De planorum aequilibriis

Archimedes

Archimedes. Archimède, Volume 2. Mugler, Charles, editor. Paris: Les Belles Lettres, 1971.

85

Τὰ σύμμετρα μεγέθεα ἰσορροπέοντι ἀπὸ μακέων ἀντιπεπονθότως τὸν αὐτὸν λόγον ἐχόντων τοῖς βάρεσιν.

Ἔστω σύμμετρα μεγέθεα τὰ Α, Β, ὧν κέντρα τὰ Α, Β, καὶ μᾶκος ἔστω τι τὸ Ε△, καὶ ἔστω ὡς τὸ Α ποτὶ τὸ Β, οὕτως τὸ △Γ μᾶκος ποτὶ τὸ ΓΕ μᾶκος δεικτέον ὅτι τοῦ ἐξ ἀμφοτέρων τῶν Α, Β συγκειμένου μεγέθεος κέντρον ἐστὶ τοῦ βάρεος τὸ Γ.

Ἐπεὶ γάρ ἐστιν, ὡς τὸ Α ποτὶ τὸ Β, οὕτως τὸ △Γ ποτὶ τὸ ΓΕ, τὸ δὲ Α τῷ Β σύμμετρον, καὶ τὸ Γ△ ἄρα τῷ ΓΕ σύμμετρον, τουτέστιν εὐθεῖα τᾷ εὐθείᾳ ὥστε τῶν ΕΓ, Γ△ ἐστὶ κοινὸν μέτρον. Ἔστω δὴ τὸ Ν, καὶ κείσθω τᾷ μὲν ΕΓ ἴσα ἑκατέρα τᾶν △Η, △Κ, τᾷ δὲ △Γ ἴσα ἁ ΕΛ. Καὶ ἐπεὶ ἴσα ἁ △Η τᾷ ΓΕ, ἴσα καὶ ἁ △Γ τᾷ ΕΗ· ὥστε καὶ ἁ ΛΕ ἴσα τᾷ ΕΗ. Διπλασία ἄρα ἁ μὲν ΛΗ τᾶς △Γ, ἁ δὲ ΗΚ τᾶς ΓΕ· ὥστε τὸ Ν καὶ ἑκατέραν τᾶν ΛΗ, ΗΚ μετρεῖ, ἐπειδήπερ καὶ τὰ ἡμίσεα αὐτᾶν. Καὶ ἐπεί ἐστιν, ὡς τὸ Α ποτὶ τὸ Β, οὕτως ἁ △Γ ποτὶ ΓΕ, ὡς δὲ ἁ △Γ ποτὶ ΓΕ, οὕτως ἁ ΛΗ ποτὶ ΗΚ διπλασία γὰρ ἑκατέρα ἑκατέρας·

86
καὶ ὡς ἄρα τὸ Α ποτὶ τὸ Β, οὕτως ἁ ΛΗ ποτὶ ΗΚ. Ὁσαπλασίων δέ ἐστιν ἁ ΛΗ τᾶς Ν, τοσαυταπλασίων ἔστω καὶ τὸ Α τοῦ Ζ ἔστιν ἄρα ὡς ἁ ΛΗ ποτὶ Ν, οὕτως τὸ Α ποτὶ Ζ. Ἔστι δὲ καὶ ὡς ἁ ΚΗ ποτὶ ΛΗ, οὕτως τὸ Β ποτὶ Α· διʼ ἴσου ἄρα ἐστὶν ὡς ἁ ΚΗ ποτὶ Ν, οὕτως τὸ Β ποτὶ Ζ· ἰσάκις ἄρα πολλαπλασίων ἐστὶν ἁ ΚΗ τᾶς Ν καὶ τὸ Β τοῦ Ζ. Ἐδείχθη δὲ τοῦ Ζ καὶ τὸ Α πολλαπλάσιον ἐόν· ὥστε τὸ Ζ τῶν Α, Β κοινόν ἐστι μέτρον. Διαιρεθείσας οὖν τᾶς μὲν ΛΗ εἰς τὰς τᾷ Ν ἴσας, τοῦ δὲ Α εἰς τὰ τῷ Ζ ἴσα, τὰ ἐν τᾷ ΛΗ τμάματα ἰσομεγέθεα τᾷ Ν ἴσα ἐσσεῖται τῷ πλήθει τοῖς ἐν τῷ Α τμαμάτεσσιν ἴσοις ἐοῦσιν τῷ Ζ. Ὥστε, ἂν ἐφʼ ἕκαστον τῶν τμαμάτων τῶν ἐν τᾷ ΛΗ ἐπιτεθῇ μέγεθος ἴσον τῷ Ζ τὸ κέντρον τοῦ βάρεος ἔχον ἐπὶ μέσου τοῦ τμάματος, τά τε πάντα μεγέθεα ἴσα ἐντὶ τῷ Α, καὶ τοῦ ἐκ πάντων συγκειμένου κέντρον ἐσσεῖται τοῦ βάρεος τὸ Ε· ἄρτιά τε γάρ ἐστι τὰ πάντα τῷ πλήθει, καὶ τὰ ἐφʼ ἑκάτερα τοῦ Ε ἴσα τῷ πλήθει διὰ τὸ ἴσαν εἶμεν τὰν ΛΕ τᾷ ΗΕ. Ὁμοίως δὲ δειχθήσεται ὅτι κἄν, εἴ κα ἐφʼ ἕκαστον τῶν ἐν τᾷ ΚΗ τμαμάτων ἐπιτεθῇ μέγεθος ἴσον τῷ Ζ κέντρον τοῦ βάρεος ἔχον ἐπὶ τοῦ μέσου τοῦ τμάματος, τά τε πάντα μεγέθεα ἴσα ἐσσεῖται τῷ Β, καὶ τοῦ ἐκ πάντων συγκειμένου κέντρον τοῦ βάρεος ἐσσεῖται τὸ △· ἐσσεῖται οὖν τὸ μὲν Α ἐπικείμενον κατὰ τὸ Ε, τὸ δὲ Β κατὰ τὸ △. Ἐσσεῖται δὴ μεγέθεα ἴσα ἀλλάλοις ἐπʼ εὐθείας κείμενα, ὧν τὰ κέντρα τοῦ βάρεος ἴσα ἀπʼ ἀλλάλων διέστακεν, συγκείμενα ἄρτια τῷ πλήθει· δῆλον οὖν ὅτι τοῦ ἐκ πάντων συγκειμένου μεγέθεος κέντρον ἐστὶ τοῦ βάρεος ἁ διχοτομία τᾶς εὐθείας τᾶς
87
ἐχούσας τὰ κέντρα τῶν μέσων μεγεθέων. Ἐπεὶ δʼ ἴσαι ἐντὶ ἁ μὲν ΛΕ τᾷ Γ△, ἁ δὲ ΕΓ τᾷ △Κ, καὶ ὅλα ἄρα ἁ ΛΓ ἴσα τᾷ ΓΚ· ὥστε τοῦ ἐκ πάντων μεγέθεος κέντρον τοῦ βάρεος τὸ Γ σαμεῖον. Τοῦ μὲν ἄρα Α κειμένου κατὰ τὸ Ε, τοῦ δὲ Β κατὰ τὸ △, ἰσορροπησοῦντι κατὰ τὸ Γ.

