ζ△, ΑΓ, ὕψος δὲ τῇ ἀπὸ τοῦ Ε ἐπὶ τὴν ΖΑ καθέτῳ ἠγμένῃ· οἱ οὖν εἰρημένοι κῶνοι ἴσοι ἔσονται τῷ σχήματι μετὰ τοῦ ΑΕΓ κώνου. Καὶ ὕψος μὲν ἴσον ἔχουσιν τῇ ἀπὸ τοῦ Ε ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου καθέτῳ ἠγμένῃ, τὰς δὲ βάσεις ἴσας τῇ ἐπιφανείᾳ του ΑΖΗΒΘ△Γ σχήματος· ἔχει δὲ καὶ ὁ Κ κῶνος τὸ αὐτὸ ὕψος καὶ βάσιν ἴσην τῇ ἐπιφανείᾳ τοῦ σχήματος· ἴσος ἄρα ἐστὶν ὁ κῶνος τοῖς εἰρημένοις κώνοις. Οἱ δὲ εἰρημένοι κῶνοι ἐδείχθησαν ἴσοι τῷ σχήματι καὶ τῷ ΑΕΓ κώνῳ· καὶ ὁ Κ ἄρα κῶνος ἴσος ἐστὶ τῷ τε σχήματι καὶ τῷ ΑΕΓ κώνῳ.

ΠΟΡΙΣΜΑ.

Ἐκ δὴ τούτου φανερὸν ὅτι ὁ κῶνος ὁ βάσιν μὲν ἔχων τὸν κύκλον, οὗ ἡ ἐκ τοῦ κέντρου ἴση ἐστὶ τῇ ἀπὸ τῆς κορυφῆς τοῦ τμήματος ἐπὶ τὴν περιφέρειαν ἠγμένῃ τοῦ κύκλου, ὅς

88
ἐστι βάσις τοῦ τμήματος, ὕψος δὲ ἴσον τῇ ἐκ τοῦ κέντρου τῆς σφαίρας, μείζων ἐστὶ τοῦ ἐγγεγραμμένου σχήματος σὺν τῷ κώνῳ· ὁ γὰρ προειρημένος κῶνος μείζων ἐστὶ τοῦ κώνου τοῦ ἴσου τῷ σχήματι σὺν τῷ κώνῳ τῷ βάσιν μὲν ἔχοντι τὴν βάσιν τοῦ τμήματος, τὴν δὲ κορυφὴν πρὸς τῷ κέντρῳ, τουτέστι τοῦ τὴν βάσιν μὲν ἔχοντος ἴσην τῇ ἐπιφανείᾳ τοῦ σχήματος, ὕψος δὲ τῇ ἀπὸ τοῦ κέντρου ἐπὶ μίαν πλευρὰν τοῦ πολυγώνου καθέτῳ ἠγμένῃ· ἥ τε γὰρ βάσις τῆς βάσεως μείζων ἐστὶ δέδεικται γὰρ τοῦτο καὶ τὸ ὕψος τοῦ ὕψους.

Ἔστω σφαῖρα καὶ ἐν αὐτῇ μέγιστος κύκλος ὁ ΑΒΓ, καὶ τετμήσθω ἔλασσον ἡμικυκλίου, ὃ ἀποτέμνει ἡ ΑΒ, καὶ κέντρον τὸ △, καὶ ἀπὸ τοῦ κέντρου τοῦ △ ἐπὶ τὰ Α, Β ἐπεζεύχθωσαν αἱ Α△, △Β, καὶ περὶ τὸν γεννηθέντα τομέα περιγεγράφθω πολύγωνον καὶ περὶ αὐτὸ κύκλος ἕξει δὴ τὸ αὐτὸ κέντρον τῷ ΑΒΓ κύκλῳ. Ἐὰν δὴ μενούσης τῆς ΕΚ περιενεχθὲν τὸ πολύγωνον εἰς τὸ αὐτὸ πάλιν ἀποκατασταθῇ, ὁ περιγεγραμμένος κύκλος κατὰ ἐπιφανείας οἰσθήσεται σφαίρας, καὶ αἱ γωνίαι τοῦ πολυγώνου κύκλους γράψουσιν, ὧν αἱ διάμετροι ἐπιζευγνύουσιν τὰς γωνίας τοῦ πολυγώνου οὖσαι παράλληλοι τῇ ΑΒ, τὰ δὲ σημεῖα, καθʼ ἃ ἅπτονται τοῦ ἐλάσσονος κύκλου αἱ τοῦ πολυγώνου πλευραί, κύκλους γράφουσιν ἐν τῇ ἐλάσσονι σφαίρᾳ, ὧν διάμετροι ἔσονται αἱ ἐπιζευγνύουσαι τὰς ἁφὰς παράλληλοι οὖσαι τῇ ΑΒ, αἱ δὲ πλευραὶ κατὰ κωνικῶν ἐπιφανειῶν οἰσθήσονται, καὶ ἔσται τὸ περιγραφὲν σχῆμα ὑπὸ κωνικῶν ἐπιφανειῶν περιεχόμενον, οὗ βάσις ὁ περὶ τὴν ΖΗ κύκλος·

