On Architecture

Vitruvius Pollio

Vitruvius Pollio, creator; Morgan, M. H. (Morris Hicky), 1859-1910, translator

7. So, when a ship is making headway, whether under oars or under a gale of wind, the floatboards on the wheels will strike against the water and be driven violently back, thus turning the

303
wheels; and they, revolving, will move the axle, and the axle the drum, the tooth of which, as it goes round, strikes one of the teeth of the second drum at each revolution, and makes it turn a little. So, when the floatboards have caused the wheels to revolve four hundred times, this drum, having turned round once, will strike a tooth of the horizontal drum with the tooth that is fixed to its side. Hence, every time the turning of the horizontal drum brings a stone to a hole, it will let the stone out through the pipe. Thus by the sound and the number, the length of the voyage will be shown in miles.

I have described how to make things that may be provided for use and amusement in times that are peaceful and without fear.

1. I SHALL explain the symmetrical principles on which scorpiones and ballistae may be constructed, inventions devised for defence against danger, and in the interest of self-preservation.

The proportions of these engines are all computed from the given length of the arrow which the engine is intended to throw, and the size of the holes in the capitals, through which the twisted sinews that hold the arms are stretched, is one ninth of that length.

2. The height and breadth of the capital itself must then conform to the size of the holes. The boards at the top and bottom of the capital, which are called “peritreti,” should be in thickness equal to one hole, and in breadth to one and three quarters, except at their extremities, where they equal one hole and a half. The sideposts on the right and left should be four holes high, excluding the tenons, and five twelfths of a hole thick; the tenons, half a hole. The distance from a sidepost to the hole is one quarter of a hole, and it is also one quarter of a hole from the hole to the post

304
in the middle. The breadth of the post in the middle is equal to one hole and one eighth, the thickness, to one hole.

3. The opening in the middle post, where the arrow is laid, is equal to one fourth of the hole. The four surrounding corners should have iron plates nailed to their sides and faces, or should be studded with bronze pins and nails. The pipe, called su=pic in Greek, has a length of nineteen holes. The strips, which some term cheeks, nailed at the right and left of the pipe, have a length of nineteen holes and a height and thickness of one hole. Two other strips, enclosing the windlass, are nailed on to these, three holes long and half a hole in breadth. The cheek nailed on to them, named the “bench,” or by some the “box,” and made fast by means of dove-tailed tenons, is one hole thick and seven twelfths of a hole in height. The length of the windlass is equal to . . . [*](The dots here and in what follows, indicate lacunae in the manuscripts) holes, the thickness of the windlass to three quarters of a hole.

4. The latch is seven twelfths of a hole in length and one quarter in thickness. So also its socket-piece. The trigger or handle is three holes in length and three quarters of a hole in breadth and thickness. The trough in the pipe is sixteen holes in length, one quarter of a hole in thickness, and three quarters in height. The base of the standard on the ground is equal to eight holes; the breadth of the standard where it is fastened into the plinth is three quarters of a hole, its thickness two thirds of a hole; the height of the standard up to the tenon is twelve holes, its breadth three quarters of a hole, and its thickness two thirds. It has three struts, each nine holes in length, half a hole in breadth, and five twelfths in thickness. The tenon is one hole in length, and the head of the standard one hole and a half in length.

5. The antefix has the breadth of a hole and one eighth, and the thickness of one hole. The smaller support, which is behind, termed in Greek a)nti/basis, is eight holes long, three quarters of a hole broad, and two thirds thick. Its prop is twelve holes long,

305
and has the same breadth and thickness as the smaller support just mentioned. Above the smaller support is its socket-piece, or what is called the cushion, two and a half holes long, one and a half high, and three quarters of a hole broad. The windlass cup is two and seven twelfths holes long, two thirds of a hole thick, and three quarters broad. The crosspieces with their tenons have the length of . . . holes, the breadth of three quarters, and the thickness of two thirds of a hole. The length of an arm is seven holes, its thickness at its base two thirds of a hole, and at its end one half a hole; its curvature is equal to two thirds of a hole.

6. These engines are constructed according to these proportions or with additions or diminutions. For, if the height of the capitals is greater than their width—when they are called “high-tensioned,”—something should be taken from the arms, so that the more the tension is weakened by height of the capitals, the more the strength of the blow is increased by shortness of the arms. But if the capital is less high,—when the term “low-tensioned ” is used,—the arms, on account of their strength, should be made a little longer, so that they may be drawn easily. Just as it takes four men to raise a load with a lever five feet long, and only two men to lift the same load with a ten-foot lever, so the longer the arms, the easier they are to draw, and the shorter, the harder.

I have now spoken of the principles applicable to the parts and proportions of catapults.

1. BALLISTAE are constructed on varying principles to produce an identical result. Some are worked by handspikes and windlasses, some by blocks and pulleys, others by capstans, others again by means of drums. No ballista, however, is made without regard to the given amount of weight of the stone which the engine is intended to throw. Hence their principle is not easy

306
for everybody, but only for those who have knowledge of the geometrical principles employed in calculation and in multiplication.

2. For the holes made in the capitals through the openings of which are stretched the strings made of twisted hair, generally women's, or of sinew, are proportionate to the amount of weight in the stone which the ballista is intended to throw, and to the principle of mass, as in catapults the principle is that of the length of the arrow. Therefore, in order that those who do not understand geometry may be prepared beforehand, so as not to be delayed by having to think the matter out at a moment of peril in war, I will set forth what I myself know by experience can be depended upon, and what I have in part gathered from the rules of my teachers, and wherever Greek weights bear a relation to the measures, I shall reduce and explain them so that they will express the same corresponding relation in our weights.

3. A ballista intended to throw a two-pound stone will have a hole of five digits in its capital; four pounds, six digits, and six pounds, seven digits; ten pounds, eight digits; twenty pounds, ten digits; forty pounds, twelve and a half digits; sixty pounds, thirteen and a half digits; eighty pounds, fifteen and three quarters digits; one hundred pounds, one foot and one and a half digits; one hundred and twenty pounds, one foot and two digits; one hundred and forty pounds, one foot and three digits; one hundred and sixty pounds, one foot and a quarter; one hundred and eighty pounds, one foot and five digits; two hundred pounds, one foot and six digits; two hundred and forty pounds, one foot and seven digits; two hundred and eighty pounds, one foot and a half; three hundred and twenty pounds, one foot and nine digits; three hundred and sixty pounds, one foot and ten digits.

4. Having determined the size of the hole, design the “scutula,” termed in Greek peri/trhtos, . . . holes in length and two and one sixth in breadth. Bisect it by a line drawn diagonally from the angles, and after this bisecting bring together the outlines of the figure so that it may present a rhomboidal design, reducing it by one sixth of its length and one

307
fourth of its breadth at the (obtuse) angles. In the part composed by the curvatures into which the points of the angles run out, let the holes be situated, and let the breadth be reduced by one sixth; moreover, let the hole be longer than it is broad by the thickness of the bolt. After designing the scutula, let its outline be worked down to give it a gentle curvature.

5. It should be given the thickness of seven twelfths of a hole. The boxes are two holes (in height), one and three quarters in breadth, two thirds of a hole in thickness except the part that is inserted in the hole, and at the top one third of a hole in breadth. The sideposts are five holes and two thirds in length, their curvature half a hole, and their thickness thirty-seven forty-eighths of a hole. In the middle their breadth is increased as much as it was near the hole in the design, by the breadth and thickness of . . . hole; the height by one fourth of a hole.