Καὶ τοίνυν, εἴ κα ἀσύμμετρα ἔωντι τὰ μεγέθεα, ὁμοίως ἰσορροπησοῦντι ἀπὸ μακέων ἀντιπεπονθότως τὸν αὐτὸν λόγον ἐχόντων τοῖς μεγέθεσιν.

Ἔστω ἀσύμμετρα μεγέθεα τὰ ΑΒ, Γ, μάκεα δὲ τὰ △Ε, ΕΖ, ἐχέτω δὲ τὸ ΑΒ ποτὶ τὸ Γ τὸν αὐτὸν λόγον, ὃν καὶ τὸ Ε△ ποτὶ τὸ ΕΖ μᾶκος λέγω ὅτι τοῦ ἐξ ἀμφοτέρων τῶν ΑΒ, Γ κέντρον τοῦ βάρεός ἐστι τὸ Ε.

Εἰ γὰρ μὴ ἰσορροπήσει τὸ ΑΒ τεθὲν ἐπὶ τῷ Ζ τῷ Γ τεθέντι ἐπὶ τῷ △, ἤτοι μεῖζόν ἐστι τὸ ΑΒ τοῦ Γ ἢ ὥστε ἰσορροπεῖν τῷ Γ ἢ οὔ. Ἔστω μεῖζον, καὶ ἀφῃρήσθω ἀπὸ τοῦ ΑΒ ἔλασσον τᾶς ὑπεροχᾶς, ᾇ μεῖζόν ἐστι τὸ ΑΒ τοῦ Γ ἢ ὥστε ἰσορροπεῖν, ὥστε τὸ λοιπὸν τὸ Α σύμμετρον εἶμεν τῷ Γ. Ἐπεὶ οὖν σύμμετρά ἐστι τὰ Α, Γ μεγέθεα,

88
καὶ ἐλάσσονα λόγον ἔχει τὸ Α ποτὶ τὸ Γ ἢ ἁ △Ε ποτὶ ΕΖ, οὐκ ἰσορροπησοῦντι τὰ Α, Γ ἀπὸ τῶν △Ε, ΕΖ μακέων, τεθέντος τοῦ μὲν Α ἐπὶ τῷ Ζ, τοῦ δὲ Γ ἐπὶ τῷ △. Διὰ ταὐτὰ δʼ, οὐδʼ εἰ τὸ Γ μεῖζόν ἐστιν ἢ ὥστε ἰσορροπεῖν τῷ ΑΒ.

Εἴ κα ἀπό τινος μεγέθεος ἀφαιρεθῇ τι μέγεθος μὴ τὸ αὐτὸ κέντρον ἔχον τῷ ὅλῳ, τοῦ λοιποῦ μεγέθεος κέντρον ἐστὶ τοῦ βάρεος, ἐκβλτηθείσας τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰ κέντρα τῶν βαρέων τοῦ τε ὅλου μεγέθεος καὶ τοῦ ἀφῃρημένου ἐπὶ τὰ αὐτά, ἐφʼ ἃ τὸ κέντρον τοῦ ὅλου μεγέθεος, καὶ ἀπολαφθείσας τινὸς ἀπὸ τᾶς ἐκβληθείσας τᾶς ἐπιζευγνυούσας τὰ εἰρημένα κέντρα, ὥστε τὸν αὐτὸν ἔχειν λόγον ποτὶ τὰν μεταξὺ τῶν κέντρων, ὃν ἔχει τὸ βάρος τοῦ ἀφῃρημένου μεγέθεος ποτὶ τὸ τοῦ λοιποῦ βάρος, τὸ πέρας τᾶς ἀπολαφθείσας.