89
ἡ δὴ τοῦ εἰρημένου σχήματος ἐπιφάνεια μείζων ἐστὶ τῆς τοῦ ἐλάσσονος τμήματος ἐπιφανείας, οὗ βάσις ὁ περὶ τὴν ΑΒ κύκλος.

Ἤχθωσαν γὰρ ἐφαπτόμεναι αἱ ΑΜ, ΒΝ· κατὰ κωνικῆς ἄρα ἐπιφανείας οἰσθήσονται, καὶ τὸ σχῆμα τὸ γενηθὲν ὑπὸ τοῦ πολυγώνου τοῦ ΑΜΘΕΛΝΒ μείζονα ἕξει τὴν ἐπιφάνειαν τοῦ τμήματος τῆς σφαίρας, οὗ βασις ὁ περὶ διάμετρον τὴν ΑΒ κύκλος πέρας γὰρ ἐν ἑνὶ ἐπιπέδῳ τὸ αὐτὸ ἔχουσιν τὸν περὶ διάμετρον τὴν ΑΒ κύκλον, καὶ περιλαμβάνεται τὸ τμῆμα ὑπὸ τοῦ σχήματος. Ἀλλʼ ἡ γεγενημένη ὑπὸ τῶν ΖΜ, ΗΝ ἐπιφάνεια κώνου μείζων ἐστὶ τῆς γεγενημένης ὑπὸ τῶν ΜΑ, ΝΒ· ἡ μὲν γὰρ ΖΜ τῆς ΜΑ μείζων ἐστὶ ὑπὸ γὰρ ὀρθὴν ὑποτείνει, ἡ δὲ ΝΗ τῆς ΝΒ, ὅταν δὲ τοῦτο ᾖ, μείζων γίνεται ἡ ἐπιφάνεια τῆς ἐπιφανείας ταῦτα γὰρ δέδεικται ἐν τοῖς λήμμασιν. Δῆλον οὖν ὅτι καὶ τοῦ περιγεγραμμένου σχήματος ἡ ἐπιφάνεια μείζων ἐστὶ τῆς τοῦ τμήματος ἐπιφανείας τῆς ἐλάσσονος σφαίρας.

90

ΠΟΡΙΣΜΑ.

Καὶ φανερὸν ὅτι ἡ ἐπιφάνεια τοῦ περιγεγραμμένου σχήματος τοῦ περὶ τὸν τομέα ἴση ἐστὶ κύκλῳ, οὗ ἡ ἐκ τοῦ κέντρου δύναται τὸ περιεχόμενον ὑπό τε μιᾶς πλευρᾶς τοῦ πολυγώνου καὶ τῶν ἐπιζευγνυουσῶν πασῶν τὰς γωνίας τοῦ πολυγώνου καὶ ἔτι τῆς ἡμισείας τῆς βάσεως τοῦ εἰρημένου πολυγώνου τὸ γὰρ ὑπὸ τοῦ πολυγώνου γεγραμμένον σχῆμα ἐγγεγραμμένον ἐστὶν εἰς τὸ τμῆμα τῆς μείζονος σφαίρας, τοῦτο δὲ δῆλον διὰ τὸ προγεγραμμένον.