On Architecture

Vitruvius Pollio

Vitruvius Pollio, creator; Morgan, M. H. (Morris Hicky), 1859-1910, translator

4. But, if it has to be supplied to a place still more high, a double iron chain, which will reach the surface when let down, is passed round the axle of the same wheel, with bronze buckets attached to it, each holding about six pints. The turning of the wheel, winding the chain round the axle, will carry the buckets to the top, and as they pass above the axle they must tip over and deliver into the reservoir what they have carried up.

1. WHEELS on the principles that have been described above are also constructed in rivers. Round their faces floatboards are fixed, which, on being struck by the current of the river, make the wheel turn as they move, and thus, by raising the water in the boxes and bringing it to the top, they accomplish the necessary work through being turned by the mere impulse of the river, without any treading on the part of workmen.

2. Water mills are turned on the same principle. Everything is the same in them, except that a drum with teeth is fixed into one end of the axle. It is set vertically on its edge, and turns in the same plane with the wheel. Next to this larger drum there is a smaller one, also with teeth, but set horizontally, and this is

295
attached (to the millstone). Thus the teeth of the drum which is fixed to the axle make the teeth of the horizontal drum move, and cause the mill to turn. A hopper, hanging over this contrivance, supplies the mill with corn, and meal is produced by the same revolution.

1. THERE is also the method of the screw, which raises a great quantity of water, but does not carry it as high as does the wheel. The method of constructing it is as follows. A beam is selected, the thickness of which in digits is equivalent to its length in feet. This is made perfectly round. The ends are to be divided off on their circumference with the compass into eight parts, by quadrants and octants, and let the lines be so placed that, if the beam is laid in a horizontal position, the lines on the two ends may perfectly correspond with each other, and intervals of the size of one eighth part of the circumference of the beam may be laid off on the length of it. Then, placing the beam in a horizontal position, let perfectly straight lines be drawn from one end to the other. So the intervals will be equal in the directions both of the periphery and of the length. Where the lines are drawn along the length, the cutting circles will make intersections, and definite points at the intersections.

296

2. When these lines have been correctly drawn, a slender withe of willow, or a straight piece cut from the agnus castus tree, is taken, smeared with liquid pitch, and fastened at the first point of intersection. Then it is carried across obliquely to the succeeding intersections of longitudinal lines and circles, and as it advances, passing each of the points in due order and winding round, it is fastened at each intersection; and so, withdrawing from the first to the eighth point, it reaches and is fastened to the line to which its first part was fastened. Thus, it makes as much progress in its longitudinal advance to the eighth point as in its oblique advance

297
over eight points. In the same manner, withes for the eight divisions of the diameter, fastened obliquely at the intersections on the entire longitudinal and peripheral surface, make spiral channels which naturally look just like those of a snail shell.

3. Other withes are fastened on the line of the first, and on these still others, all smeared with liquid pitch, and built up until the total diameter is equal to one eighth of the length. These are covered and surrounded with boards, fastened on to protect the spiral. Then these boards are soaked with pitch, and bound together with strips of iron, so that they may not be separated by the pressure of the water. The ends of the shaft are covered with iron. To the right and left of the screw are beams, with crosspieces fastening them together at both ends. In these crosspieces are holes sheathed with iron, and into them pivots are introduced, and thus the screw is turned by the treading of men.

4. It is to be set up at an inclination corresponding to that which is produced in drawing the Pythagorean right-angled triangle: that is, let its length be divided into five parts; let three of them denote the height of the head of the screw; thus the distance from the base of the perpendicular to the nozzle of the screw at the bottom will be equal to four of those parts. A figure showing how this ought to be, has been drawn at the end of the book, right on the back.

I have now described as clearly as I could, to make them better known, the principles on which wooden engines for raising water are constructed, and how they get their motion so that they may be of unlimited usefulness through their revolutions.

1. NEXT I must tell about the machine of Ctesibius, which raises water to a height. It is made of bronze, and has at the bottom a pair of-cylinders set a little way apart, and there is a

298
pipe connected with each, the two running up, like the prongs of a fork, side by side to a vessel which is between the cylinders. In this vessel are valves, accurately fitting over the upper vents of the pipes, which stop up the ventholes, and keep what has been forced by pressure into the vessel from going down again.

2.Over the vessel a cowl is adjusted, like an inverted funnel, and fastened to the vessel by means of a wedge thrust through a staple, to prevent it from being lifted off by the pressure of the water that is forced in. On top of this a pipe is jointed, called the trumpet, which stands up vertically. Valves are inserted in the cylinders, beneath the lower vents of the pipes, and over the openings which are in the bottoms of the cylinders.

3. Pistons smoothly turned, rubbed with oil, and inserted from above into the cylinders, work with their rods and levers upon the air and water in the cylinders, and, as the valves stop up the openings, force and drive the water, by repeated pressure and expansion, through the vents of the pipes into the vessel, from which the cowl receives the inflated currents, and sends them up through the pipe at the top; and so water can be supplied for a fountain from a reservoir at a lower level.

4. This, however, is not the only apparatus which Ctesibius is said to have thought out, but many more of various kinds are shown by him to produce effects, borrowed from nature, by means of water pressure and compression of the air; as, for example, blackbirds singing by means of waterworks, and “angobatae,” and figures that drink and move, and other things that are found to be pleasing to the eye and the ear.

5. Of these I have selected what I considered most useful and necessary, and have thought it best to speak in the preceding book about timepieces, and in this about the methods of raising water. The rest, which are not subservient to our needs, but to pleasure and amusement, may be found in the commentaries of Ctesibius himself by any who are interested in such refinements.