Ἔστω μεγέθεος τινος τοῦ ΑΒ κέντρον τοῦ βάρεος τὸ Γ, καὶ ἀφῃρήσθω ἀπὸ τοῦ ΑΒ τὸ Α△, οὗ κέντρον τοῦ βάρεος ἔστω τὸ Ε, ἐπιζευχθείσας δὲ τᾶς ΕΓ καὶ ἐκβληθείσας ἀπολελάφθω ἁ ΓΖ ποτὶ τὰν ΓΕ λόγον ἔχουσα τὸν αὐτόν,

89
ὃν ἔχει τὸ Α△ μέγεθος ποτὶ τὸ △Η· δεικτέον ὅτι τοῦ △Η μεγέθεος κέντρον τοῦ βάρεός ἐστι τὸ Ζ σαμεῖον.

Μὴ γάρ, ἀλλʼ, εἰ δυνατόν, ἔστω τὸ Θ σαμεῖον. Ἐπεὶ οὖν τοῦ μὲν Α△ μεγέθεος κέντρον τοῦ βάρεός ἐστι τὸ Ε, τοῦ δὲ △Η τὸ Θ σαμεῖον, τοῦ ἐξ ἀμφοτέρων τῶν Α△, △Η μεγεθέων κέντρον τοῦ βάρεος ἐσσεῖται ἐπὶ τᾶς ΕΘ τμαθείσας, ὥστε τὰ τμάματα αὐτᾶς ἀντιπεπονθέμεν κατὰ τὸν αὐτὸν λόγον τοῖς μεγέθεσιν· ὥστε οὐκ ἐσσεῖται τὸ Γ σαμεῖον κατὰ τὰν ἀνάλογον τομὰν τᾷ εἰρημένᾳ. Οὐκ ἄρα ἐστὶ τὸ Γ κέντρον τοῦ ἐκ τῶν Α△, △Η συγκειμένου μεγέθεος, τουτέστι τοῦ ΑΒ. Ἔστι δὲ ὑπέκειτο γάρ· οὐκ ἄρα ἐστὶ τὸ Θ κέντρον βάρεος τοῦ △Η μεγέθεος.

Παντὸς παραλληλογράμμου τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰς διχοτομίας τᾶν κατʼ ἐναντίον τοῦ παραλληλογράμμου πλευρᾶν.

Ἔστω παραλληλόγραμμον τὸ ΑΒΓ△, ἐπὶ δὲ τὰν διχοτομίαν τᾶν ΑΒ, Γ△ ἁ ΕΖ· φαμὶ δὴ ὅτι τοῦ ΑΒΓ△ παραλληλογράμμου τὸ κέντρον τοῦ βάρεος ἐσσεῖται ἐπὶ τᾶς ΕΖ.

90

Μὴ γάρ, ἀλλʼ, εἰ δυνατόν, ἔστω τὸ Θ, καὶ ἀχθῶ παρὰ τὰν ΑΒ ἁ ΘΙ. Τᾶς δὲ δὴ ΕΒ διχοτομουμένας αἰεὶ ἐσσεῖταί ποκα ἁ καταλειπομένα ἐλάσσων τᾶς ΙΘ· καὶ διῃρήσθω ἑκατέρα τᾶν ΑΕ, ΕΒ εἰς τὰς τᾷ ΕΚ ἴσας, καὶ ἀπὸ τῶν κατὰ τὰς διαιρέσιας σαμείων ἄχθωσαν παρὰ τὰν ΕΖ· διαιρεθήσεται δὴ τὸ ὅλον παραλληλόγραμμον εἰς παραλληλόγραμμα τὰ ἴσα καὶ ὁμοῖα τῷ ΚΖ. Τῶν οὖν παραλληλογράμμων τῶν ἴσων καὶ ὁμοίων τῷ ΚΖ ἐφαρμοζομένων ἐπʼ ἄλλαλα καὶ τὰ κέντρα τοῦ βάρεος αὐτῶν ἐπʼ ἄλλαλα πεσοῦνται. Ἐσσοῦνται δὴ μεγέθεά τινα, παραλληλόγραμμα ἴσα τῷ ΚΖ, ἄρτια τῷ πλήθει, καὶ τὰ κέντρα τοῦ βάρεος αὐτῶν ἐπʼ εὐθείας κείμενα, καὶ τὰ μέσα ἴσα, καὶ πάντα τὰ ἐφʼ ἑκάτερα τῶν μέσων αὐτά τε ἴσα ἐντὶ καὶ αἱ μεταξὺ τῶν κέντρων εὐθεῖαι ἴσαι· τοῦ ἐκ πάντων αὐτῶν ἄρα συγκειμένου μεγέθεος τὸ κέντρον ἐσσεῖται τοῦ βάρεος ἐπὶ τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰ κέντρα τοῦ βάρεος τῶν μέσων χωρίων. Οὐκ ἔστι δέ· τὸ γὰρ Θ ἐκτός ἐστι τῶν μέσων παραλληλογράμμων. Φανερὸν οὖν ὅτι ἐπὶ τᾶς ΕΖ εὐθείας τὸ κέντρον ἐστὶ τοῦ βάρεος τοῦ ΑΒΓ△ παραλληλογράμμου.

Παντὸς παραλληλογράμμου τὸ κέντρον τοῦ βάρεός ἐστι τὸ σαμεῖον, καθʼ ὃ αἱ διάμετροι συμπίπτοντι.

91

Ἔστω παραλληλόγραμμον τὸ ΑΒΓ△ καὶ ἐν αὐτῷ ἁ ΕΖ δίχα τέμνουσα τὰς ΑΒ, Γ△, ἁ δὲ ΚΛ τὰς ΑΓ, Β△· ἔστιν δὴ τοῦ ΑΒΓ△ παραλληλογράμμου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΕΖ· δέδεικται γὰρ τοῦτο· διὰ ταὐτὰ δὲ καὶ ἐπὶ τᾶς ΚΛ· τὸ Θ ἄρα σαμεῖον κέντρον τοῦ βάρεος. Κατὰ δὲ τὸ Θ αἱ διάμετροι τοῦ παραλληλογράμμου συμπίπτοντι· ὥστε δέδεικται τὸ προτεθέν.

ΑΛΛΩΣ

Ἔστιν δὲ καὶ ἄλλως τὸ αὐτὸ δεῖξαι.

Ἔστω παραλληλόγραμμον τὸ ΑΒΓ△, διάμετρος δὲ αὐτοῦ ἔστω ἁ △Β. Τὰ ἄρα ΑΒ△, Β△Γ τρίγωνα ἴσα ἐντὶ καὶ ὁμοῖα ἀλλάλοις· ὥστε ἐφαρμοζομένων ἐπʼ ἄλλαλα τῶν τριγώνων καὶ τὰ κέντρα τοῦ βάρεος αὐτῶν ἐπʼ ἄλλαλα πεσοῦνται. Ἔστω δὴ τοῦ ΑΒ△ τριγώνου κέντρον τοῦ βάρεος τὸ Ε σαμεῖον, καὶ τετμάσθω δίχα ἁ △Β κατὰ τὸ Θ, καὶ ἐπεζεύχθω ἁ ΕΘ καὶ ἐκβεβλήσθω, καὶ ἀπολελάφθω ἁ ΖΘ ἴσα τᾷ ΘΕ. Ἐφαρμοζομένου δὴ τοῦ ΑΒ△ τριγώνου ἐπὶ τὸ Β△Γ τρίγωνον καὶ τιθεμένας τᾶς μὲν ΑΒ πλευρᾶς ἐπὶ τὰν △Γ, τᾶς δὲ Α△ ἐπὶ τὰν ΒΓ, ἐφαρμόξει καὶ ἁ ΘE εὐθεῖα ἐπὶ τὰν ΖΘ, καὶ τὸ Ε σαμεῖον ἐπὶ τὸ Ζ πεσεῖται.

92
Ἀλλὰ καὶ ἐπὶ τὸ κέντρον τοῦ βάρεος τοῦ Β△Γ τριγώνου. Ἐπεὶ οὖν τοῦ μὲν ΑΒ△ τριγώνου κέντρον τοῦ βάρεος τὸ Ε σαμεῖον, τοῦ δὲ △ΒΓ τὸ Ζ, δῆλον ὡς τοῦ ἐξ ἀμφοτέρων τῶν τριγώνων συγκειμένου μεγέθεος κέντρον τοῦ βάρεός ἐστι τὸ μέσον τᾶς ΕΖ εὐθείας, ὅπερ ἐστὶ τὸ Θ σαμεῖον.

Ἐὰν δύο τρίγωνα ὁμοῖα ἀλλάλοις ᾖ καὶ ἐν αὐτοῖς σαμεῖα ὁμοίως κείμενα ποτὶ τὰ τρίγωνα, καὶ τὸ ἓν σαμεῖον τοῦ ἐν ᾧ ἐστι τριγώνου κέντρον ᾖ τοῦ βάρεος, καὶ τὸ λοιπὸν σαμεῖον κέντρον ἐστὶ τοῦ βάρεος τοῦ ἐν ᾧ ἐστι τριγώνου ὁμοίως δὲ λέγομεν σαμεῖα κέεσθαι ποτὶ τὰ ὁμοῖα σχήματα, ἀφʼ ὧν αἱ ἐπὶ τὰς ἴσας γωνίας ἀγόμεναι εὐθεῖαι ἴσας ποιοῦσιν γωνίας πρὸς ταῖς ὁμολόγοις πλευραῖς.

Ἔστω δύο τρίγωνα τὰ ΑΒΓ, △ΕΖ, καὶ ἔστω ὡς ἁ ΑΓ ποτὶ △Ζ, οὕτως ἅ τε ΑΒ ποτὶ △Ε καὶ ἁ ΒΓ ποτὶ ΕΖ, καὶ ἐν τοῖς εἰρημένοις τριγώνοις σαμεῖα ὁμοίως κείμενα ἔστω τὰ Θ, Ν πρὸς τὰ ΑΒΓ, △ΕΖ τρίγωνα, καὶ ἔστω τὸ Θ κέντρον τοῦ βάρεος τοῦ ΑΒΓ τριγώνου· λέγω ὅτι καὶ τὸ Ν κέντρον βάρεός ἐστι τοῦ △ΕΖ τριγώνου.

93

Μὴ γάρ, ἀλλʼ, εἰ δυνατόν, ἔστω τὸ Η κέντρον βάρεος τοῦ △ΕΖ τριγώνου, καὶ ἐπεζεύχθωσαν αἱ ΘΑ, ΘΒ, ΘΓ, △Ν. ΕΝ. ΖΝ, △Η, ΕΗ, ΖΗ. Ἐπεὶ οὖν ὁμοῖόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ △ΕΖ τριγώνῳ, καὶ κέντρα τῶν βαρέων ἐστὶ τὰ Θ, Η σαμεῖα, τῶν δὲ ὁμοίων σχημάτων τὰ κέντρα τῶν βαρέων ὁμοίως ἐντὶ κείμενα ὥστε ἴσας ποιησοῦντι γωνίας ποτὶ ταῖς ὁμολόγοις πλευραῖς ἕκαστον ἑκάσταις, ἴσα ἄρα ἁ ὑπὸ Η△Ε γωνία τᾷ ὑπὸ ΘΑΒ. Ἀλλὰ ἁ ὑπὸ ΘΑΒ γωνία ἴσα ἐστὶ τᾷ ὑπὸ Ε△Ν διὰ τὸ ὁμοίως κεῖσθαι τὰ Θ, Ν σαμεῖα· καὶ ἁ ὑπὸ Ε△Ν γωνία ἄρα ἴσα ἐστὶ τᾷ ὑπὸ Ε△Η, ἁ μείζων τᾷ ἐλάσσονι· ὅπερ ἀδύνατον. Οὐκ ἄρα οὐκ ἔστι κέντρον τοῦ βάρεος τοῦ △ΕΖ τριγώνου τὸ Ν σαμεῖον ἔστιν ἄρα.

Εἴ κα δύο τρίγωνα ὁμοῖα ἔωντι, τοῦ δὲ ἑνὸς τριγώνου κέντρον ᾖ τοῦ βάρεος ἐπὶ τᾶς εὐθείας, ἅ ἐντι ἀπό τινος γωνίας ἐπὶ μέσαν τὰν βάσιν ἀγομένα, καὶ τοῦ λοιποῦ τριγώνου τὸ κέντρον ἐσσεῖται τοῦ βάρεος ἐπὶ τᾶς ὁμοίως ἀγομένας γραμμᾶς.

94

Ἔστω δύο τρίγωνα τὰ ΑΒΓ, △ΕΖ, καὶ ἔστω ὡς ἁ ΑΓ ποτὶ △Ζ, οὕτως ἅ τε ΑΒ ποτὶ △Ε καὶ ἁ ΒΓ ποτὶ ΖΕ, καὶ τμαθείσας τᾶς ΑΓ δίχα κατὰ τὸ Η ἐπεζεύχθω ἁ ΒΗ, καὶ ἔστω τὸ κέντρον τοῦ βάρεος τοῦ ΑΒΓ τριγώνου ἐπὶ τᾶς ΒΗ τὸ Θ λέγω ὅτι καὶ τοῦ Ε△Ζ τριγώνου τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ὁμοίως ἀγομένας εὐθείας.

Τετμάσθω ἁ △Ζ δίχα κατὰ τὸ Μ, καὶ ἐπεζεύχθω ἁ ΕΜ, καὶ πεποιήσθω ὡς ἁ ΒΗ ποτὶ ΒΘ, οὕτως ἁ ΜΕ ποτὶ ΕΝ, καὶ ἐπεζεύχθωσαν αἱ ΑΘ, ΘΓ, △Ν, ΝΖ. Ἐπεί ἐστι τᾶς μὲν ΓΑ ἡμίσεια ἁ ΑΗ, τᾶς δὲ △Ζ ἡμίσεια ἁ △Μ, ἔστιν ἄρα καὶ ὡς ἁ ΒΑ ποτὶ Ε△, οὕτως ἁ ΑΗ ποτὶ △Μ. Καὶ περὶ ἴσας γωνίας αἱ πλευραὶ ἀνάλογόν ἐντι· ἴσα τε ἄρα ἐστὶν ἁ ὑπὸ ΑΗΒ γωνία τᾷ ὑπὸ △ΜΕ, καί ἐστιν ὡς ἁ ΑΗ ποτὶ △Μ, οὕτως ἁ ΒΗ ποτὶ ΕΜ. Ἔστιν δὲ καὶ ὡς ἁ ΒΗ ποτὶ ΒΘ, οὕτως ἁ ΜΕ ποτὶ ΕΝ· καὶ διʼ ἴσου ἄρα ἐστὶν ὡς ἁ ΑΒ ποτὶ △Ε, οὕτως ἁ ΒΘ ποτὶ ΕΝ. Καὶ περὶ ἴσας γωνίας αἱ πλευραὶ ἀνάλογόν ἐντι· εἰ δὲ τοῦτο, ἴσα ἐστὶν ἁ ὑπὸ ΒΑΘ γωνία τᾷ ὑπὸ Ε△Ν· ὥστε καὶ λοιπὰ ἁ ὑπὸ ΘΑΓ γωνία ἴσα ἐστὶ τᾷ ὑπὸ Ν△Ζ γωνίᾳ. Διὰ τὰ αὐτὰ δὲ ἁ μὲν ὑπὸ ΒΓΘ γωνία ἴσα ἐστὶ τᾷ ὑπὸ ΕΖΝ, ἁ δὲ ὑπὸ ΘΓΗ τᾷ ὑπὸ ΝΖΜ ἴσα. Ἐδείχθη δὲ καὶ ἁ ὑπὸ ΑΒΘ τᾷ ὑπὸ △ΕΜ ἴσα ὥστε καὶ λοιπὰ ἁ ὑπὸ ΘΒΓ γωνία ἴσα ἐστὶ τᾷ ὑπὸ ΝΕΖ. Διὰ ταῦτα δὴ πάντα ὁμοίως κεῖται τὰ Θ, Ν σαμεῖα ποτὶ τὰς ὁμολόγους πλευρὰς ἴσας γωνίας ποιεῖ. Ἐπεὶ οὖν ὁμοίως κεῖται τὰ Θ, Ν σαμεῖα, καί ἐστι τὸ Θ κέντρον τοῦ βάρεος τοῦ ΑΒΓ τριγώνου, καὶ τὸ Ν ἄρα κέντρον βάρεος τοῦ △ΕΖ.

95

Παντὸς τριγώνου τὸ κέντρον ἐστὶ τοῦ βάρεος ἐπὶ τᾶς εὐθείας, ἅ ἐστιν ἐκ τᾶς γωνίας ἐπὶ μέσαν ἀγομένα τὰν βάσιν.

Ἔστω τρίγωνον τὸ ΑΒΓ καὶ ἐν αὐτῷ ἁ Α△ ἐπὶ μέσαν τὰν ΒΓ βάσιν· δεικτέον ὅτι ἐπὶ τᾶς Α△ τὸ κέντρον ἐστὶ τοῦ βάρεος τοῦ ΑΒΓ.

Μὴ γάρ, ἀλλʼ, εἰ δυνατόν, ἔστω τὸ Θ, καὶ διʼ αὐτοῦ παρὰ τὰν ΒΓ ἀχθῶ ἁ ΘΙ. Ἀεὶ δὴ δίχα τεμνομένας τᾶς △Γ ἐσσεῖταί ποκα ἁ καταλειπομένα ἐλάσσων τᾶς ΘΙ· καὶ διῃρήσθω ἑκατέρα τᾶν Β△, △Γ ἐς τὰς ἴσας, καὶ διὰ τᾶν τομᾶν παρὰ τὰν Α△ ἄχθωσαν, καὶ ἐπεζεύχθωσαν αἱ ΕΖ, ΗΚ, ΛΜ· ἐσσοῦνται δὴ αὗται παρὰ τὰν ΒΓ. Τοῦ δὴ παραλληλογράμμου τοῦ μὲν ΜΝ τὸ κέντρον ἐστὶ τοῦ βάρεος ἐπὶ τᾶς ΥΣ, τοῦ δὲ ΚΞ τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΤΥ, τοῦ δὲ ΖΟ ἐπὶ τᾶς Τ△· τοῦ ἄρα ἐκ πάντων συγκειμένου μεγέθεος τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ

96
τᾶς Σ△ εὐθείας. Ἔστω δὴ τὸ Ρ, καὶ ἐπεζεύχθω ἁ ΡΘ καὶ ἐκβεβλήσθω, καὶ ἄχθω παρὰ τὰν Α△ ἁ ΓΦ. Τὸ δὴ Α△Γ τρίγωνον ποτὶ πάντα τὰ τρίγωνα τὰ ἀπὸ τᾶν ΑΜ, ΜΚ, ΚΖ, ΖΓ ἀναγεγραμμένα ὁμοῖα τῷ Α△Γ τοῦτον ἔχει τὸν λόγον, ὃν ἔχει ἁ ΓΑ ποτὶ ΑΜ, διὰ τὸ ἴσας εἶμεν τὰς ΑΜ, ΜΚ, ΖΓ, ΚΖ. Ἐπεὶ δὲ καὶ τὸ Α△Β τρίγωνον ποτὶ πάντα τὰ ἀπὸ τᾶν ΑΛ, ΛΗ, ΗΕ, ΕΒ ἀναγεγραμμένα ὁμοῖα τρίγωνα τὸν αὐτὸν ἔχει λόγον, ὃν ἁ ΒΑ ποτὶ ΑΛ, τὸ ἄρα △ΒΓ τρίγωνον ποτὶ πάντα τὰ εἰρημένα τρίγωνα τοῦτον ἔχει τὸν λόγον, ὃν ἔχει ἁ ΓΑ ποτὶ ΑΜ. Ἀλλὰ ἁ ΓΑ ποτὶ ΑΜ μείζονα λόγον ἔχει ἤπερ ἁ ΦΡ ποτὶ ΡΘ· ὁ γὰρ τᾶς ΓΑ ποτὶ ΑΜ λόγος ὁ αὐτός ἐστι τῷ ὅλας τᾶς ΦΡ ποτὶ ΡΠ διὰ τὸ ὁμοῖα εἶμεν τὰ τρίγωνα· καὶ τὸ ΑΒΓ ἄρα τρίγωνον ποτὶ τὰ εἰρημένα μείζονα λόγον ἔχει ἤπερ ἁ ΦΡ ποτὶ ΡΘ ὥστε καὶ διελόντι τὰ ΜΝ. ΚΞ, ΖΟ παραλληλόγραμμα ποτὶ τὰ καταλειπόμενα τρίγωνα μείζονα λόγον ἔχει ἤπερ ἁ ΦΘ ποτὶ ΘΡ. Γεγονέτω οὖν ἐν τῷ τῶν παραλληλογράμμων ποτὶ τὰ τρίγωνα λόγῳ ἁ ΧΘ ποτὶ ΘΡ. Ἐπεὶ οὖν ἔστι τι μέγεθος τὸ ΑΒΓ, οὗ τὸ κέντρον τοῦ βάρεός ἐστι τὸ Θ, καὶ ἀφῄρηται ἀπʼ αὐτοῦ μέγεθος τὸ συγκείμενον ἐκ τῶν ΜΝ. ΚΞ, ΖΟ παραλληλογράμμων, καί ἐστιν τοῦ ἀφῃρημένου μεγέθεος κέντρον τοῦ βάρεος τὸ Ρ σαμεῖον, τοῦ ἄρα λοιποῦ μεγέθεος τοῦ συγκειμένου ἐκ τῶν περιλειπομένων τριγώνων κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΡΘ εὐθείας ἐκβληθείσας καὶ ἀπολαφθείσας ποτὶ τὰν ΘΡ τοῦτον ἐχούσας τὸν λόγον, ὃν ἔχει τὸ ἀφαιρεθὲν μέγεθος ποτὶ τὸ λοιπόν, Τὸ ἄρα Χ σαμεῖον κέντρον ἐστὶ τοῦ βάρεος τοῦ συγκειμένου μεγέθεος ἐκ
97
τῶν περιλειπομένων ὅπερ ἀδύνατον· τᾶς γὰρ διὰ τοῦ Χ εὐθείας παρὰ τὰν Α△ ἀγομένας ἐν τῷ ἐπιπέδῳ ἐπὶ ταὐτὰ πάντα ἐντί τουτέστιν ἐπὶ θάτερον μέρος. Δῆλον οὖν τὸ προτεθέν.

ΑΛΛΩΣ ΤΟ ΑΥΤΟ

Ἔστω τρίγωνον τὸ ΑΒΓ, καὶ ἄχθω ἁ Α△ ἐπὶ μέσαν τὰν ΒΓ· λέγω ὅτι ἐπὶ τᾶς Α△ τὸ κέντρον ἐστὶ τοῦ βάρεος τοῦ ΑΒΓ τριγώνου.

Μὴ γάρ, ἀλλʼ, εἰ δυνατόν, ἔστω τὸ Θ, καὶ ἐπεζεύχθωσαν αἵ τε ΑΘ, ΘΒ, ΘΓ καὶ αἱ Ε△, ΖΕ ἐπὶ μέσας τὰς ΒΑ, ΑΓ, καὶ παρὰ τὰν ΑΘ ἄχθωσαν αἱ ΕΚ, ΖΛ, καὶ ἐπεζεύχθωσαν αἱ ΚΛ, Λ△, △Κ, △Θ, ΜΝ. Ἐπεὶ ὁμοῖόν ἐστι τὸ ΑΒΓ τρίγωνον τῷ △ΖΓ τριγώνῳ διὰ τὸ παράλληλον εἶμεν τὰν ΒΑ τᾷ Ζ△, καί ἐστι τοῦ ΑΒΓ τριγώνου κέντρον τοῦ βάρεος τὸ Θ σαμεῖον, καὶ τοῦ Ζ△Γ ἄρα τριγώνου κέντρον τοῦ βάρεός ἐστι τὸ Λ σαμεῖον ὁμοίως γάρ ἐντι κείμενα τὰ Θ, Λ σαμεῖα ἐν ἑκατέρῳ τῶν τριγώνων ἐπειδήπερ ποτὶ τὰς ὁμολόγους πλευρὰς ἴσας ποιέοντι γωνίας· φανερὸν γὰρ τοῦτο. Διὰ τὰ αὐτὰ δὴ καὶ τοῦ ΕΒ△ κέντρον τοῦ

98
βάρεός ἐστι τὸ Κ σαμεῖον· ὥστε τοῦ ἐξ ἀμφοτέρων τῶν ΕΒ△, Ζ△Γ τριγώνων συγκειμένου μεγέθεος κέντρον τοῦ βάρεός ἐστιν ἐπὶ μέσας τᾶς ΚΛ εὐθείας ἐπειδήπερ ἴσα ἐντὶ τὰ ΕΒ△, Ζ△Γ τρίγωνα. Καί ἐστιν τᾶς ΚΛ μέσον τὸ Ν, ἐπεί ἐστιν ὡς ἁ ΒΕ ποτὶ ΕΑ, οὕτως ἁ ΒΚ ποτὶ ΘΚ, ὡς δὲ ἁ ΓΖ ποτὶ ΖΑ, οὕτως ἁ ΓΛ ποτὶ ΛΘ· εἰ δὲ τοῦτο, ἔστιν ἁ ΒΓ τᾷ ΚΛ παράλληλος. Καὶ ἐπέζευκται ἁ △Θ· ἔστιν ἄρα ὡς ἁ Β△ ποτὶ △Γ, οὕτως ἁ ΚΝ ποτὶ τὰν ΝΛ· ὥστε τοῦ ἐξ ἀμφοτέρων τῶν εἰρημένων τριγώνων συγκειμένου μεγέθεος κέντρον ἐστὶ τὸ Ν. Ἔστιν δὲ καὶ τοῦ ΑΕ△Ζ παραλληλογράμμου κέντρον τοῦ βάρεος τὸ Μ σαμεῖον ὥστε τοῦ ἐκ πάντων συγκειμένου μεγέθεος τὸ κέντρον τοῦ βάρεός ἐστιν ἐπὶ τᾶς ΜΝ εὐθείας. Ἔστιν δὲ καὶ τοῦ ΑΒΓ κέντρον τοῦ βάρεος τὸ Θ σαμεῖον ἁ ΜΝ ἄρα ἐκβαλλομένα πορεύεται διὰ τοῦ Θ σαμείου· ὅπερ ἀδύνατον. Οὐκ ἄρα τὸ κέντρον τοῦ βάρεος τοῦ ΑΒΓ τριγώνου οὐκ ἔστιν ἐπὶ τᾶς Α△ εὐθείας ἔστιν ἄρα ἐπʼ αὐτᾶς.

Παντὸς τριγώνου κέντρον ἐστὶ τοῦ βάρεος τὸ σαμεῖον, καθʼ ὃ συμπίπτοντι τοῦ τριγώνου αἱ ἐκ τᾶν γωνιᾶν ἐπὶ μέσας τὰς πλευρὰς ἀγόμεναι εὐθεῖαι.

99

Ἔστω τρίγωνον τὸ ΑΒΓ, καὶ ἄχθω ἁ μὲν Α△ ἐπὶ μέσαν τὰν ΒΓ, ἁ δὲ ΒΕ ἐπὶ μέσαν τὰν ΑΓ· ἐσσεῖται δὴ τοῦ ΑΒΓ τριγώνου κέντρον τοῦ βάρεος ἐφʼ ἑκατέρας τᾶν Α△, ΒΕ· δέδεικται γὰρ τοῦτο. Ὥστε τὸ Θ σαμεῖον κέντρον τοῦ βάρεός ἐστιν.

Παντὸς τραπεζίου τὰς δύο πλευρὰς ἔχοντος παραλλήλους ἀλλάλαις τὸ κέντρον ἐστὶ τοῦ βάρεος ἐπὶ τᾶς εὐθείας τᾶς ἐπιζευγνυούσας τὰς διχοτομίας τᾶν παραλλήλων διαιρεθείσας, ὥστε τὸ τμᾶμα αὐτᾶς τὸ πέρας ἔχον τὰν διχοτομίαν τᾶς ἐλάσσονος τᾶν παραλλήλων ποτὶ τὸ λοιπὸν τμᾶμα τοῦτον ἔχειν τὸν λόγον, ὃν ἔχει συναμφότερος ἁ ἴσα τᾷ διπλασίᾳ τᾶς μείζονος μετὰ τᾶς ἐλάσσονος ποτὶ τὰν διπλασίαν τᾶς ἐλάσσονος μετὰ τᾶς μείζονος τᾶν παραλλήλων.

Ἔστω τραπέζιον τὸ ΑΒΓ△ παραλλήλους ἔχον τὰς Α△, ΒΓ, ἁ δὲ ΕΖ ἐπιζευγνυέτω τὰς διχοτομίας τᾶν Α△, ΒΓ. Ὅτι οὖν ἐπὶ τᾶς ΕΖ ἐστὶ τὸ κέντρον τοῦ τραπεζίου

100
φανερόν. Ἐὰν γὰρ ἐκβάλῃς τὰς Γ△Η, ΖΕΗ, ΒΑΗ, δῆλον ὅτι ἐπὶ τὸ αὐτὸ σαμεῖον ἔρχονται, καὶ ἐσσεῖται τοῦ ΗΒΓ τριγώνου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΗΖ, καὶ ὁμοίως τοῦ ΑΗ△ τριγώνου τὸ κέντρον τοῦ βάρεος ἐπὶ τᾶς ΕΗ· καὶ λοιποῦ ἄρα τοῦ ΑΒΓ△ τραπεζίου κέντρον τοῦ βάρεος ἐσσεῖται ἐπὶ τᾶς ΕΖ. Ἐπιζευχθεῖσα δὲ ἁ Β△ διῃρήσθω εἰς τρία ἴσα κατὰ τὰ Κ, Θ σαμεῖα, καὶ διʼ αὐτῶν παρὰ τὰν ΒΓ ἄχθωσαν αἱ ΛΘΜ, ΝΚΤ, καὶ ἐπεζεύχθωσαν αἱ △Ζ, ΒΕ, ΟΞ· ἐσσεῖται δὴ τοῦ μὲν △ΒΓ τριγώνου κέντρον τοῦ βάρεος ἐπὶ τᾶς ΘΜ, ἐπειδήπερ τρίτον μέρος ἁ ΘΒ τᾶς Β△ καὶ διὰ τοῦ Θ σαμείου παράλληλος τᾷ βάσει ἆκται ἁ ΜΘ. Ἔστιν δὲ τὸ κέντρον τοῦ βάρεος τοῦ △ΒΓ τριγώνου καὶ ἐπὶ τᾶς △Ζ ὥστε τὸ Ξ κέντρον τοῦ βάρεος τοῦ εἰρημένου τριγώνου. Διὰ ταὐτὰ δὲ καὶ τὸ Ο σαμεῖον κέντρον ἐστὶ τοῦ βάρεος τοῦ ΑΒ△ τριγώνου τοῦ ἄρα ἐξ ἀμφοτέρων τῶν ΑΒ△, Β△Γ τριγώνων συγκειμένου μεγέθεος, ὅπερ ἐστὶ τὸ τραπέζιον, κέντρον τοῦ βάρεος ἐπὶ τᾶς ΟΞ εὐθείας. Ἔστιν δὲ τοῦ εἰρημένου τραπεζίου κέντρον τοῦ βάρεος καὶ ἐπὶ τᾶς ΕΖ ὥστε τοῦ ΑΒΓ△ τραπεζίου κέντρον ἐστὶ τοῦ βάρεος τὸ Π σαμεῖον. Ἔχοι δʼ ἂν τὸ Β△Γ τρίγωνον ποτὶ τὸ ΑΒ△ λόγον, ὃν ἁ ΟΠ ποτὶ ΠΞ. Ἀλλʼ ὡς τὸ Β△Γ τρίγωνον ποτὶ τὸ ΑΒ△ τρίγωνον, οὕτως ἐντὶ ἁ ΒΓ ποτὶ Α△, ὡς δὲ ἁ ΟΠ ποτὶ ΠΞ, οὕτως ἁ ΡΠ ποτὶ ΠΣ· καὶ ὡς ἄρα ἁ ΒΓ ποτὶ Α△, οὕτως ἁ ΡΠ ποτὶ ΠΣ· ὥστε καὶ ὡς δύο αἱ ΒΓ μετὰ τᾶς Α△ ποτὶ δύο τὰς Α△ μετὰ τᾶς ΒΓ, οὕτως δύο αἱ ΡΠ μετὰ τᾶς ΠΣ ποτὶ δύο τὰς ΠΣ μετὰ τᾶς ΠΡ. Ἀλλὰ δύο μὲν αἱ ΡΠ μετὰ τᾶς ΠΣ συναμφότερός ἐστιν ἁ ΣΡΠ, τουτέστιν ἁ ΠΕ, δύο δὲ αἱ ΠΣ μετὰ τᾶς ΠΡ συναμφότερός ἐστιν ἁ ΡΣΠ, τουτέστιν ἁ ΠΖ δέδεικται ἄρα τὰ προτεθέντα.